Gary A. Stafford

Enterprise Architect | AWS Certified Professional | DevOps | Cloud | Containers | Serverless | Spring | Node.js | .NET

Homepage: https://programmaticponderings.com/

Building Serverless Actions for Google Assistant with Google Cloud Functions, Cloud Datastore, and Cloud Storage

Introduction

In this post, we will create an Action for Google Assistant using the ‘Actions on Google’ development platform, Google Cloud Platform’s serverless Cloud Functions, Cloud Datastore, and Cloud Storage, and the current LTS version of Node.js. According to Google, Actions are pieces of software, designed to extend the functionality of the Google Assistant, Google’s virtual personal assistant, across a multitude of Google-enabled devices, including smartphones, cars, televisions, headphones, watches, and smart-speakers.

Here is a brief YouTube video preview of the final Action for Google Assistant, we will explore in this post, running on an Apple iPhone 8.

If you want to compare the development of an Action for Google Assistant with that of an Amazon Alexa Skill, using similar serverless technologies, then also read my previous post, Building Asynchronous, Serverless Alexa Skills with AWS Lambda, DynamoDB, S3, and Node.js.

Google Technologies

The final architecture of our Action for Google Assistant will look as follows.

Google Assistant Architecture v2

Here is a brief overview of the key technologies we will incorporate into our architecture.

Actions on Google

According to Google, Actions on Google is the platform for developers to extend the Google Assistant. Similar to Amazon’s Alexa Skills Kit Development Console for developing Alexa Skills, Actions on Google is a web-based platform that provides a streamlined user-experience to create, manage, and deploy Actions. We will use the Actions on Google platform to develop our Action in this post.

Dialogflow

According to Google, Dialogflow is an enterprise-grade Natural language understanding (NLU) platform that makes it easy for developers to design and integrate conversational user interfaces into mobile apps, web applications, devices, and bots. Dialogflow is powered by Google’s machine learning for Natural Language Processing (NLP). Dialogflow was initially known as API.AI prior being renamed by Google in late 2017.

We will use the Dialogflow web-based development platform and version 2 of the Dialogflow API, which became GA in April 2018, to build our Action for Google Assistant’s rich, natural-language conversational interface.

Google Cloud Functions

Google Cloud Functions are the event-driven serverless compute platform, part of the Google Cloud Platform (GCP). Google Cloud Functions are comparable to Amazon’s AWS Lambda and Azure Functions. Cloud Functions is a relatively new service from Google, released in beta in March 2017, and only recently becoming GA at Cloud Next ’18 (July 2018). The main features of Cloud Functions include automatic scaling, high availability, fault tolerance, no servers to provision, manage, patch or update, and a payment model based on the function’s execution time. The programmatic logic behind our Action for Google Assistant will be handled by a Cloud Function.

Node.js LTS

We will write our Action’s Google Cloud Function using the Node.js 8 runtime. Google just released the ability to write Google Cloud Functions in Node 8.11.1 and Python 3.7.0, at Cloud Next ’18 (July 2018). It is still considered beta functionality. Previously, you had to write your functions in Node version 6 (currently, 6.14.0).

Node 8, also known as Project Carbon, was the first Long Term Support (LTS) version of Node to support async/await with Promises. Async/await is the new way of handling asynchronous operations in Node.js. We will make use of async/await and Promises within our Action’s Cloud Function.

Google Cloud Datastore

Google Cloud Datastore is a highly-scalable NoSQL database. Cloud Datastore is similar in features and capabilities to Azure Cosmos DB and Amazon DynamoDB. Datastore automatically handles sharding and replication and offers features like a RESTful interface, ACID transactions, SQL-like queries, and indexes. We will use Datastore to persist the information returned to the user from our Action for Google Assistant.

Google Cloud Storage

The last technology, Google Cloud Storage is secure and durable object storage, nearly identical to Amazon Simple Storage Service (Amazon S3) and Azure Blob Storage. We will store publicly accessible images in a Google Cloud Storage bucket, which will be displayed in Google Assistant Basic Card responses.

Demonstration

To demonstrate Actions for Google Assistant, we will build an educational Action that responds to the user with interesting facts about Azure¹, Microsoft’s Cloud computing platform (Google talking about Azure, ironic). This is not intended to be an official Microsoft Action; it is only used for this demonstration and has not been published.

Source Code

All open-sourced code for this post can be found on GitHub. Note code samples in this post are displayed as Gists, which may not display correctly on some mobile and social media browsers. Links to gists are also provided.

Development Process

This post will focus on the development and integration of an Action with Google Cloud Platform’s serverless and asynchronous Cloud Functions, Cloud Datastore, and Cloud Storage. The post is not intended to be a general how-to on developing and publishing Actions for Google Assistant, or how to specifically use services on the Google Cloud Platform.

Building the Action will involve the following steps.

  • Design the Action’s conversation model;
  • Import the Azure Facts Entities into Cloud Datastore on GCP;
  • Create and upload the images to Cloud Storage on GCP;
  • Create the new Actions project using the Actions on Google console;
  • Develop the Action’s Intent using the Dialogflow console;
  • Bulk import the Action’s Entities using the Dialogflow console;
  • Configure the Dialogflow Actions on Google Integration;
  • Develop the Cloud Function an IDE and deploy it to GCP;
  • Test the Action using Actions on Google Simulator;

Let’s explore each step in more detail.

Conversational Model

The conversational model design of the Azure Tech Facts Action for Google Assistant is similar to the Azure Tech Facts Alexa Custom Skill, detailed in my previous post. We will have the option to invoke the Action in two ways, without initial intent (Explicit Invocation) and with intent (Implicit Invocation), as shown below. On the left, we see an example of an explicit invocation of the Action. Google Assistant then queries the user for more information. On the right, an implicit invocation of the Action includes the intent, being the Azure fact they want to learn about. Google Assistant responds directly, both vocally and visually with the fact.

preview_3

Each fact returned by Google Assistant will include a Simple ResponseBasic Card and Suggestions response types for devices with a display, as shown below. The user may continue to ask for additional facts or choose to cancel the Action at any time.

preview_1

Lastly, as part of the conversational model, we will include the option of asking for a random fact, as well as asking for help. Examples of both are shown below. Again, Google Assistant responds to the user, vocally and, optionally, visually, for display-enabled devices.

preview_2

GCP Account and Project

The following steps assume you have an existing GCP account and you have created a project on GCP to house the Cloud Function, Cloud Storage Bucket, and Cloud Datastore Entities. The post also assumes that you have the Google Cloud SDK installed on your development machine, and have authenticated your identity from the command line (gist).

Google Cloud Storage

First, the images, actually Azure icons available from Microsoft, displayed in the responses shown above, are uploaded to a Google Storage Bucket. To handle these tasks, we will use the gsutil CLI to create, upload, and manage the images. The gsutil CLI tool, like gcloud, is part of the Google Cloud SDK. The gsutil mb (make bucket) command creates the bucket, gsutil cp (copy files and objects) command is used to copy the images to the new bucket, and finally, the gsutil iam (get, set, or change bucket and/or object IAM permissions) command is used to make the images public. I have included a shell scriptbucket-uploader.sh, to make this process easier. (gist).

From the Storage Console on GCP, you should observe the images all have publicly accessible URLs. This will allow the Cloud Function to access the bucket, and retrieve and display the images. There are more secure ways to store and display the images from the function. However, this is the simplest method since we are not concerned about making the images public.

assistant-003

We will need the URL of the new Storage bucket, later, when we develop to our Action’s Cloud Function. The bucket URL can be obtained from the Storage Console on GCP, as shown below in the Link URL.

assistant-004

Google Cloud Datastore

In Cloud Datastore, the category data object is referred to as a Kind, similar to a Table in a relational database. In Datastore, we will have an ‘AzureFact’ Kind of data. In Datastore, a single object is referred to as an Entity, similar to a Row in a relational database. Each one of our entities represents a unique reference value from our Azure Facts Intent’s facts entities, such as ‘competition’ and ‘certifications’. Individual data is known as a Property in Datastore, similar to a Column in a relational database. We will have four Properties for each entity: name, response, title, and image. Lastly, a Key in Datastore is similar to a Primary Key in a relational database. The Key we will use for our entities is the unique reference value string from our Azure Facts Intent’s facts entities, such as ‘competition’ or ‘certifications’. The Key value is stored within the entity’s name Property.

There are a number of ways to create the Datastore entities for our Action, including manually from the Datastore console on GCP. However, to automate the process, we will use a script, written in Node.js and using the Google Cloud Datastore Node.js Client, to create the entities. We will use the Client API’s Datastore Class upsert method, which will create or update an entire collection of entities with one call and returns a callback. The script , upsert-entities.js, is included in source control and can be run with the following command. Below is a snippet of the script, which shows the structure of the entities (gist).

Once the upsert command completes successfully, you should observe a collection of ‘AzureFact’ Type Datastore Entities in the Datastore console on GCP.

assistant-006

Below, we see the structure of a single Datastore Entity, the ‘certifications’ Entity, containing the fact response, title, and name of the image, which is stored in our Google Storage bucket.

assistant-007

New Actions on Google Project

With the images uploaded and the database entries created, we can start building our Action. Using the Actions on Google web console, we first create a new Actions project.

assistant-010

The Directory Information tab is where we define all the metadata about the Action. This information determines how the Action will look in the Actions directory and is required to publish your Action. The directory is where users discover published Actions on the web and mobile devices.

assistant-018

Actions and Intents

The first part of developing a Google Action is building your Actions, more commonly called Intents. I personally find the overloading of the word ‘Actions’ in the Actions on Google console to be rather confusing.

assistant-027.png

When developing the Actions, I suggest switching from the Actions on Google console to the Dialogflow console. Actions on Google provides a link to switch to Dialogflow. The first thing you will notice when switching to Dialogflow is what was called Actions in the Actions on Google console are now referred to as Intents in Dialogflow. The word Intent, used by Dialogflow, is standard terminology across other voice-assistant platforms, such as Alexa. To be clear, we are building an Action, which contains Intents — the Azure Facts Intent, Welcome Intent, and the Fallback Intent.

assistant-030.png

Below, we see the Azure Facts Intent. The Azure Facts Intent is the main Intent, responsible for handling our user’s requests for facts about Azure. The Intent includes a fair number, but certainly not an exhaustive list, of training phrases. These represent all the possible ways a user might express intent when invoking the Action. According to Google, the greater the number of natural language examples in the Training Phrases section of Intents, the better the classification accuracy.

assistant-011

Intent Entities

Each of the highlighted words in the training phrases maps to the facts parameter, which maps to a collection of @facts Entities. Entities represent a list of intents the Action is trained to understand.  According to Google, there are three types of entities: system (defined by Dialogflow), developer (defined by a developer), and user (built for each individual end-user in every request) entities. We will be creating developer type entities for our Action’s Intent.

assistant-012

Synonyms

An entity contains Synonyms. Multiple synonyms may be mapped to a single reference value. The reference value is the value passed to the Cloud Function by the Action. For example, take the reference value of ‘competition’. A user might ask Google about Azure’s competition. However, the user might also substitute the words ‘competitor’ or ‘competitors’ for ‘competition’. Using synonyms, if the user utters any of these three words in their intent, they will receive the same response.

assistant-014

Although our Azure Facts Action is a simple example, typical Actions might contain hundreds of entities or more, each with several synonyms. Dialogflow provides the option of copy and pasting bulk entities, in either JSON or CSV format. The project’s source code includes both JSON or CSV formats, which may be input in this manner.

assistant-015

Automated Expansion

Not every possible fact, which will have a response, returned by Google Assistant, needs an entity defined. For example, we created a ‘compliance’ Cloud Datastore Entity. The Action understands the term ‘compliance’ and will return a response to the user if they ask about Azure compliance. However, ‘compliance’ is not defined as an Intent Entity, since we have chosen not to define any synonyms for the term ‘compliance’.

In order to allow this, you must enable Allow Automated Expansion. According to Google, this option allows an Agent to recognize values that have not been explicitly listed in the entity. Google describes Agents as NLU (Natural Language Understanding) modules.

Actions on Google Integration

Another configuration item in Dialogflow that needs to be completed is the Dialogflow’s Actions on Google integration. This will integrate the Azure Tech Facts Action with Google Assistant. Google provides more than a dozen different integrations, as shown below.

assistant-026.png

The Dialogflow’s Actions on Google integration configuration is simple, just choose the Azure Facts Intent as our Action’s Implicit Invocation intent, in addition to the default Welcome Intent, which is our Action’s Explicit Invocation intent. According to Google, integration allows our Action to reach users on every device where the Google Assistant is available.

assistant-017

Action Fulfillment

When an intent is received from the user, it is fulfilled by the Action. In the Dialogflow Fulfillment console, we see the Action has two fulfillment options, a Webhook or a Cloud Function, which can be edited inline. A Webhook allows us to pass information from a matched intent into a web service and get a result back from the service. In our example, our Action’s Webhook will call our Cloud Function, using the Cloud Function’s URL endpoint. We first need to create our function in order to get the endpoint, which we will do next.

assistant-016

Google Cloud Functions

Our Cloud Function, called by our Action, is written in Node.js 8. As stated earlier, Node 8 LTS was the first LTS version to support async/await with Promises. Async/await is the new way of handling asynchronous operations in Node.js, replacing callbacks.

Our function, index.js, is divided into four sections: constants, intent handlers, helper functions, and the function’s entry point. The Cloud Function attempts to follow many of the coding practices from Google’s code examples on Github.

Constants

The section defines the global constants used within the function. Note the constant for the URL of our new Cloud Storage bucket, on line 30 below, IMAGE_BUCKET, references an environment variable, process.env.IMAGE_BUCKET. This value is set in the .env.yaml file. All environment variables in the .env.yaml file will be set during the Cloud Function’s deployment, explained later in this post. Environment variables were recently released, and are still considered beta functionality (gist).

The npm package dependencies declared in the constants section, are defined in the dependencies section of the package.json file. Function dependencies include Actions on Google, Firebase Functions, and Cloud Datastore (gist).

Intent Handlers

The three intent handlers correspond to the three intents in the Dialogflow console: Azure Facts Intent, Welcome Intent, and Fallback Intent. Each handler responds in a very similar fashion. The handlers all return a SimpleResponse for audio-only and display-enabled devices. Optionally, a BasicCard is returned for display-enabled devices (gist).

The Welcome Intent handler handles explicit invocations of our Action. The Fallback Intent handler handles both help requests, as well as cases when Dialogflow cannot match any of the user’s input. Lastly, the Azure Facts Intent handler handles implicit invocations of our Action, returning a fact to the user from Cloud Datastore, based on the user’s requested fact.

Helper Functions

The next section of the function contains two helper functions. The primary function is the buildFactResponse function. This is the function that queries Google Cloud Datastore for the fact. The second function, the selectRandomFact, handles the fact value of ‘random’, by selecting a random fact value to query Datastore. (gist).

Async/Await, Promises, and Callbacks

Let’s look closer at the relationship and asynchronous nature of the Azure Facts Intent intent handler and buildFactResponse function. Below, note the async function on line 1 in the intent and the await function on line 3, which is part of the buildFactResponse function call. This is typically how we see async/await applied when calling an asynchronous function, such as buildFactResponse. The await function allows the intent’s execution to wait for the buildFactResponse function’s Promise to be resolved, before attempting to use the resolved value to construct the response.

The buildFactResponse function returns a Promise, as seen on line 28. The Promise’s payload contains the results of the successful callback from the Datastore API’s runQuery function. The runQuery function returns a callback, which is then resolved and returned by the Promise, as seen on line 40 (gist).

The payload returned by Google Datastore, through the resolved Promise to the intent handler,  will resemble the example response, shown below. Note the image, response, and title key/value pairs in the textPayload section of the response payload. These are what are used to format the SimpleResponse and BasicCard responses (gist).

Cloud Function Deployment

To deploy the Cloud Function to GCP, use the gcloud CLI with the beta version of the functions deploy command. According to Google, gcloud is a part of the Google Cloud SDK. You must download and install the SDK on your system and initialize it before you can use gcloud. You should ensure that your function is deployed to the same region as your Google Storage Bucket. Currently, Cloud Functions are only available in four regions. I have included a shell scriptdeploy-cloud-function.sh, to make this step easier. (gist).

The creation or update of the Cloud Function can take up to two minutes. Note the .gcloudignore file referenced in the verbose output below. This file is created the first time you deploy a new function. Using the the .gcloudignore file, you can limit the deployed files to just the function (index.js) and the package.json file. There is no need to deploy any other files to GCP.

assistant-028

If you recall, the URL endpoint of the Cloud Function is required in the Dialogflow Fulfillment tab. The URL can be retrieved from the deployment output (shown above), or from the Cloud Functions Console on GCP (shown below). The Cloud Function is now deployed and will be called by the Action when a user invokes the Action.

assistant-009

Simulation Testing and Debugging

With our Action and all its dependencies deployed and configured, we can test the Action using the Simulation console on Actions on Google. According to Google, the Action Simulation console allows us to manually test our Action by simulating a variety of Google-enabled hardware devices and their settings. You can also access debug information such as the request and response that your fulfillment receives and sends.

Below, in the Action Simulation console, we see the successful display of the initial Azure Tech Facts containing the expected Simple Response, Basic Card, and Suggestions, triggered by a user’s explicit invocation of the Action.

The simulated response indicates that the Google Cloud Function was called, and it responded successfully. It also indicates that the Google Cloud Function was able to successfully retrieve the correct image from Google Cloud Storage.

assistant-019

Below, we see the successful response to the user’s implicit invocation of the Action, in which they are seeking a fact about Azure’s Cognitive Services. The simulated response indicates that the Google Cloud Function was called, and it responded successfully. It also indicates that the Google Cloud Function was able to successfully retrieve the correct Entity from Google Cloud Datastore, as well as the correct image from Google Cloud Storage.

assistant-020

If we had issues with the testing, the Action Simulation console also contains tabs containing the request and response objects sent to and from the Cloud Function, the audio response, a debug console, and any errors.

Logging and Analytics

In addition to the Simulation console’s ability to debug issues with our service, we also have Google Stackdriver Logging. The Stackdriver logs, which are viewed from the GCP management console, contain the complete requests and responses, to and from the Cloud Function, from the Google Assistant Action. The Stackdriver logs will also contain any logs entries you have explicitly placed in the Cloud Function.

assistant-021

We also have the ability to view basic Analytics about our Action from within the Dialogflow Analytics console. Analytics displays metrics, such as the number of sessions, the number of queries, the number of times each Intent was triggered, how often users exited the Action from an intent, and Sessions flows, shown below.

In simple Action such as this one, the Session flow is not very beneficial. However, in more complex Actions, with multiple Intents and a variety potential user interactions, being able to visualize Session flows becomes essential to understanding the user’s conversational path through the Action.

assistant-031.png

Conclusion

In this post, we have seen how to use the Actions on Google development platform and the latest version of the Dialogflow API to build Google Actions. Google Actions rather effortlessly integrate with the breath Google Cloud Platform’s many serverless offerings, including Google Cloud Functions, Cloud Datastore, and Cloud Storage.

We have seen how Google is quickly maturing their serverless functions, to compete with AWS and Azure, with the recently announced support of LTS version 8 of Node.js and Python, to create an Actions for Google Assistant.

Impact of Serverless

As an Engineer, I have spent endless days, late nights, and thankless weekends, building, deploying and managing servers, virtual machines, container clusters, persistent storage, and database servers. I think what is most compelling about platforms like Actions on Google, but even more so, serverless technologies on GCP, is that I spend the majority of my time architecting and developing compelling software. I don’t spend time managing infrastructure, worrying about capacity, configuring networking and security, and doing DevOps.

¹Azure is a trademark of Microsoft

All opinions expressed in this post are my own and not necessarily the views of my current or past employers, their clients, or Google and Microsoft.

, , , , , , , ,

Leave a comment

Building Asynchronous, Serverless Alexa Skills with AWS Lambda, DynamoDB, S3, and Node.js

Introduction

In the following post, we will use the new version 2 of the Alexa Skills Kit, AWS Lambda, Amazon DynamoDB, Amazon S3, and the latest LTS version Node.js, to create an Alexa Custom Skill. According to Amazon, a custom skill allows you to define the requests the skill can handle (intents) and the words users say to invoke those requests (utterances).

Alexa Skill Final Architecture v2.png

Alexa Skills Kit

According to Amazon, the Alexa Skills Kit (ASK) is a collection of self-service APIs, tools, documentation, and code samples that makes it possible to add skills to Alexa. The Alexa Skills Kit supports building different types of skills. Currently, Alexa skill types include Custom, Smart Home, Video, Flash Briefing, and List Skills. Each skill type makes use of a different Alexa Skill API.

AWS Serverless Platform

To create a custom skill for Alexa, you currently have the choice of using an AWS Lambda function or a web service. The AWS Lambda is part of an ecosystem of Cloud services and Developer tools, Amazon refers to as the AWS Serverless Platform. The platform’s services are designed to support the development and hosting of highly-performant, enterprise-grade serverless applications.

In this post, we will leverage three of the AWS Serverless Platform’s services, including Amazon DynamoDB, Amazon Simple Storage Service (Amazon S3), and AWS Lambda.

Node.js

AWS Lamba supports multiple programming languages, including Node.js (JavaScript), Python, Java (Java 8 compatible), and C# (.NET Core) and Go. All are excellent choices for writing modern serverless functions. For this post, we will use Node.js. According to Node.js Foundation, Node.js is an asynchronous event-driven JavaScript runtime built on Chrome’s V8 JavaScript engine.

In April 2018, AWS Lamba announced support for the Node.js 8.10 runtime, which is the current Long Term Support (LTS) version of Node.js. Node 8, also known as Project Carbon, was the first LTS version of Node to support async/await with Promises. Async/await is the new way of handling asynchronous operations in Node.js. We will make use of async/await and Promises with the custom skill.

Demonstration

To demonstrate Alexa Custom Skills we will build an informational skill that responds to the user with interesting facts about Azure¹, Microsoft’s Cloud computing platform (Alexa talking about Azure, ironic, I know). This is not an official Microsoft skill; it is only used for this demonstration and has not been published.

Source Code

All open-source code for this post can be found on GitHub. Code samples in this post are displayed as Gists, which may not display correctly on some mobile and social media browsers. Links to gists are also provided.

Important, this post and the associated source code were updated from v1.0 to v2.0 on 13 August 2018. You should clone the GitHub project again, to correspond with this revised post, if you originally cloned the project before 14 August 2018. Code changes were significant.

Objectives

This objective of the fact-based skill will be to demonstrate the following.

  • Build, deploy, and test an Alexa Custom Skill using AWS Lambda and Node.js;
  • Use DynamoDB to store and retrieve Alexa voice responses;
  • Maintain a count of user’s questions in DynamoDB using atomic counters;
  • Use Amazon S3 to store and retrieve images, used in Display Cards;
  • Log Alexa Skill activities using Amazon CloudWatch Logs;

Steps to Build

Building the Azure fact skill will involve the following steps.

  • Design the Alexa skill’s voice interaction model;
  • Design the skill’s Display Cards for Alexa-enabled products, to enhance the voice experience;
  • Create the skill’s DynamoDB table and import the responses the skill will return;
  • Create an S3 bucket and upload the images used for the Display Cards;
  • Write the Alexa Skill, which involves mapping the user’s spoken input to the intents your cloud-based service can handle;
  • Write the Lambda function, which involves responding to the user’s utterances, by building and returning appropriate voice and display card responses, from DynamoDB and S3;
  • Extend the default ASK-generated AWS IAM Role, to allow the Lambda to update DynamoDB;
  • Deploy the skill;
  • Test the skill;

Let’s explore each step in detail.

Voice Interaction Model

First, we must design the fact skill’s voice interaction model. We need to consider the way we want the user to interact with the skill. What is the user’s conversational journey? How do they invoke your skill? How will the user provide intent?

This skill will require two intent slot values, the fact the user is interested in (i.e. ‘global infrastructure’) and the user’s first name (i.e. ‘Susan’). We will train the skill to allow Alexa to query the user for each slot value, but also allow the user to provide either or both values in the initial intent invocation. We will also allow the user to request a random fact.

Shown below in the Alexa Skills Kit Development Console Test tab are three examples of interactions the skill is trained to understand and handle:

  1. The first example on the left invokes the skill with no intent (‘Alexa, load Azure Tech Facts). The user is led through a series of three questions to obtain the full intent.
  2. The center example is similar, however, the initial invocation contains a partial intent (‘Alexa, ask Azure Tech Facts for a fact about certifications’). Alexa must still ask for the user’s name.
  3. Lastly, the example on the right is a so-called ‘one-shot’ invocation (‘Alexa, ask Azure Tech Facts about Azure’s platforms for Gary’). The user’s invocation of the skill contains a complete intent, allowing Alexa to respond immediately with a fact about Azure platforms.

alexa-skill-post-020

In all cases, our skill has the ability to continue to provide the user with additional facts if they chose, or they may cancel at any time.

We also need to design how Alexa will respond. What is the persona will Alexa assume through her words, phrases, and use of Speech Synthesis Markup Language (SSML).

User Interaction Previews

Here are a few examples of interactions with the final Alexa skill using an iPhone 8 and the Alexa App. They are intended to show the rich conversational capabilities of custom skills more so the than the display, which is pretty poor on the Alexa App as compared to the Echo Show or even Echo Spot.

Example 1: Indirect Invocation

The first example shows a basic interaction with our Alexa skill. It demonstrates an indirect invocation, a user utterance without initial intent. It also illustrates several variations of user utterances (YouTube).

Example 2: Direct Invocation

The second example of an interaction our skill demonstrates a direct invocation, in which the initial user utterance contains intent. It also demonstrates the user following up with additional requests (YouTube).

Example 3: Direct Invocation, Help, Problem

Lastly, another direct invocation demonstrates the use of the Help Intent. You also see an example of when Alexa does not understand the user’s utterance.  The user is able to repeat their request, more clearly (YouTube).

Visual Interaction Model

Many Alexa-enabled devices are capable of both vocal and visual responses. Designing for a multimodal user experience is important. The instructional skill will provide vocal responses, as well as Display Cards optimized for the Amazon Echo Show. The skill contains a basic design for the Display Card shown during the initial invocation, where there is no intent uttered by the user.

alexa-skill-post-021

The fact skill also contains a Display Card, designed to present the final Alexa response to the user’s intent. The content of the vocal and visual response is returned from DynamoDB via the Lambda function. The random Azure icons, available from Microsoft, are hosted in an S3 bucket. Each fact response is unique, as well as the icon associated with the fact.

alexa-skill-post-022

The Display Cards will also work on other Alexa-enabled screen-based products. Shown below is the same card on an iPhone 8 using the Amazon Alexa app. This is the same app shown in the videos, above.

alexa-skill-post-027

DynamoDB

Next, we create the DynamoDB table used to store the facts the Alexa skill will respond with when invoked by the user. DynamoDB is Amazon’s non-relational database that delivers reliable performance at any scale. DynamoDB consists of three basic components: tables, items, and attributes.

There are numerous ways to create a DynamoDB table. For simplicity, I created the AzureFacts DynamoDB table using the AWS CLI (gist). You could also choose CloudFormation, or create the table using any of nine or more programming languages with an AWS SDK.

The AzureFacts table’s schema has four key/value pair attributes per item: Fact, Response, Image, and Hits. The Fact attribute, a string, contains the name of the fact the user is seeking. The Fact attribute also serves as the table’s unique partition key. The Response attribute, a string, contains the conversational response Alexa will return. The Image attribute, a string, contains the name of the image in the S3 bucket displayed by Alexa. Lastly, the Hits attribute, a number, stores the number of user requests for a particular fact.

Importing Table Items

After the DynamoDB table is created, the pre-defined facts are imported into the empty table using AWS CLI (gist). The JSON-formatted data file, AzureFacts.json, is included with the source code on GitHub.

The resulting table should appear as follows in the AWS Management Console.

alexa-skill-post-004

Note the imported items shown below. The Hits counts reflect the number of times each fact has been requested.

alexa-skill-post-005

Shown below is a detailed view of a single item that was imported into the DynamoDB table.

alexa-skill-post-006

Amazon S3 Image Bucket

Next, we create the Amazon S3 bucket, which will house the images, actually Azure icons as PNGs, returned by Alexa with each fact. Again, I used the AWS CLI for simplicity (gist).

The images can be uploaded manually to the bucket through a web browser, or programmatically, using the AWS CLI or SDKs. You will need to ensure the images are made public so they can be displayed by Alexa.

alexa-skill-post-007

Alexa Skill

Next, we create the actual Alexa custom skill. I have used version 2 of the Alexa Skills Kit (ASK) Software Development Kit (SDK) for Node.js and the new ASK Command Line Interface (ASK CLI) to create the skill. The ASK SDK v2 for Node.js was recently released in April 2018. If you have previously written Alexa skills using version 1 of the Node.js SDK, the creation of a new project and the format of the Lambda Node.js code is somewhat different. I strongly suggest reviewing the example skills provided by Amazon on GitHub.

With version 1, I would have likely used the Alexa Skills Kit Development Console to develop and deploy the skill, and separate IDE, like JetBrains WebStorm, to write the Lambda. The JSON-format skill would live in the Alexa Skills Kit Development Console, and my Lambda in source control. I would have used AWS Serverless Application Model (AWS SAM) or Claudia.js to handle the deployment of Lambda functions.

With version 2 of ASK, you can easily create and manage the Alexa skill’s JSON-formatted code, as well as the Lambda, all from the command-line and a single IDE or text editor. All components that comprise the skill can be kept together in source control. I now only use the Alexa Skills Kit Development Console to preview my deployed skill and for testing. I am not going to go into detail about creating a new project using the ASK CLI, I suggest reviewing Amazon’s instructional guides.

Below, I have initiated a new AWS profile for the Alexa skill using the ask init command.

alexa-skill-post-008

There are three main parts to the new skill project created by the ASK CLI: the skill’s manifest (skill.json), model(s) (en-US.json), and API endpoint, the Lambda (index.js). The skill’s manifest, skill.json, contains information (metadata) about the skill. This is the same information you find in the Distribution tab of the Alexa Skills Kit Development Console. The manifest includes publishing information, example phrases to invoke the skill, the skill’s category, distribution locales, privacy information, and the location of the skill’s API endpoint, the Lambda. An end-user would most commonly see this information in Amazon Alexa app when adding skills to their Alexa-enabled devices.

alexa-skill-post-026

Next, the skill’s model, en-US.json, is located the models sub-directory. This file defines the skill’s custom interaction model, it contains the skill’s interaction model written in JSON, which includes the invocation name, intents, standard and custom slots, sample utterances, slot values, and synonyms of those values. This is the same information you would find in the Build tab of the Alexa Skills Kit Development Console. Amazon has an excellent guide to creating your custom skill’s interaction model.

Intents and Intent Slots

The skill’s custom interaction model contains the AzureFactsIntent intent, along with the boilerplate Cancel, Help and Stop intents. The AzureFactsIntent intent contains two intent slots, myName and myQuestion. The myName intent slot is a standard AMAZON.US_FIRST_NAME slot type. According to Amazon, this slot type understands thousands of popular first names commonly used by speakers in the United States. Shown below, I have included a short list of sample utterances in the intent model, which helps improve voice recognition for Alexa (gist).

Custom Slot Types and Entities

The myQuestion intent slot is a custom slot type. According to Amazon, a custom slot type defines a list of representative values for the slot. The myQuestion slot contains all the available facts the custom instructional skill understands and can retrieve from DynamoDB. Like myName, the user can provide the fact intent in various ways (gist).

This slot also contains synonyms for each fact. Collectively, the slot value, it’s synonyms, and the optional ID are collectively referred to as an Entity. According to Amazon, entity resolution improves the way Alexa matches possible slot values in a user’s utterance with the slots defined in the skill’s interaction model.

An example of an entity in the myQuestion custom slot type is ‘competition’. A user can ask Alexa to tell them about Azure’s competition. The slot value ‘competition’ returns a fact about Azure’s leading competitors, as reported on the G2 Crowd website’s Microsoft Azure Alternatives & Competitors page. However, the user might also substitute the words ‘competitor’ or ‘competitors’ for ‘competition’. Using synonyms, if the user utters any of these three words in their intent, they will receive the same response from Alexa (gist).

Lambda

Initializing a skill with the ASK CLI also creates the default API endpoint, a Lambda (index.js). The serverless Lambda function is written in Node.js 8.10. As mentioned in the Introduction, AWS recently announced support for the Node.js 8.10 runtime, in April. This is the first LTS version of Node to support async/await with Promises. Node’s async/await is the new way of handling asynchronous operations in Node.js.

The layout of the custom skill’s Lambda’s code closely follows the custom Alexa Fact Skill example. I suggest closely reviewing this example. The Lambda has four main sections: constants, setup code, intent handlers, and helper functions.

In addition to the boilerplate Help, Stop, Error, and Session intent handlers, there are the LaunchRequestHandler and the AzureFactsIntent handlers. According to Amazon, a LaunchRequestHandler fires when the Lambda receives a LaunchRequest from Alexa, in which the user invokes the skill with the invocation name, but does not provide any command mapping to an intent.

The AzureFactsIntent aligns with the custom intent we defined in the skill’s model (en-US.json), of the same name. This handler handles an IntentRequest from Alexa. This handler and the buildFactResponse function the handler calls are what translate a request for a fact from the user into a request to DynamoDB for a response.

The AzureFactsIntent handler checks the IntentRequest for both the myName and myQuestion slot values. If the values are unfulfilled, the AzureFactsIntent handler delegates responsibility back to Alexa, using a Dialog delegate directive (addDelegateDirective). Alexa then requests the slot values from the user in a conversational interaction. Alexa then calls the AzureFactsIntent handler again (gist).

Once both slot values are received by the AzureFactsIntent handler, it calls the buildFactResponse function, passing in the myName and myQuestion slot values. In turn, the buildFactResponse function calls AWS.DynamoDB.DocumentClient.update. The DynamoDB update returns a callback. In turn, the buildFactResponse function returns a Promise, a standard built-in object type, part of the JavaScript ES2015 spec (gist).

What is unique about the DynamoDB update call in this case, is it actually performs two functions. First, it implements an Atomic Counter. According to AWS, an atomic counter is a numeric DynamoDB attribute that is incremented, unconditionally, without interfering with other write requests. The update increments the numeric Hits attribute of the requested fact by exactly one. Secondly, the update returns the DynamoDB item. We can increment the count and get the response in a single call.

The buildFactResponse function’s Promise returns the DynamoDB item, a JSON object, from the callback. An example of a JSON response payload is shown below. (gist).

The AzureFactsIntent handler uses the async/await methods to perform the call to the buildFactResponse function. Note line 7 of the AzureFactsIntent handler below, where the async method is applied directly to the handler. Note line 33 where the await method is used with the call to the buildFactResponse function (gist).

The AzureFactsIntent handler awaits the Promise from the buildFactResponse function. In an async function, you can await for any Promise or catch its rejection cause. If the update callback and the ensuing Promise were both returned successfully, the AzureFactsIntent handler returns both a vocal and visual response to Alexa.

AWS IAM Role

By default, an AWS IAM Role was created by ASK when the project was initialized, the ask-lambda-alexa-skill-azure-facts role. This role is automatically associated with the AWS Managed Policy, AWSLambdaBasicExecutionRole. This managed policy simply allows the skill’s Lambda function to create Amazon CloudWatch Events (gist).

For the skill’s Lambda to read and write to DynamoDB, we must extend the default role’s permissions, by adding an additional policy. I have created a new AzureFacts_Alexa_Skill IAM Policy, which allows the associated role to get and update items from the AzureFacts DynamoDB table, and that is it. The role only has access to two of forty possible DynamoDB actions, and only for the AzureFacts table, and nothing else. Following the principle of Least Privilege is a cornerstone of AWS Security (gist).

Below, we see the new IAM Policy in the AWS Management Console.

alexa-skill-post-011

Below, we see the policy being applied to the skill’s IAM Role, along with the original AWS managed policy.

alexa-skill-post-012

Deploying the Skill

Version 2 of the ASK CLI makes deploying the Alexa custom skill very easy. Using the ASK CLI’s deploy command, we can validate and deploy the skill (manifest),  model, and Lambda, all at once, as shown below. This makes DevOps automation of skill deployments with tools like Jenkins or AWS CodeDeploy straight-forward.

alexa-skill-post-009

You can verify the skill has been deployed, from the Alexa Skills Kit Development Console. You should observe the skill’s model (intents, slots, entities, and endpoints) in the Build tab. You should observe the skill’s publishing details in the Distribution tab. Note deploying the skill does not submit the skill to Amazon’s for review and publishing, you must still submit the skill separately.

alexa-skill-post-013

From the AWS Lambda Management Console, you should observe the skill’s Lambda was deployed. You should observe only the skill can trigger the Lambda. Lastly, you should observe that the correct IAM Role was applied to the Lambda, giving the Lambda access to Amazon CloudWatch Logs and Amazon DynamoDB.

alexa-skill-post-010

Testing the Skill

The ASK CLI comes with the simulate command. According to Amazon, the simulate command simulates an invocation of the skill with text-based input. Again, the ASK CLI makes DevOps test automation with tools like Jenkins or AWS CodeDeploy pretty easy (gist).

Below, are the results of simulating the invocation. The simulate command returns the expected verbal response, including any SSML, and the visual responses (the Display Card). You could easily write an automation script to run a battery of these tests on every code commit, and prior to deployment.

alexa-skill-post-024

I also like to manually test my skills from the Alexa Skills Kit Development Console Test tab. You may invoke the skill using your voice or by typing the skill invocation.

alexa-skill-post-014

The Alexa Skills Kit Development Console Test tab both shows and speaks Alexa’s response. The console also displays the request and response body (JSON input/output), as well as the Display Card for an Echo Show and Echo Spot.

alexa-skill-post-015

Lastly, the Alexa Skills Kit Development Console Test tab displays the Device Log. The log captures Alexa Directives and Events. I have found the Device Log to be very helpful in troubleshooting problems with deployed skills.

alexa-skill-post-025.png

CloudWatch Logs

By default the custom skill outputs events to CloudWatch Logs. I have added the DynamoDB callback payload, as well as the slot values of myName and myQuestion to the logs, for each successful Alexa response. CloudWatch logs, like the Device Logs above, are very helpful in troubleshooting problems with deployed skills.

alexa-skill-post-016

Conclusion

In this brief post, we have seen how to use the new ASK SDK/CLI version 2, services from the AWS Serverless Platform, and the LTS version of Node.js, to create an Alexa Custom Skill. Using the AWS Serverless Platform, we could easily extend the example to take advantage of additional serverless services, such as the use of Amazon SNS and SQS for notifications and messaging and Amazon Kinesis for analytics.

In a future post, we will extend this example, adding the capability to securely add and update our DynamoDB table’s items. We will use addition AWS services, including Amazon Cognito to authorize access to our API. We will also use AWS API Gateway to integrate with our Lambdas, producing a completely serverless API.

¹Azure is a trademark of Microsoft

All opinions expressed in this post are my own and not necessarily the views of my current or past employers or their clients.

, , , , , , , , , , , ,

1 Comment

Using Eventual Consistency and Spring for Kafka to Manage a Distributed Data Model: Part 2

Given a modern distributed system, composed of multiple microservices, each possessing a sub-set of the domain’s aggregate data they need to perform their functions autonomously, we will almost assuredly have some duplication of data. Given this duplication, how do we maintain data consistency? In this two-part post, we’ve been exploring one possible solution to this challenge, using Apache Kafka and the model of eventual consistency. In Part One, we examined the online storefront domain, the storefront’s microservices, and the system’s state change event message flows.

Part Two

In Part Two of this post, I will briefly cover how to deploy and run a local development version of the storefront components, using Docker. The storefront’s microservices will be exposed through an API Gateway, Netflix’s Zuul. Service discovery and load balancing will be handled by Netflix’s Eureka. Both Zuul and Eureka are part of the Spring Cloud Netflix project. To provide operational visibility, we will add Yahoo’s Kafka Manager and Mongo Express to our system.

docker-system-diagram

Source code for deploying the Dockerized components of the online storefront, shown in this post, is available on GitHub. All Docker Images are available on Docker Hub. I have chosen the wurstmeister/kafka-docker version of Kafka, available on Docker Hub; it has 580+ stars and 10M+ pulls on Docker Hub. This version of Kafka works well, as long as you run it within a Docker Swarm, locally.

Code samples in this post are displayed as Gists, which may not display correctly on some mobile and social media browsers. Links to gists are also provided.

Deployment Options

For simplicity, I’ve used Docker’s native Docker Swarm Mode to support the deployed online storefront. Docker requires minimal configuration as opposed to other CaaS platforms. Usually, I would recommend Minikube for local development if the final destination of the storefront were Kubernetes in Production (AKS, EKS, or GKE). Alternatively, if the final destination of the storefront were Red Hat OpenShift in Production, I would recommend Minishift for local development.

Docker Deployment

We will break up our deployment into two parts. First, we will deploy everything, except our services. We will allow Kafka, MongoDB, Eureka, and the other components to startup up fully. Afterward, we will deploy the three online storefront services. The storefront-kafka-docker project on Github contains two Docker Compose files, which are divided between the two tasks.

The middleware Docker Compose file (gist).

The services Docker Compose file (gist).

In the storefront-kafka-docker project, there is a shell script, stack_deploy_local.sh. This script will execute both Docker Compose files, in succession, with a pause in between. You may need to adjust the timing for your own system (gist).

Start by running docker swarm init. This command will initialize a Docker Swarm. Next, execute the stack deploy script, using an sh ./stack_deploy_local.sh command. The script will deploy a new Docker Stack, within the Docker Swarm. The Docker Stack will hold all storefront components, deployed as individual Docker containers. The stack is deployed within its own isolated Docker overlay networkkafka-net.

Note we are not using host-based persistent storage for this local development demo. Destroying the Docker stack or the individual Kafka, Zookeeper, or MongoDB Docker containers will result in a loss of data.

stack-deploy

Before completion, the stack deploy script runs docker stack ls command, followed by a docker stack services storefront command. You should see one stack, names storefront, with ten services. You should also see each of the ten services has 1/1 replicas running, indicated everything has started or is starting correctly, without failure. A failure would be reflected here as a service having 0/1 replicas.

docker-stack-ls

Before completion, the stack deploy script also runs docker container ls command. You should observe each of the ten running containers (‘services’ in the Docker stack), along with their instance names and ports.

docker-container-ls

There is also a shell script, stack_delete_local.sh, which will issue a docker stack rm storefront command to destroy the stack when you are done.

Using the names of the storefront’s Docker containers, you can check the start-up logs of any of the components, using the docker logs command.

docker-logs

Testing the Stack

With the storefront stack deployed, we need to confirm that all the components have started correctly and are communicating with each other. To accomplish this, I’ve written a simple Python script, refresh.py. The refresh script has multiple uses. It deletes any existing storefront service MongoDB databases. It also deletes any existing Kafka topics; I call the Kafka Manager’s API to accomplish this. We have no databases or topics since our stack was just created. However, if you are actively developing your data models, you will likely want to purge the databases and topics regularly (gist).

Next, the refresh script calls a series of RESTful HTTP endpoints, in a specific order, to create sample data. Our three storefront services each expose different endpoints. The different /sample endpoints create sample customers, orders, order fulfillment requests, and shipping notifications. The create sample data endpoints include, in order:

  1. Sample Customer: /accounts/customers/sample
  2. Sample Orders: /orders/customers/sample/orders
  3. Sample Fulfillment Requests: /orders/customers/sample/fulfill
  4. Sample Processed Order Events: /fulfillment/fulfillment/sample/process
  5. Sample Shipped Order Events: /fulfillment/fulfillment/sample/ship
  6. Sample In-Transit Order Events: /fulfillment/fulfillment/sample/in-transit
  7. Sample Received Order Events: /fulfillment/fulfillment/sample/receive

You could create data on your own, by POSTing to the exposed CRUD endpoints on each service. However, given the complex data objects required in the request payloads, it is too time-consuming for this demo.

To execute the script, use a python3 ./refresh.py command. I am using Python 3 in the demo, but the script should also work with Python 2.x, if you change shebang.

refresh-script

If everything was successful, the script returns one document from each of the three storefront service’s MongoDB database collections. A result of ‘None’ for any of the MongoDB documents usually indicates one of the earlier commands failed. Given an abnormally high response latency, due to the load of the ten running containers on my laptop, I had to increase the Zuul/Ribbon timeouts.

Observing the System

We should now have the online storefront Docker stack running, three MongoDB databases created and populated with sample documents (data), and three Kafka topics, which have messages in them. Based on the fact we saw database documents printed out with our refresh script, we know the topics were used to pass data between the message producing and message consuming services.

In most enterprise environments, a developer may not the access, nor the operational knowledge to interact with Kafka or MongoDB from within a container, on the command line. So how else can we interact with the system?

Kafka Manager

Kafka Manager gives us the ability to interact with Kafka via a convenient browser-based user interface. For this demo, the Kafka Manager UI is available on default port 9000.

kafka_manager_00

To make Kafka Manager useful, define the Kafka cluster. The Cluster Name is up to you. The Cluster Zookeeper Host should be zookeeper:2181, for our demo.

kafka_manager_01

Kafka Manager gives us useful insights into many aspects of our simple, single-broker cluster. You should observe three topics, created during the deployment of Kafka.

kafka_manager_02

Kafka Manager is an appealing alternative, as opposed to connecting with the Kafka container, with a docker exec command, to interact with Kafka. A typical use case might be deleting a topic or adding partitions to a topic. We can also see which Consumers are consuming which topics, from within Kafka Manager.

kafka_manager_03

Mongo Express

Similar to Kafka Manager, Mongo Express gives us the ability to interact with Kafka via a user interface. For this demo, the Mongo Express browser-based user interface is available on default port 8081. The initial view displays each of the existing databases. Note our three service’s databases, including accounts, orders, and fulfillment.

mongo-express-01

Drilling into an individual database, we can view each of the database’s collections. Digging in further, we can interact with individual database collection documents.

mongo-express-02

We may even edit and save the documents.

mongo-express-03

SpringFox and Swagger

Each of the storefront services also implements SpringFox, the automated JSON API documentation for API’s built with Spring. With SpringFox, each service exposes a rich Swagger UI. The Swagger UI allows us to interact with service endpoints.

Since each service exposes its own Swagger interface, we must access them through the Zuul API Gateway on port 8080. In our demo environment, the Swagger browser-based user interface is accessible at /swagger-ui.html. Below, is a fully self-documented Orders service API, as seen through the Swagger UI.

I believe there are still some incompatibilities with the latest SpringFox release and Spring Boot 2, which prevents Swagger from showing the default Spring Data REST CRUD endpoints. Currently, you only see the API  endpoints you explicitly declare in your Controller classes.

swagger-ui-1

The service’s data models (POJOs) are also exposed through the Swagger UI by default. Below we see the Orders service’s models.

swagger-ui-3

The Swagger UI allows you to drill down into the complex structure of the models, such as the CustomerOrder entity, exposing each of the entity’s nested data objects.

swagger-ui-2

Spring Cloud Netflix Eureka

This post does not cover the use of Eureka or Zuul. Eureka gives us further valuable insight into our storefront system. Eureka is our systems service registry and provides load-balancing for our services if we had multiple instances.

For this demo, the Eureka browser-based user interface is available on default port 8761. Within the Eureka user interface, we should observe the three storefront services and Zuul, the API Gateway, registered with Eureka. If we had more than one instance of each service, we would see all of them listed here.

eureka-ui

Although of limited use in a local environment, we can observe some general information about our host.

eureka-ui-02

Interacting with the Services

The three storefront services are fully functional Spring Boot / Spring Data REST / Spring HATEOAS-enabled applications. Each service exposes a rich set of CRUD endpoints for interacting with the service’s data entities. Additionally, each service includes Spring Boot Actuator. Actuator exposes additional operational endpoints, allowing us to observe the running services. Again, this post is not intended to be a demonstration of Spring Boot or Spring Boot Actuator.

Using an application, such as Postman, we can interact with our service’s RESTful HTTP endpoints. Shown below, we are calling the Account service’s customers resource. The Accounts request is proxied through the Zuul API Gateway.

postman

The above Postman Storefront Collection and Postman Environment are both exported and saved with the project.

Some key endpoints to observe the entities that were created using Event-Carried State Transfer are as follows. They assume you are using localhost as a base URL.

References

Links to my GitHub projects for this post

Some additional references I found useful while authoring this post and the online storefront code:

All opinions expressed in this post are my own and not necessarily the views of my current or past employers or their clients.

 

, , , , , , ,

Leave a comment

Using Eventual Consistency and Spring for Kafka to Manage a Distributed Data Model: Part 1

Given a modern distributed system, composed of multiple microservices, each possessing a sub-set of the domain’s aggregate data they need to perform their functions autonomously, we will almost assuredly have some duplication of data. Given this duplication, how do we maintain data consistency? In this two-part post, we will explore one possible solution to this challenge, using Apache Kafka and the model of eventual consistency.

I previously covered the topic of eventual consistency in a distributed system, using RabbitMQ, in the post, Eventual Consistency: Decoupling Microservices with Spring AMQP and RabbitMQ. This post is featured on Pivotal’s RabbitMQ website.

Introduction

To ground the discussion, let’s examine a common example of the online storefront. Using a domain-driven design (DDD) approach, we would expect our problem domain, the online storefront, to be composed of multiple bounded contexts. Bounded contexts would likely include Shopping, Customer Service, Marketing, Security, Fulfillment, Accounting, and so forth, as shown in the context map, below.

mid-map-final-03

Given this problem domain, we can assume we have the concept of the Customer. Further, the unique properties that define a Customer are likely to be spread across several bounded contexts. A complete view of a Customer would require you to aggregate data from multiple contexts. For example, the Accounting context may be the system of record (SOR) for primary customer information, such as the customer’s name, contact information, contact preferences, and billing and shipping addresses. Marketing may possess additional information about the customer’s use of the store’s loyalty program. Fulfillment may maintain a record of all the orders shipped to the customer. Security likely holds the customer’s access credentials and privacy settings.

Below, Customer data objects are shown in yellow. Orange represents logical divisions of responsibility within each bounded context. These divisions will manifest themselves as individual microservices in our online storefront example. mid-map-final-01

Distributed Data Consistency

If we agree that the architecture of our domain’s data model requires some duplication of data across bounded contexts, or even between services within the same contexts, then we must ensure data consistency. Take, for example, a change in a customer’s address. The Accounting context is the system of record for the customer’s addresses. However, to fulfill orders, the Shipping context might also need to maintain the customer’s address. Likewise, the Marketing context, who is responsible for direct-mail advertising, also needs to be aware of the address change, and update its own customer records.

If a piece of shared data is changed, then the party making the change should be responsible for communicating the change, without the expectation of a response. They are stating a fact, not asking a question. Interested parties can choose if, and how, to act upon the change notification. This decoupled communication model is often described as Event-Carried State Transfer, as defined by Martin Fowler, of ThoughtWorks, in his insightful post, What do you mean by “Event-Driven”?. A change to a piece of data can be thought of as a state change event. Coincidently, Fowler also uses a customer’s address change as an example of Event-Carried State Transfer. The Event-Carried State Transfer Pattern is also detailed by fellow ThoughtWorker and noted Architect, Graham Brooks.

Consistency Strategies

Multiple architectural approaches could be taken to solve for data consistency in a distributed system. For example, you could use a single relational database to persist all data, avoiding the distributed data model altogether. Although I would argue, using a single database just turned your distributed system back into a monolith.

You could use Change Data Capture (CDC) to track changes to each database and send a record of those changes to Kafka topics for consumption by interested parties. Kafka Connect is an excellent choice for this, as explained in the article, No More Silos: How to Integrate your Databases with Apache Kafka and CDC, by Robin Moffatt of Confluent.

Alternately, we could use a separate data service, independent of the domain’s other business services, whose sole role is to ensure data consistency across domains. If messages are persisted in Kafka, the service have the added ability to provide data auditability through message replay. Of course, another set of services adds additional operational complexity.

Storefront Example

In this post, our online storefront’s services will be built using Spring Boot. Thus, we will ensure the uniformity of distributed data by using a Publish/Subscribe model with the Spring for Apache Kafka Project. When a piece of data is changed by one Spring Boot service, if appropriate, that state change will trigger an event, which will be shared with other services using Kafka topics.

We will explore different methods of leveraging Spring Kafka to communicate state change events, as they relate to the specific use case of a customer placing an order through the online storefront. An abridged view of the storefront ordering process is shown in the diagram below. The arrows represent the exchange of data. Kafka will serve as a means of decoupling services from each one another, while still ensuring the data is exchanged.

order-process-flow

Given the use case of placing an order, we will examine the interactions of three services, the Accounts service within the Accounting bounded context, the Fulfillment service within the Fulfillment context, and the Orders service within the Order Management context. We will examine how the three services use Kafka to communicate state changes (changes to their data) to each other, in a decoupled manner.

The diagram below shows the event flows between sub-systems discussed in the post. The numbering below corresponds to the numbering in the ordering process above. We will look at event flows 2, 5, and 6. We will simulate event flow 3, the order being created by the Shopping Cart service. Kafka Producers may also be Consumers within our domain.

kafka-data-flow-diagram

Below is a view of the online storefront, through the lens of the major sub-systems involved. Although the diagram is overly simplified, it should give you the idea of where Kafka, and Zookeeper, Kafka’s cluster manager, might sit in a typical, highly-available, microservice-based, distributed, application platform.

kafka-based-systems-diagram

This post will focus on the storefront’s services, database, and messaging sub-systems.

full-system-partial-view.png

Storefront Microservices

First, we will explore the functionality of each of the three microservices. Then, we will examine how they share state change events using Kafka. Each storefront service is built using Spring Boot 2.0 and Gradle. Each Spring Boot service includes Spring Data RESTSpring Data MongoDBSpring for Apache KafkaSpring Cloud SleuthSpringFox, Spring Cloud Netflix Eureka, and Spring Boot Actuator. For simplicity, Kafka Streams and the use of Spring Cloud Stream is not part of this post.

Code samples in this post are displayed as Gists, which may not display correctly on some mobile and social media browsers. Links to gists are also provided.

Accounts Service

The Accounts service is responsible for managing basic customer information, such as name, contact information, addresses, and credit cards for purchases. A partial view of the data model for the Accounts service is shown below. This cluster of domain objects represents the Customer Account Aggregate.

accounts-diagram

The Customer class, the Accounts service’s primary data entity, is persisted in the Accounts MongoDB database. A Customer, represented as a BSON document in the customer.accounts database collection, looks as follows (gist).

Along with the primary Customer entity, the Accounts service contains a CustomerChangeEvent class. As a Kafka producer, the Accounts service uses the CustomerChangeEvent domain event object to carry state information about the client the Accounts service wishes to share when a new customer is added, or a change is made to an existing customer. The CustomerChangeEvent object is not an exact duplicate of the Customer object. For example, the CustomerChangeEvent object does not share sensitive credit card information with other message Consumers (the CreditCard data object).

accounts-events-diagram.png

Since the CustomerChangeEvent domain event object is not persisted in MongoDB, to examine its structure, we can look at its JSON message payload in Kafka. Note the differences in the data structure between the Customer document in MongoDB and the Kafka CustomerChangeEvent message payload (gist).

For simplicity, we will assume other services do not make changes to the customer’s name, contact information, or addresses. That is the sole responsibility of the Accounts service.

Source code for the Accounts service is available on GitHub.

Orders Service

The Orders service is responsible for managing a customer’s past and current orders; it is the system of record for the customer’s order history. A partial view of the data model for the Orders service is shown below. This cluster of domain objects represents the Customer Orders Aggregate.

orders-diagram

The CustomerOrders class, the Order service’s primary data entity, is persisted in MongoDB. This entity contains a history of all the customer’s orders (Order data objects), along with the customer’s name, contact information, and addresses. In the Orders MongoDB database, a CustomerOrders, represented as a BSON document in the customer.orders database collection, looks as follows (gist).

Along with the primary CustomerOrders entity, the Orders service contains the FulfillmentRequestEvent class. As a Kafka producer, the Orders service uses the FulfillmentRequestEvent domain event object to carry state information about an approved order, ready for fulfillment, which it sends to Kafka for consumption by the Fulfillment service. TheFulfillmentRequestEvent object only contains the information it needs to share. In our example, it shares a single Order, along with the customer’s name, contact information, and shipping address.

orders-event-diagram

Since the FulfillmentRequestEvent domain event object is not persisted in MongoDB, we can look at it’s JSON message payload in Kafka. Again, note the structural differences between the CustomerOrders document in MongoDB and the FulfillmentRequestEvent message payload in Kafka (gist).

Source code for the Orders service is available on GitHub.

Fulfillment Service

Lastly, the Fulfillment service is responsible for fulfilling orders. A partial view of the data model for the Fulfillment service is shown below. This cluster of domain objects represents the Fulfillment Aggregate.

fulfillment-diagram

The Fulfillment service’s primary entity, the Fulfillment class, is persisted in MongoDB. This entity contains a single Order data object, along with the customer’s name, contact information, and shipping address. The Fulfillment service also uses the Fulfillment entity to store latest shipping event, such as ‘Shipped’, ‘In Transit’, and ‘Received’. The customer’s name, contact information, and shipping addresses are managed by the Accounts service, replicated to the Orders service, and passed to the Fulfillment service, via Kafka, using the FulfillmentRequestEvent entity.

In the Fulfillment MongoDB database, a Fulfillment object, represented as a BSON document in the fulfillment.requests database collection, looks as follows (gist).

Along with the primary Fulfillment entity, the Fulfillment service has an OrderStatusChangeEvent class. As a Kafka producer, the Fulfillment service uses the OrderStatusChangeEvent domain event object to carry state information about an order’s fulfillment statuses. The OrderStatusChangeEvent object contains the order’s UUID, a timestamp, shipping status, and an option for order status notes.

fulfillment-event-diagram

Since the OrderStatusChangeEvent domain event object is not persisted in MongoDB, to examine it, we can again look at it’s JSON message payload in Kafka (gist).

Source code for the Fulfillment service is available on GitHub.

State Change Event Messaging Flows

There is three state change event messaging flows demonstrated in this post.

  1. Change to a Customer triggers an event message by the Accounts service;
  2. Order approved triggers an event message by the Orders service;
  3. Change to the status of an Order triggers an event message by the Fulfillment service;

Each of these state change event messaging flows follow the exact same architectural pattern on both the Producer and Consumer sides of the Kafka topic.

kafka-event-flow

Let’s examine each state change event messaging flow and the code behind them.

Customer State Change

When a new Customer entity is created or updated by the Accounts service, a CustomerChangeEvent message is produced and sent to the accounts.customer.change Kafka topic. This message is retrieved and consumed by the Orders service. This is how the Orders service eventually has a record of all customers who may place an order. It can be said that the Order’s Customer contact information is eventually consistent with the Account’s Customer contact information, by way of Kafka.

kafka-topic-01

There are different methods to trigger a message to be sent to Kafka, For this particular state change, the Accounts service uses a listener. The listener class, which extends AbstractMongoEventListener, listens for an onAfterSave event for a Customer entity (gist).

The listener handles the event by instantiating a new CustomerChangeEvent with the Customer’s information and passes it to the Sender class (gist).

The configuration of the Sender is handled by the SenderConfig class. This Spring Kafka producer configuration class uses Spring Kafka’s JsonSerializer class to serialize the CustomerChangeEvent object into a JSON message payload (gist).

The Sender uses a KafkaTemplate to send the message to the Kafka topic, as shown below. Since message order is critical to ensure changes to a Customer’s information are processed in order, all messages are sent to a single topic with a single partition.

kafka-events-01.png

The Orders service’s Receiver class consumes the CustomerChangeEvent messages, produced by the Accounts service (gist).

[gust]cc3c4e55bc291e5435eccdd679d03015[/gist]

The Orders service’s Receiver class is configured differently, compared to the Fulfillment service. The Orders service receives messages from multiple topics, each containing messages with different payload structures. Each type of message must be deserialized into different object types. To accomplish this, the ReceiverConfig class uses Apache Kafka’s StringDeserializer. The Orders service’s ReceiverConfig references Spring Kafka’s AbstractKafkaListenerContainerFactory classes setMessageConverter method, which allows for dynamic object type matching (gist).

Each Kafka topic the Orders service consumes messages from is associated with a method in the Receiver class (shown above). That method accepts a specific object type as input, denoting the object type the message payload needs to be deserialized into. In this way, we can receive multiple message payloads, serialized from multiple object types, and successfully deserialize each type into the correct data object. In the case of a CustomerChangeEvent, the Orders service calls the receiveCustomerOrder method to consume the message and properly deserialize it.

For all services, a Spring application.yaml properties file, in each service’s resources directory, contains the Kafka configuration (gist).

 Order Approved for Fulfillment

When the status of the Order in a CustomerOrders entity is changed to ‘Approved’ from ‘Created’, a FulfillmentRequestEvent message is produced and sent to the accounts.customer.change Kafka topic. This message is retrieved and consumed by the Fulfillment service. This is how the Fulfillment service has a record of what Orders are ready for fulfillment.

Kafka-Eventual-Cons Order Flow 2

Since we did not create the Shopping Cart service for this post, the Orders service simulates an order approval event, containing an approved order, being received, through Kafka, from the Shopping Cart Service. To simulate order creation and approval, the Orders service can create a random order history for each customer. Further, the Orders service can scan all customer orders for orders that contain both a ‘Created’ and ‘Approved’ order status. This state is communicated as an event message to Kafka for all orders matching those criteria. A FulfillmentRequestEvent is produced, which contains the order to be fulfilled, and the customer’s contact and shipping information. The FulfillmentRequestEvent is passed to the Sender class (gist).

The configuration of the Sender class is handled by the SenderConfig class. This Spring Kafka producer configuration class uses the Spring Kafka’s JsonSerializer class to serialize the FulfillmentRequestEvent object into a JSON message payload (gist).

The Sender class uses a KafkaTemplate to send the message to the Kafka topic, as shown below. Since message order is not critical messages could be sent to a topic with multiple partitions if the volume of messages required it.

kafka-events-02

The Fulfillment service’s Receiver class consumes the FulfillmentRequestEvent from the Kafka topic and instantiates a Fulfillment object, containing the data passed in the FulfillmentRequestEvent message payload. This includes the order to be fulfilled, and the customer’s contact and shipping information (gist).

The Fulfillment service’s ReceiverConfig class defines the DefaultKafkaConsumerFactory and ConcurrentKafkaListenerContainerFactory, responsible for deserializing the message payload from JSON into a FulfillmentRequestEvent object (gist).

Fulfillment Order Status State Change

When the status of the Order in a Fulfillment entity is changed anything other than ‘Approved’, an OrderStatusChangeEvent message is produced by the Fulfillment service and sent to the fulfillment.order.change Kafka topic. This message is retrieved and consumed by the Orders service. This is how the Orders service tracks all CustomerOrder lifecycle events from the initial ‘Created’ status to the final happy path ‘Received’ status.

kafka-topic-03

The Fulfillment service exposes several endpoints through the FulfillmentController class, which are simulate a change the status of an order. They allow an order status to be changed from ‘Approved’ to ‘Processing’, to ‘Shipped’, to ‘In Transit’, and to ‘Received’. This change is applied to all orders that meet the criteria.

Each of these state changes triggers a change to the Fulfillment document in MongoDB. Each change also generates an Kafka message, containing the OrderStatusChangeEvent in the message payload. This is handled by the Fulfillment service’s Sender class.

Note in this example, these two events are not handled in an atomic transaction. Either the updating the database or the sending of the message could fail independently, which would cause a loss of data consistency. In the real world, we must ensure both these disparate actions succeed or fail as a single transaction, to ensure data consistency (gist).

The configuration of the Sender class is handled by the SenderConfig class. This Spring Kafka producer configuration class uses the Spring Kafka’s JsonSerializer class to serialize the OrderStatusChangeEvent object into a JSON message payload. This class is almost identical to the SenderConfig class in the Orders and Accounts services (gist).

The Sender class uses a KafkaTemplate to send the message to the Kafka topic, as shown below. Message order is not critical since a timestamp is recorded, which ensures the proper sequence of order status events can be maintained. Messages could be sent to a topic with multiple partitions if the volume of messages required it.

kafka-events-03

The Orders service’s Receiver class is responsible for consuming the OrderStatusChangeEvent message, produced by the Fulfillment service (gist).

[gust]cc3c4e55bc291e5435eccdd679d03015[/gist]

As explained above, the Orders service is configured differently compared to the Fulfillment service, to receive messages from Kafka. The Orders service needs to receive messages from more than one topic. The ReceiverConfig class deserializes all message using the StringDeserializer. The Orders service’s ReceiverConfig class references the Spring Kafka AbstractKafkaListenerContainerFactory classes setMessageConverter method, which allows for dynamic object type matching (gist).

Each Kafka topic the Orders service consumes messages from is associated with a method in the Receiver class (shown above). That method accepts a specific object type as an input parameter, denoting the object type the message payload needs to be deserialized into. In the case of an OrderStatusChangeEvent message, the receiveOrderStatusChangeEvents method is called to consume a message from the fulfillment.order.change Kafka topic.

Part Two

In Part Two of this post, I will briefly cover how to deploy and run a local development version of the storefront components, using Docker. The storefront’s microservices will be exposed through an API Gateway, Netflix’s Zuul. Service discovery and load balancing will be handled by Netflix’s Eureka. Both Zuul and Eureka are part of the Spring Cloud Netflix project. To provide operational visibility, we will add Yahoo’s Kafka Manager and Mongo Express to our system.

docker-environment.png

All opinions expressed in this post are my own and not necessarily the views of my current or past employers or their clients.

, , , , , ,

1 Comment

Deploying Spring Boot Apps to AWS with Netflix Nebula and Spinnaker: Part 2 of 2

Part One of this post examined enterprise deployment tools and introduced two of Netflix’s open-source deployment tools, the Nebula Gradle plugins, and Spinnaker. In Part Two, we will deploy a production-ready Spring Boot application, the Election microservice, to multiple Amazon EC2 instances, behind an Elastic Load Balancer (ELB). We will use a fully automated DevOps workflow. The build, test, package, bake, deploy process will be handled by the Netflix Nebula Gradle Linux Packaging Plugin, Jenkins, and Spinnaker. The high-level process will involve the following steps:

  • Configure Gradle to build a production-ready fully executable application for Unix systems (executable JAR)
  • Using deb-s3 and GPG Suite, create a secure, signed APT (Debian) repository on Amazon S3
  • Using Jenkins and the Netflix Nebula plugin, build a Debian package, containing the executable JAR and configuration files
  • Using Jenkins and deb-s3, publish the package to the S3-based APT repository
  • Using Spinnaker (HashiCorp Packer under the covers), bake an Ubuntu Amazon Machine Image (AMI), replete with the executable JAR installed from the Debian package
  • Deploy an auto-scaling set of Amazon EC2 instances from the baked AMI, behind an ELB, running the Spring Boot application using both the Red/Black and Highlander deployment strategies
  • Be able to repeat the entire automated build, test, package, bake, deploy process, triggered by a new code push to GitHub

The overall build, test, package, bake, deploy process will look as follows.

DebianPackageWorkflow12.png

DevOps Architecture

Spinnaker’s modern architecture is comprised of several independent microservices. The codebase is written in Java and Groovy, and leverages the Spring Boot framework¹. Spinnaker’s configuration, startup, updates, and rollbacks are centrally managed by Halyard. Halyard provides a single point of contact for command line interaction with Spinnaker’s microservices.

Spinnaker can be installed on most private or public infrastructure, either containerized or virtualized. Spinnaker has links to a number of Quickstart installations on their website. For this demonstration, I deployed and configured Spinnaker on Azure, starting with one of the Azure Spinnaker quick-start ARM templates. The template provisions all the necessary Azure resources. For better performance, I chose upgraded the default VM to a larger Standard D4 v3, which contains 4 vCPUs and 16 GB of memory. I would recommend at least 2 vCPUs and 8 GB of memory at a minimum for Spinnaker.

Another Azure VM, in the same virtual network as the Spinnaker VM, already hosts Jenkins, SonarQube, and Nexus Repository OSS.

From Spinnaker on Azure, Debian Packages are uploaded to the APT package repository on AWS S3. Spinnaker also bakes Amazon Machine Images (AMI) on AWS. Spinnaker provisions the AWS resources, including EC2 instances, Load Balancers, Auto Scaling Groups, Launch Configurations, and Security Groups. The only resources you need on AWS to get started with Spinnaker are a VPC and Subnets. There are some minor, yet critical prerequisites for naming your VPC and Subnets.

Other external tools include GitHub for source control and Slack for notifications. I have built and managed everything from a Mac, however, all tools are platform agnostic. The Spring Boot application was developed in JetBrains IntelliJ.

Spinnaker Architecture 2.png

Source Code

All source code for this post can be found on GitHub. The project’s README file contains a list of the Election service’s endpoints.

Code samples in this post are displayed as Gists, which may not display correctly on some mobile and social media browsers. Links to gists are also provided.

APT Repository

After setting up Spinnaker on Azure, I created an APT repository on Amazon S3, using the instructions provided by Netflix, in their Code Lab, An Introduction to Spinnaker: Hello Deployment. The setup involves creating an Amazon S3 bucket to serve as an APT (Debian) repository, creating a GPG key for signing, and using deb-s3 to manage the repository. The Code Lab also uses Aptly, a great tool, which I skipped for brevity.

spin19

GPG Key

On the Mac, I used GPG Suite to create a GPG (GNU Privacy Guard or GnuPG) automatic signing key for my APT repository. The key is required by Spinnaker to verify the Debian packages in the repository, before installation.

The Ruby Gem, deb-s3, makes management of the Debian packages easy and automatable with Jenkins. Jenkins uploads the Debian packages, using a deb-s3 command, such as the following (gist). In this post, Jenkins calls the command from the shell script, upload-deb-package.sh, which is included in the GitHub project.

The Jenkins user requires access to the signing key, to build and upload the Debian packages. I created my GPG key on my Mac, securely copied the key to my Ubuntu-based Jenkins VM, and then imported the key for the Jenkins user. You could also create your key on Ubuntu, directly. Make sure you backup your private key in a secure location!

Nebula Packaging Plugin

Next, I set up a Gradle task in my build.gradle file to build my Debian packages using the Netflix Nebula Gradle Linux Packaging Plugin. Although Debian packaging tasks could become complex for larger application installations, this task for this post is pretty simple. I used many of the best-practices suggested by Spring for Production-grade deployments. The best-practices guide recommends file location, file modes, and file user and group ownership. I create the JAR as a fully executable JAR, meaning it is started like any other executable and does not have to be started with the standard java -jar command.

In the task, shown below (gist), the JAR and the external configuration file (optional) are copied to specific locations during the deployment and symlinked, as required. I used the older SysVInit system (init.d) to enable the application to automatically starts on boot. You should probably use systemctl for your services with Ubuntu 16.04.

You can use the ar (archive) command (i.e., ar -x spring-postgresql-demo_4.5.0_all.deb), to extract and inspect the structure of a Debian package. The data.tar.gz file, displayed below in Atom, shows the final package structure.

spin47.png

Base AMI

Next, I baked a base AMI for Spinnaker to use. This base AMI is used by Spinnaker to bake (re-bake) the final AMI(s) used for provisioning the EC2 instances, containing the Spring Boot Application. The Spinnaker base AMI is built from another base AMI, the official Ubuntu 16.04 LTS image. I installed the OpenJDK 8 package on the AMI, which is required to run the Java-based Election service. Lastly and critically, I added information about the location of my S3-based APT Debian package repository to the list of configured APT data sources, and the GPG key required for package verification. This information and key will be used later by Spinnaker to bake AMIʼs, using this base AMI. The set-up script, base_ubuntu_ami_setup.sh, which is included in the GitHub project.

Jenkins

This post uses a single Jenkins CI/CD pipeline. Using a Webhook, the pipeline is automatically triggered by every git push to the GitHub project. The pipeline pulls the source code, builds the application, and performs unit-tests and static code analysis with SonarQube. If the build succeeds and the tests pass, the build artifact (JAR file) is bundled into a Debian package using the Nebula Packaging plugin, uploaded to the S3 APT repository using s3-deb, and archived locally for Spinnaker to reference. Once the pipeline is completed, on success or on failure, a Slack notification is sent. The Jenkinsfile, used for this post is available in the project on Github.

Below is a traditional Jenkins view of the CI/CD pipeline, with links to unit test reports, SonarQube results, build artifacts, and GitHub source code.

spin01

Below is the same pipeline viewed using the Jenkins Blue Ocean plugin.

spin02

It is important to perform sufficient testing before building the Debian package. You donʼt want to bake an AMI and deploy EC2 instances, at a cost, before finding out the application has bugs.

spin03

Spinnaker Setup

First, I set up a new Spinnaker Slack channel and a custom bot user. Spinnaker details the Slack set up in their Notifications and Events Guide. You can configure what type of Spinnaker events trigger Slack notifications.

spin46.png

AWS Spinnaker User

Next, I added the required Spinnaker User, Policy, and Roles to AWS. Spinnaker uses this access to query and provision infrastructure on your behalf. The Spinnaker User requires Power User level access to perform all their necessary tasks. AWS IAM set up is detailed by Spinnaker in their Cloud Providers Setup for AWS. They also describe the setup of other cloud providers. You need to be reasonably familiar with AWS IAM, including the PassRole permission to set up this part. As part of the setup, you enable AWS for Spinnaker and add your AWS account using the Halyard interface.

spin45

Spinnaker Security Groups

Next, I set up two Spinnaker Security Groups, corresponding to two AWS Security Groups, one for the load balancer and one for the Election service. The load balancer security group exposes port 80, and the Election service security group exposes port 8080.

spin36

Spinnaker Load Balancer

Next, I created a Spinnaker Load Balancer, corresponding to an Amazon Classic Load Balancer. The Load Balancer will load-balance the Election service EC2 instances. Below you see a Load Balancer, balancing a pair of active EC2 instances, the result of a Red/Black deployment.

spin37

Spinnaker can currently create both AWS Classic Load Balancers as well as Application Load Balancers (ALB).

spin25

Spinnaker Pipeline

This post uses a single, basic Spinnaker Pipeline. The pipeline bakes a new AMI from the Debian package generated by the Jenkins pipeline. After a manual approval stage, Spinnaker deploys a set of EC2 instances, behind the Load Balancer, which contains the latest version of the Election service. Spinnaker finishes the pipeline by sending a Slack notification.

spin26

Jenkins Integration

The pipeline is triggered by the successful completion of the Jenkins pipeline. This is set in the Configuration stage of the pipeline. The integration with Jenkins is managed through Spinnaker’s Igor service.

spin22.png

Bake Stage

Next, in the Bake stage, Spinnaker bakes a new AMI, containing the Debian package generated by the Jenkins pipeline. The stageʼs configuration contains the package name to reference.

spin29

The stageʼs configuration also includes a reference to which Base AMI to use, to bake the new AMIs. Here I have used the AMI ID of the base Spinnaker AMI, I created previously.

spin27

Deploy Stage

Next, the Deploy stage deploys the Election service, running on EC2 instances, provisioned from the new AMI, which was baked in the last stage. To configure the Deploy stage, you define a Spinnaker Server Group. According to Spinnaker, the Server Group identifies the deployable artifact, VM image type, the number of instances, autoscaling policies, metadata, Load Balancer, and a Security Group.

spin32

The Server Group also defines the Deployment Strategy. Below, I chose the Red/Black Deployment Strategy (also referred to as Blue/Green). This strategy will disable, not terminate the active Server Group. If the new deployment fails, we can manually or automatically perform a Rollback to the previous, currently disabled Server Group.

spin11

Letʼs Start Baking!

With set up complete, letʼs kick off a git push, trigger and complete the Jenkins pipeline, and finally trigger the Spinnaker pipeline. Below we see the pipelineʼs Bake stage has been started. Spinnakerʼs UI lets us view the Bakery Details. The Bakery, provided by Spinnakerʼs Rosco service, bakes the AMIs. Rosco uses HashiCorp Packer to bake the AMIs, using standard Packer templates.

spin04

Below we see Spinnaker (Rosco/Packer) locating the Base Spinnaker AMI we configured in the Pipelineʼs Bake stage. Next, we see Spinnaker sshʼing into a new EC2 instance with a temporary keypair and Security Group and starting the Election service Debian package installation.

spin23

Continuing, we see the latest Debian package, derived from the Jenkins pipelineʼs archive, being pulled from the S3-based APT repo. The package is verified using the GPG key and then installed. Lastly, we see a new AMI is created, containing the deployed Election service, which was initially built and packaged by Jenkins. Note the AWS Resource Tags created by Spinnaker, as shown in the Bakery output.

spin24

The base Spinnaker AMI and the AMIs baked by Spinnaker are visible in the AWS Console. Note the naming conventions used by Spinnaker for the AMIs, the Source AMI used to build the new APIs, and the addition of the Tags, which we saw being applied in the Bakery output above. The use of Tags indirectly allows full traceability from the deployed EC2 instance all the way back to the original code commit to git by the Developer.

spin48.png

Red/Black Deployments

With the new AMI baked successfully, and a required manual approval, using a Manual Judgement type pipeline stage, we can now begin a Red/Black deployment to AWS.

spin07

Using the Server Group configuration in the Deploy stage, Spinnaker deploys two EC2 instances, behind the ELB.

spin08

Below, we see the successful results of the Red/Black deployment. The single Spinnaker Cluster contains two deployed Server Groups. One group, the previously active Server Group (RED), comprised of two EC2 instances, is disabled. The ‘RED’ EC2 instances are unregistered with the load balancer but still running. The new Server Group (BLACK), also comprised of two EC2 instances, is now active and registered with the Load Balancer. Spinnaker will spread EC2 instances evenly across all Availability Zones in the US East (N. Virginia) Region.

spin38

From the AWS Console, we can observe four running instances, though only two are registered with the load-balancer.

spin34

Here we see each deployed Server Group has a different Auto Scaling Group and Launch Configuration. Note the continued use of naming conventions by Spinnaker.

spin33

 There can be only one, Highlander!

Now, in the Deploy stage of the pipeline, we will switch the Server Groupʼs Strategy to Highlander. The Highlander strategy will, as you probably guessed by the name, destroy all other Server Groups in the Cluster. This is more typically used for lower environments, like Development or Test, where you are only interested in the next version of the application for testing. The Red/Black strategy is more applicable to Production, where you want the opportunity to quickly rollback to the previous deployment, if necessary.

spin12

Following a successful deployment, below, we now see the first two Server Groups have been terminated, and a third Server Group in the Cluster is active.

spin40.png

In the AWS Console, we can confirm the four previous EC2 instances have been successfully terminated as a result of the Highlander deployment strategy, and two new instances are running.

spin39

As well, the previous Auto Scaling Groups and Launch Configurations have been deleted from AWS by Spinnaker.

spin44.png

As expected, the Classic Load Balancer only contains the two most recent EC2 instances from the last Server Group deployed.

spin41

Confirming the Deployment

Using the DNS address of the load balancer, we can hit the Election service endpoints, on either of the EC2 instances. All API endpoints are listed in the Projectʼs README file. Below, from a web browser, we see the candidates resource returning candidate information, retrieved from the Electionʼs PostgreSQL RDS database Test instance.

spin42

Similarly, from Postman, we can hit the load balancer and get back election information from the elections resource, using an HTTP GET.

spin43.png

I intentionally left out a discussion of the service’s RDS database and how configuration management was handled with Spring Profiles and Spring Cloud Config. Both topics were out of scope for this post.

Conclusion

Although this was a brief, whirlwind overview of deployment tools, it shows the power of delivery tools like Spinnaker, when seamlessly combined with other tools, like Jenkins and the Nebula plugins. Together, these tools are capable of efficiently, repeatably, and securely deploying large numbers of containerized and non-containerized applications to a variety of private, public, and hybrid cloud infrastructure.

All opinions expressed in this post are my own and not necessarily the views of my current or past employers or their clients.

¹ Running Spinnaker on Compute Engine

, , , , , , , , , , , ,

1 Comment

Deploying Spring Boot Apps to AWS with Netflix Nebula and Spinnaker: Part 1 of 2

Listening to DevOps industry pundits, you might be convinced everyone is running containers in Production (or by now, serverless). Although containerization is growing at a phenomenal rate, several recent surveys¹ indicate less than 50% of enterprises are deploying containers in Production. Filter those results further with the fact, of those enterprises, only a small percentage of their total application portfolios are containerized, let alone in Production.

As a DevOps Consultant, I regularly work with corporations whose global portfolios are in the thousands of applications. Indeed, some percentage of their applications are containerized, with less running in Production. However, a majority of those applications, even those built on modern, light-weight, distributed architectures, are still being deployed to bare-metal and virtualized public cloud and private data center infrastructure, for a variety of reasons.

Enterprise Deployment

Due to the scale and complexity of application portfolios, many organizations have invested in enterprise deployment tools, either commercially available or developed in-house. The enterprise deployment tool’s primary objective is to standardize the process of securely, reliably, and repeatably packaging, publishing, and deploying both containerized and non-containerized applications to large fleets of virtual machines and bare-metal servers, across multiple, geographically dispersed data centers and cloud providers. Enterprise deployment tools are particularly common in tightly regulated and compliance-driven organizations, as well as organizations that have undertaken large amounts of M&A, resulting in vastly different application technology stacks.

Enterprise CI/CD/Release Workflow

Better-known examples of commercially available enterprise deployment tools include IBM UrbanCode Deploy (aka uDeploy), XebiaLabs XL Deploy, CA Automic Release Automation, Octopus Deploy, and Electric Cloud ElectricFlow. While commercial tools continue to gain market share³, many organizations are tightly coupled to their in-house solutions through years of use and fear of widespread process disruption, given current economic, security, compliance, and skills-gap sensitivities.

Deployment Tool Anatomy

Most Enterprise deployment tools are compatible with standard binary package types, including Debian (.deb) and Red Hat  (RPM) Package Manager (.rpm) packages for Linux, NuGet (.nupkg) packages for Windows, and Node Package Manager (.npm) and Bower for JavaScript. There are equivalent package types for other popular languages and formats, such as Go, Python, Ruby, SQL, Android, Objective-C, Swift, and Docker. Packages usually contain application metadata, a signature to ensure the integrity and/or authenticity², and a compressed payload.

Enterprise deployment tools are normally integrated with open-source packaging and publishing tools, such as Apache Maven, Apache Ivy/Ant, Gradle, NPMNuGet, BundlerPIP, and Docker.

Binary packages (and images), built with enterprise deployment tools, are typically stored in private, open-source or commercial binary (artifact) repositories, such as SpacewalkJFrog Artifactory, and Sonatype Nexus Repository. The latter two, Artifactory and Nexus, support a multitude of modern package types and repository structures, including Maven, NuGet, PyPI, NPM, Bower, Ruby Gems, CocoaPods, Puppet, Chef, and Docker.

Mature binary repositories provide many features in addition to package management, including role-based access control, vulnerability scanning, rich APIs, DevOps integration, and fault-tolerant, high-availability architectures.

Lastly, enterprise deployment tools generally rely on standard package management systems to retrieve and install cryptographically verifiable packages and images. These include YUM (Yellowdog Updater, Modified), APT (aptitude), APK (Alpine Linux), NuGet, Chocolatey, NPM, PIP, Bundler, and Docker. Packages are deployed directly to running infrastructure, or indirectly to intermediate deployable components as Amazon Machine Images (AMI), Google Compute Engine machine images, VMware machines, Docker Images, or CoreOS rkt.

Open-Source Alternative

One such enterprise with an extensive portfolio of both containerized and non-containerized applications is Netflix. To standardize their deployments to multiple types of cloud infrastructure, Netflix has developed several well-known open-source software (OSS) tools, including the Nebula Gradle plugins and Spinnaker. I discussed Spinnaker in my previous post, Managing Applications Across Multiple Kubernetes Environments with Istio, as an alternative to Jenkins for deploying container workloads to Kubernetes on Google (GKE).

As a leader in OSS, Netflix has documented their deployment process in several articles and presentations, including a post from 2016, ‘How We Build Code at Netflix.’ According to the article, the high-level process for deployment to Amazon EC2 instances involves the following steps:

  • Code is built and tested locally using Nebula
  • Changes are committed to a central git repository
  • Jenkins job executes Nebula, which builds, tests, and packages the application for deployment
  • Builds are “baked” into Amazon Machine Images (using Spinnaker)
  • Spinnaker pipelines are used to deploy and promote the code change

The Nebula plugins and Spinnaker leverage many underlying, open-source technologies, including Pivotal Spring, Java, Groovy, Gradle, Maven, Apache Commons, Redline RPM, HashiCorp Packer, Redis, HashiCorp Consul, Cassandra, and Apache Thrift.

Both the Nebula plugins and Spinnaker have been battle tested in Production by Netflix, as well as by many other industry leaders after Netflix open-sourced the tools in 2014 (Nebula) and 2015 (Spinnaker). Currently, there are approximately 20 Nebula Gradle plugins available on GitHub. Notable core-contributors in the development of Spinnaker include Google, Microsoft, Pivotal, Target, Veritas, and Oracle, to name a few. A sign of its success, Spinnaker currently has over 4,600 Stars on GitHub!

Part Two: Demonstration

In Part Two, we will deploy a production-ready Spring Boot application, the Election microservice, to multiple Amazon EC2 instances, behind an Elastic Load Balancer (ELB). We will use a fully automated DevOps workflow. The build, test, package, bake, deploy process will be handled by the Netflix Nebula Gradle Linux Packaging Plugin, Jenkins, and Spinnaker. The high-level process will involve the following steps:

  • Configure Gradle to build a production-ready fully executable application for Unix systems (executable JAR)
  • Using deb-s3 and GPG Suite, create a secure, signed APT (Debian) repository on Amazon S3
  • Using Jenkins and the Netflix Nebula plugin, build a Debian package, containing the executable JAR and configuration files
  • Using Jenkins and deb-s3, publish the package to the S3-based APT repository
  • Using Spinnaker (HashiCorp Packer under the covers), bake an Ubuntu Amazon Machine Image (AMI), replete with the executable JAR installed from the Debian package
  • Deploy an auto-scaling set of Amazon EC2 instances from the baked AMI, behind an ELB, running the Spring Boot application using both the Red/Black and Highlander deployment strategies
  • Be able to repeat the entire automated build, test, package, bake, deploy process, triggered by a new code push to GitHub

The overall build, test, package, bake, deploy process will look as follows.

DebianPackageWorkflow12

References

 

All opinions expressed in this post are my own and not necessarily the views of my current or past employers or their clients.

¹ Recent Surveys: ForresterPortworx,  Cloud Foundry Survey
² Courtesy Wikipedia – rpm
³ XebiaLabs Kicks Off 2017 with Triple-Digit Growth in Enterprise DevOps

, , , , , , , , , , , ,

1 Comment

Updating and Maintaing Gradle Project Dependencies

As a DevOps Consultant, I often encounter codebases that have not been properly kept up-to-date. Likewise, I’ve authored many open-source projects on GitHub, which I use for training, presentations, and articles. Those projects often sit dormant for months at a time, #myabandonware.

Poorly maintained and dormant projects often become brittle or break, as their dependencies and indirect dependencies continue to be updated. However, blindly updating project dependencies is often the quickest way to break, or further break an application. Ask me, I’ve given in to temptation and broken my fair share of applications as a result. Nonetheless, it is helpful to be able to quickly analyze a project’s dependencies and discover available updates. Defects, performance issues, and most importantly, security vulnerabilities, are often fixed with dependency updates.

For Node.js projects, I prefer David to discover dependency updates. I have other favorites for Ruby, .NET, and Python, including OWASP Dependency-Check, great for vulnerabilities. In a similar vein, for Gradle-based Java Spring projects, I recently discovered Ben Manes’ Gradle Versions Plugin, gradle-versions-plugin. The plugin is described as a ‘Gradle plugin to discover dependency updates’. The plugin’s GitHub project has over 1,350 stars! According to the plugin project’s README file, this plugin is similar to the Versions Maven Plugin. The project further indicates there are similar Gradle plugins available, including gradle-use-latest-versionsgradle-libraries-plugin, and gradle-update-notifier.

To try the Gradle Versions Plugin, I chose a recent Gradle-based Java Spring Boot API project. I added the plugin to the gradle.build file with a single line of code.

plugins {
  id 'com.github.ben-manes.versions' version '0.17.0'
}

By executing the single Gradle task, dependencyUpdates, the plugin generates a report detailing the status of all project’s dependencies, including plugins. The plugin includes a revision task property, which controls the resolution strategy of determining what constitutes the latest version of a dependency. The property supports three strategies: release, milestone (default), and integration (i.e. SNAPSHOT), which are detailed in the plugin project’s README file.

As expected, the plugin will properly resolve any variables. Using a variable is an efficient practice for setting the Spring Boot versions for multiple dependencies (i.e. springBootVersion).

ext {
    springBootVersion = '2.0.1.RELEASE'
}

dependencies {
    compile('com.h2database:h2:1.4.197')
    compile("io.springfox:springfox-swagger-ui:2.8.0")
    compile("io.springfox:springfox-swagger2:2.8.0")
    compile("org.liquibase:liquibase-core:3.5.5")
    compile("org.sonarsource.scanner.gradle:sonarqube-gradle-plugin:2.6.2")
    compile("org.springframework.boot:spring-boot-starter-actuator:${springBootVersion}")
    compile("org.springframework.boot:spring-boot-starter-data-jpa:${springBootVersion}")
    compile("org.springframework.boot:spring-boot-starter-data-rest:${springBootVersion}")
    compile("org.springframework.boot:spring-boot-starter-hateoas:${springBootVersion}")
    compile("org.springframework.boot:spring-boot-starter-web:${springBootVersion}")
    compileOnly('org.projectlombok:lombok:1.16.20')
    runtime("org.postgresql:postgresql:42.2.2")
    testCompile("org.springframework.boot:spring-boot-starter-test:${springBootVersion}")
}

My first run, using the default revision level, resulted in the following output. The report indicated three of my project’s dependencies were slightly out of date:

> Configure project :
Inferred project: spring-postgresql-demo, version: 4.3.0-dev.2.uncommitted+929c56e

> Task :dependencyUpdates
Failed to resolve ::apiElements
Failed to resolve ::implementation
Failed to resolve ::runtimeElements
Failed to resolve ::runtimeOnly
Failed to resolve ::testImplementation
Failed to resolve ::testRuntimeOnly

------------------------------------------------------------
: Project Dependency Updates (report to plain text file)
------------------------------------------------------------

The following dependencies are using the latest milestone version:
- com.github.ben-manes.versions:com.github.ben-manes.versions.gradle.plugin:0.17.0
- com.netflix.nebula:gradle-ospackage-plugin:4.9.0-rc.1
- com.h2database:h2:1.4.197
- io.spring.dependency-management:io.spring.dependency-management.gradle.plugin:1.0.5.RELEASE
- org.projectlombok:lombok:1.16.20
- com.netflix.nebula:nebula-release-plugin:6.3.3
- org.sonarqube:org.sonarqube.gradle.plugin:2.6.2
- org.springframework.boot:org.springframework.boot.gradle.plugin:2.0.1.RELEASE
- org.postgresql:postgresql:42.2.2
- org.sonarsource.scanner.gradle:sonarqube-gradle-plugin:2.6.2
- org.springframework.boot:spring-boot-starter-actuator:2.0.1.RELEASE
- org.springframework.boot:spring-boot-starter-data-jpa:2.0.1.RELEASE
- org.springframework.boot:spring-boot-starter-data-rest:2.0.1.RELEASE
- org.springframework.boot:spring-boot-starter-hateoas:2.0.1.RELEASE
- org.springframework.boot:spring-boot-starter-test:2.0.1.RELEASE
- org.springframework.boot:spring-boot-starter-web:2.0.1.RELEASE

The following dependencies have later milestone versions:
- org.liquibase:liquibase-core [3.5.5 -> 3.6.1]
- io.springfox:springfox-swagger-ui [2.8.0 -> 2.9.0]
- io.springfox:springfox-swagger2 [2.8.0 -> 2.9.0]

Generated report file build/dependencyUpdates/report.txt

After reading the release notes for the three available updates, and confident I had sufficient unit, smoke, and integration tests to validate any project changes, I manually updated the dependencies. Re-running the Gradle task generated the following abridged output.

------------------------------------------------------------
: Project Dependency Updates (report to plain text file)
------------------------------------------------------------

The following dependencies are using the latest milestone version:
- com.github.ben-manes.versions:com.github.ben-manes.versions.gradle.plugin:0.17.0
- com.netflix.nebula:gradle-ospackage-plugin:4.9.0-rc.1
- com.h2database:h2:1.4.197
- io.spring.dependency-management:io.spring.dependency-management.gradle.plugin:1.0.5.RELEASE
- org.liquibase:liquibase-core:3.6.1
- org.projectlombok:lombok:1.16.20
- com.netflix.nebula:nebula-release-plugin:6.3.3
- org.sonarqube:org.sonarqube.gradle.plugin:2.6.2
- org.springframework.boot:org.springframework.boot.gradle.plugin:2.0.1.RELEASE
- org.postgresql:postgresql:42.2.2
- org.sonarsource.scanner.gradle:sonarqube-gradle-plugin:2.6.2
- org.springframework.boot:spring-boot-starter-actuator:2.0.1.RELEASE
- org.springframework.boot:spring-boot-starter-data-jpa:2.0.1.RELEASE
- org.springframework.boot:spring-boot-starter-data-rest:2.0.1.RELEASE
- org.springframework.boot:spring-boot-starter-hateoas:2.0.1.RELEASE
- org.springframework.boot:spring-boot-starter-test:2.0.1.RELEASE
- org.springframework.boot:spring-boot-starter-web:2.0.1.RELEASE
- io.springfox:springfox-swagger-ui:2.9.0
- io.springfox:springfox-swagger2:2.9.0

Generated report file build/dependencyUpdates/report.txt

BUILD SUCCESSFUL in 3s
1 actionable task: 1 executed

After running a series of automated unit, smoke, and integration tests, to confirm no conflicts with the updates, I committed my changes to GitHub. The Gradle Versions Plugin is a simple and effective solution to Gradle dependency management.

All opinions expressed in this post are my own, and not necessarily the views of my current or past employers, or their clients.

Gradle logo courtesy Gradle.org, © Gradle Inc. 

, , , , , , ,

Leave a comment