Getting Started with PySpark for Big Data Analytics using Jupyter Notebooks and Jupyter Docker Stacks

There is little question, big data analytics, data science, artificial intelligence (AI), and machine learning (ML), a subcategory of AI, have all experienced a tremendous surge in popularity over the last few years. Behind the hype curves and marketing buzz, these technologies are having a significant influence on all aspects of our modern lives. Due to their popularity and potential benefits, academic institutions and commercial enterprises are rushing to train large numbers of Data Scientists and ML and AI Engineers.


Learning popular programming paradigms, such as Python, Scala, R, Apache Hadoop, Apache Spark, and Apache Kafka, requires the use of multiple complex technologies. Installing, configuring, and managing these technologies often demands an advanced level of familiarity with Linux, distributed systems, cloud- and container-based platforms, databases, and data-streaming applications. These barriers may prove a deterrent to Students, Mathematicians, Statisticians, and Data Scientists.


Driven by the explosive growth of these technologies and the need to train individuals, many commercial enterprises are lowering the barriers to entry, making it easier to get started. The three major cloud providers, AWS, Azure, and Google Cloud, all have multiple Big Data-, AI- and ML-as-a-Service offerings.

Similarly, many open-source projects are also lowering the barriers to entry into these technologies. An excellent example of an open-source project working on this challenge is Project Jupyter. Similar to the Spark Notebook and Apache Zeppelin projects, Jupyter Notebooks enables data-driven, interactive, and collaborative data analytics with Julia, Scala, Python, R, and SQL.

This post will demonstrate the creation of a containerized development environment, using Jupyter Docker Stacks. The environment will be suited for learning and developing applications for Apache Spark, using the Python, Scala, and R programming languages. This post is not intended to be a tutorial on Spark, PySpark, or Jupyter Notebooks.

Featured Technologies

The following technologies are featured prominently in this post.


Jupyter Notebooks

According to Project Jupyter, the Jupyter Notebook, formerly known as the IPython Notebook, is an open-source web application that allows users to create and share documents that contain live code, equations, visualizations, and narrative text. Uses include data cleaning and transformation, numerical simulation, statistical modeling, data visualization, machine learning, and much more. The word, Jupyter, is a loose acronym for Julia, Python, and R, but today, the Jupyter supports many programming languages. Interest in Jupyter Notebooks has grown dramatically.


Jupyter Docker Stacks

To enable quick and easy access to Jupyter Notebooks, Project Jupyter has created Jupyter Docker Stacks. The stacks are ready-to-run Docker images containing Jupyter applications, along with accompanying technologies. Currently, eight different Jupyter Docker Stacks focus on a particular area of practice. They include SciPy (Python-based mathematics, science, and engineering), TensorFlow, R Project for statistical computing, Data Science with Julia, and the main subject of this post, PySpark. The stacks also include a rich variety of well-known packages to extend their functionality, such as scikit-learn, pandas, MatplotlibBokeh, ipywidgets (interactive HTML widgets), and Facets.

Apache Spark

According to Apache, Spark is a unified analytics engine for large-scale data processing, used by well-known, modern enterprises, such as Netflix, Yahoo, and eBay. With speeds up to 100x faster than Hadoop, Apache Spark achieves high performance for static, batch, and streaming data, using a state-of-the-art DAG (Directed Acyclic Graph) scheduler, a query optimizer, and a physical execution engine.

Spark’s polyglot programming model allows users to write applications quickly in Scala, Java, Python, R, and SQL. Spark includes libraries for Spark SQL (DataFrames and Datasets), MLlib (Machine Learning), GraphX (Graph Processing), and DStreams (Spark Streaming). You can run Spark using its standalone cluster mode, on Amazon EC2Apache Hadoop YARNMesos, or Kubernetes.


The Spark Python API, PySpark, exposes the Spark programming model to Python. PySpark is built on top of Spark’s Java API. Data is processed in Python and cached and shuffled in the JVM. According to Apache, Py4J enables Python programs running in a Python interpreter to dynamically access Java objects in a JVM.


According to Docker, their technology developers and IT the freedom to build, manage and secure business-critical applications without the fear of technology or infrastructure lock-in. Although Kubernetes is now the leading open-source container orchestration platform, Docker is still the predominant underlying container engine technology. For this post, I am using Docker Desktop Community version for macOS.


Docker Swarm

Current versions of Docker include both a Kubernetes and Swarm orchestrator for deploying and managing containers. We will choose Swarm for this demonstration. According to Docker, Swarm is the cluster management and orchestration features embedded in the Docker Engine are built using swarmkit. Swarmkit is a separate project which implements Docker’s orchestration layer and is used directly within Docker.


PostgreSQL is a powerful, open-source object-relational database system. According to their website, PostgreSQL comes with many features aimed to help developers build applications, administrators to protect data integrity and build fault-tolerant environments, and help manage data no matter how big or small the dataset.


To show the capabilities of the Jupyter development environment, I will demonstrate a few typical use cases, such as executing Python scripts, submitting PySpark jobs, working with Jupyter Notebooks, and reading and writing data to and from different format files and to a database. We will be using the jupyter/all-spark-notebook:latest Docker Image. This image includes Python, R, and Scala support for Apache Spark, using Apache Toree.


As shown below, we will stand-up a Docker stack, consisting of Jupyter All-Spark-Notebook, PostgreSQL 10.5, and Adminer containers. The Docker stack will have local directories bind-mounted into the containers. Files from our GitHub project will be shared with the Jupyter application container through a bind-mounted directory. Our PostgreSQL data will also be persisted through a bind-mounted directory. This allows us to persist data external to the ephemeral containers.


Source Code

All open-sourced code for this post can be found on GitHub. Use the following command to clone the project. The post and project code was last updated on 9/28/2019.

git clone \
  --branch master --single-branch --depth 1 --no-tags \

Source code samples are displayed as GitHub Gists, which may not display correctly on some mobile and social media browsers.

Deploy Docker Stack

To start, create the $HOME/data/postgres directory to store PostgreSQL data files. This directory will be bind-mounted into the PostgreSQL container on line 36 of the stack.yml file, $HOME/data/postgres:/var/lib/postgresql/data. The HOME environment variable assumes you are working on Linux or macOS and is equivalent to HOMEPATH on Windows.

The Jupyter container’s working directory is set on line 10 of the stack.yml file, working_dir:/home/$USER/workThe local bind-mounted working directory is $PWD/work. This path is bind-mounted to the working directory in the Jupyter container, on line 24 of the stack.yml file, $PWD/work:/home/$USER/work. The PWD environment variable assumes you are working on Linux or macOS (CD on Windows).

By default, the user within the Jupyter container is jovyan. Optionally, I have chosen to override that user with my own local host’s user account, as shown on line 16 of the stack.yml file, NB_USER: $USER. I have used the macOS host’s USER environment variable value (equivalent to USERNAME on Windows). There are many options for configuring the Jupyter container, detailed here. Several of those options are shown on lines 12-18 of the stack.yml file (gist).

version: "3.7"
image: jupyter/all-spark-notebook:latest
working_dir: /home/$USER/work
NB_UID: 1000
NB_GID: 100
NB_GROUP: staff
user: root
replicas: 1
condition: on-failure
image: postgres:11.3
condition: on-failure
image: adminer:latest
condition: on-failure

view raw


hosted with ❤ by GitHub

Assuming you have a recent version of Docker installed on your local development machine, and running in swarm mode, standing up the stack is as easy as running the following command from the root directory of the project:

docker stack deploy -c stack.yml pyspark

The Docker stack consists of a new overlay network, pyspark-net, and three containers. To confirm the stack deployed, you can run the following command:

docker stack ps pyspark --no-trunc


Note the jupyter/all-spark-notebook container is quite large. Depending on your Internet connection, if this is the first time you have pulled this Docker image, the stack may take several minutes to enter a running state.

To access the Jupyter Notebook application, you need to obtain the Jupyter URL and access token (read more here). This information is output in the Jupyter container log, which can be accessed with the following command:

docker logs $(docker ps | grep pyspark_pyspark | awk '{print $NF}')


Using the URL and token shown in the log output, you will be able to access the Jupyter web-based user interface on localhost port 8888. Once there, from the Jupyter dashboard landing page, you should see all the files in the project’s work/ directory.

Also shown below, note the types of files you are able to create from the dashboard, including Python 3, R, Scala (using Apache Toree or spylon-kernal), and text. You can also open a Jupyter Terminal or create a new Folder.


Running Python Scripts

Instead of worrying about installing and maintaining the latest version of Python and packages on your own development machine, we can run our Python scripts from the Jupyter container. At the time of this post update, the latest jupyter/all-spark-notebook Docker Image runs Python 3.7.3 and Conda 4.6.14. Let’s start with a simple example of the Jupyter container’s capabilities by running a Python script. I have included a sample Python script,

import random
technologies = ['PySpark', 'Python', 'Spark', 'Scala', 'JVM',
'Project Jupyter', 'PostgreSQL']
print("Technologies: %s" % technologies)
print("Sorted: %s" % technologies)
print("I'm interested in learning %s." % random.choice(technologies))

Run the script from within the Jupyter container, from a Jupyter Terminal window:

python ./

You should observe the following output.

Kaggle Datasets

To explore the features of the Jupyter Notebook container and PySpark, we will use a publicly available dataset from Kaggle. Kaggle is a fantastic open-source resource for datasets used for big-data and ML applications. Their tagline is ‘Kaggle is the place to do data science projects’.

For this demonstration, I chose the ‘Transactions from a Bakery’ dataset from Kaggle.


The dataset contains 21,294 rows, each with four columns of data. Although certainly nowhere near ‘big data’, the dataset is large enough to test out the Jupyter container functionality (gist).

Date Time Transaction Item
2016-10-30 09:58:11 1 Bread
2016-10-30 10:05:34 2 Scandinavian
2016-10-30 10:05:34 2 Scandinavian
2016-10-30 10:07:57 3 Hot chocolate
2016-10-30 10:07:57 3 Jam
2016-10-30 10:07:57 3 Cookies
2016-10-30 10:08:41 4 Muffin
2016-10-30 10:13:03 5 Coffee
2016-10-30 10:13:03 5 Pastry
2016-10-30 10:13:03 5 Bread

view raw


hosted with ❤ by GitHub

Submitting Spark Jobs

We are not limited to Jupyter Notebooks to interact with Spark, we can also submit scripts directly to Spark from a Jupyter Terminal, or from our IDE. I have included a simple Python script, The script loads the Kaggle Bakery dataset from the CSV file into a Spark DataFrame. The script then prints out the top ten rows of data, along with a count of the total number of rows in the DataFrame.

from pyspark.sql import SparkSession
from pyspark.sql.types import StructType, StructField, StringType, IntegerType
spark = SparkSession \
.builder \
sc = spark.sparkContext
bakery_schema = StructType([
StructField('date', StringType(), True),
StructField('time', StringType(), True),
StructField('transaction', IntegerType(), True),
StructField('item', StringType(), True)
df3 = \
.format('csv') \
.option('header', 'true') \
.load('BreadBasket_DMS.csv', schema=bakery_schema)

Run the script directly from a Jupyter Terminal window:

python ./

An example of the output of the Spark job is shown below. At the time of this post update (6/7/2019), the latest jupyter/all-spark-notebook Docker Image runs Spark 2.4.3, Scala 2.11.12, and Java 1.8.0_191 using the OpenJDK.

More typically, you would submit the Spark job, using the spark-submit command. Use a Jupyter Terminal window to run the following command:


Below, we see the beginning of the output from Spark, using the spark-submit command.

Below, we see the scheduled tasks executing and the output of the print statement, displaying the top 10 rows of bakery data.

Interacting with Databases

Often with Spark, you are loading data from one or more data sources (input). After performing operations and transformations on the data, the data is persisted or conveyed to another system for further processing (output).

To demonstrate the flexibility of the Jupyter Docker Stacks to work with databases, I have added PostgreSQL to the Docker Stack. We can read and write data from the Jupyter container to the PostgreSQL instance, running in a separate container.

To begin, we will run a SQL script, written in Python, to create our database schema and some test data in a new database table. To do so, we will need to install the psycopg2 package into our Jupyter container. You can use the docker exec command from your terminal. Alternatively, as a superuser, your user has administrative access to install Python packages within the Jupyter container using the Jupyter Terminal window. Both pip and conda are available to install packages, see details here.

Run the following command to install psycopg2:

# using pip
docker exec -it \
  $(docker ps | grep pyspark_pyspark | awk '{print $NF}') \
  pip install psycopg2-binary

These packages give Python the ability to interact with PostgreSQL. The included Python script,, will execute a set of SQL statements, contained in a SQL file, bakery_sample.sql, against the PostgreSQL container instance.

import psycopg2
# source:
connect_str = 'host=postgres port=5432 dbname=demo user=postgres password=postgres1234'
conn = psycopg2.connect(connect_str)
conn.autocommit = True
cursor = conn.cursor()
sql_file = open('bakery_sample.sql', 'r')
sqlFile =
sqlCommands = sqlFile.split(';')
for command in sqlCommands:
if command.strip() != '':

view raw

hosted with ❤ by GitHub

To execute the script, run the following command:

python ./

This should result in the following output, if successful.

To confirm the SQL script’s success, I have included Adminer. Adminer (formerly phpMinAdmin) is a full-featured database management tool written in PHP. Adminer natively recognizes PostgreSQL, MySQL, SQLite, and MongoDB, among other database engines.

Adminer should be available on localhost port 8080. The password credentials, shown below, are available in the stack.yml file. The server name, postgres, is the name of the PostgreSQL container. This is the domain name the Jupyter container will use to communicate with the PostgreSQL container.

Connecting to the demo database with Adminer, we should see the bakery_basket table. The table should contain three rows of data, as shown below.

Developing Jupyter NoteBooks

The true power of the Jupyter Docker Stacks containers is Jupyter Notebooks. According to the Jupyter Project, the notebook extends the console-based approach to interactive computing in a qualitatively new direction, providing a web-based application suitable for capturing the whole computation process: developing, documenting, and executing code, as well as communicating the results. Notebook documents contain the inputs and outputs of an interactive session as well as additional text that accompanies the code but is not meant for execution.

To see the power of Jupyter Notebooks, I have written a basic notebook document, 04_pyspark_demo_notebook.ipynb. The document performs some typical PySpark functions, such as loading data from a CSV file and from the PostgreSQL database, performing some basic data analytics with Spark SQL, graphing the data using BokehJS, and finally, saving data back to the database, as well as to the popular Apache Parquet file format. Below we see the notebook document, using the Jupyter Notebook user interface.


PostgreSQL Driver

The only notebook document dependency, not natively part of the Jupyter Image, is the PostgreSQL JDBC driver. The driver, postgresql-42.2.8.jar, is included in the project and referenced in the configuration of the notebook’s Spark Session. The JAR is added to the spark.driver.extraClassPath runtime environment property. This ensures the JAR is available to Spark (written in Scala) when the job is run.


Since the working directory for the project is shared with the container, you can also edit files, including notebook documents, in your favorite IDE, such as JetBrains PyCharm. PyCharm has built-in language support for Jupyter Notebooks, as shown below.

As mentioned earlier, a key feature of Jupyter Notebooks is their ability to save the output from each Cell as part of the notebook document. Below, we see the notebook document on GitHub. The output is saved, as part of the notebook document. Not only can you distribute the notebook document, but you can also preserve and share the output from each cell.

Using Additional Packages

As mentioned in the Introduction, the Jupyter Docker Stacks come ready-to-run, with a rich variety of Python packages to extend their functionality.  To demonstrate the use of these packages, I have created a second Jupyter notebook document, 05_pyspark_demo_notebook.ipynb. This notebook document uses SciPy (Python-based mathematics, science, and engineering), NumPy (Python-based scientific computing), and the Plotly Python Graphing Library. While NumPy and SciPy are included on the Jupyter Docker Image, the Notebook used pip to install Plotly. Similar to Bokeh, shown previously, we can combine these libraries to create richly interactive data visualizations. To use Plotly, you will need to sign up for a free account and obtain a username and API key.

Shown below, we use Plotly to construct a bar chart of daily bakery items sold for the year 2017 based on the Kaggle dataset. The chart uses SciPy and NumPy to construct a linear fit (regression) and plot a line of best fit for the bakery data. The chart also uses SciPy’s Savitzky-Golay Filter to plot the second line, illustrating a smoothing of our bakery data.


Plotly also provides Chart Studio Online Chart Maker. Plotly describes Chart Studio as the world’s most sophisticated editor for creating d3.js and WebGL charts. Shown below, we have the ability to enhance, stylize, and share our bakery data visualization using the free version of Chart Studio Cloud.



Notebooks can also be viewed using Jupyter nbviewer, hosted on Rackspace. Below, we see the output of a cell from this project’s notebook document, showing a BokehJS chart, using nbviewer. You can view this project’s actual notebook document, using nbviewer, here.


Monitoring Spark Jobs

The Jupyter Docker container exposes Spark’s monitoring and instrumentation web user interface. We can observe each Spark Job in great detail.

We can review details of each stage of the Spark job, including a visualization of the DAG, which Spark constructs as part of the job execution plan, using the DAG Scheduler.

We can also review the timing of each event, occurring as part of the stages of the Spark job.

We can also use the Spark interface to review and confirm the runtime environment, including versions of Java, Scala, and Spark, as well as packages available on the Java classpath.

Spark Performance

Spark, running on a single node within the Jupyter container, on your development system, is not a substitute for a full Spark cluster, running on bare metal or robust virtualized hardware, with YARN, Mesos, or Kubernetes. In my opinion, you should adjust Docker to support an acceptable performance profile for the stack, running only a modest workload. You are not trying to replace the need to run real jobs on a Production Spark cluster.

We can use the docker stats command to examine the container’s CPU and memory metrics:

docker stats --format "table {{.Name}}\t{{.CPUPerc}}\t{{.MemUsage}}\t{{.MemPerc}}"

Below, we see the stats from the stack’s three containers immediately after being deployed, showing little or no activity. Here, Docker has been allocated 2 CPUs, 3GB of RAM, and 2 GB of swap space available, from the host machine.

Compare the stats above with the same three containers, while the example notebook document is running on Spark. The CPU shows a spike, but memory usage appears to be within acceptable ranges.

Linux top and htop

Another option to examine container performance metrics is with top. We can use the docker exec command to execute the top command within the Jupyter container, sorting processes by CPU usage:

docker exec -it \
  $(docker ps | grep pyspark_pyspark | awk '{print $NF}') \
  top -o %CPU

With top, we can observe the individual performance of each process running in the Jupyter container.


Lastly, htop, an interactive process viewer for Unix, can be installed into the container and ran with the following set of bash commands, from a Jupyter Terminal window or using docker exec:

docker exec -it \
  $(docker ps | grep pyspark_pyspark | awk '{print $NF}') \
  sh -c "apt-get update && apt-get install htop && htop --sort-key PERCENT_CPU"

With htop, we can observe individual CPU activity. The two CPUs at the top left of the htop window are the two CPUs assigned to Docker. We get insight into the way Docker is using each CPU, as well as other basic performance metrics, like memory and swap.


Assuming your development machine host has them available, it is easy to allocate more compute resources to Docker if required. However, in my opinion, this stack is optimized for development and learning, using reasonably sized datasets for data analysis and ML. It should not be necessary to allocate excessive resources to Docker, possibly starving your host machine’s own compute capabilities.


In this brief post, we have seen how easy it is to get started learning and developing applications for big data analytics, using Python, Spark, and PySpark, thanks to the Jupyter Docker Stacks. We could use the same stack to learn and develop for machine learning, using Python, Scala, and R. Extending the stack’s capabilities is as simple as swapping out this Jupyter image for another, with a different set of tools, as well as adding additional containers to the stack, such as Apache Kafka or Apache Cassandra.

Search results courtesy GoogleTrends (

All opinions expressed in this post are my own and not necessarily the views of my current or past employers, their clients.

, , , , , , , , , , , ,

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: