Posts Tagged Apache Ant

WebLogic Server: Installation to Deployment in 30 Minutes

Install WebLogic Server 12c on Windows, create a new domain, and deploy a sample application, all in 30 minutes or less! A quick overview of the entire process, installation to deployment.

12

Installing Oracle WebLogic Server 12c on Windows

Oracle has made the installation and setup of WebLogic Server 12c on Windows, remarkably easy for us as developers. In less than a half-hour, you can install WebLogic Server, create a new WLS domain, configure the new WebLogic Server domain in NetBeans, and deploy your first application. In this post, we will run through the most basic example of the install and configuration process.

In an actual production environments, even on your development machine, you will have added considerations when deploying high-performance enterprise applications and services to WebLogic Server. Considerations, such as security, persistence, web service configuration, performance, monitoring, and messaging, not be covered. None the less, this post should show just how easy it is to get started with WebLogic Server.

In this brief post, we will cover :

  1. Installing Logic Server 12c on Windows
  2. Creating a New WebLogic Server Domain
  3. Accessing the New WebLogic Server Domain
  4. Creating a Sample Project to Deploy to Domain
  5. Deploying the Sample Project

Installing WebLogic Server 12c

Download the latest version of WebLogic Server (WLS) from Oracle’s website. Once the rather large download is complete, double-click on the executable file to start the install process. I used all the default settings during the installation, illustrated below.

01
02
03
04
06

Oracle recommends you create a %MW_HOME% environmental variable, whose value is the Middleware Home Directory, shown in the screen-grab, below:

C:\Oracle\Middleware

Note the WebLogic Server Product Installation Directory in the screen-grab, below. You will need it for other configuration later in the post. You might also consider creating a %WL_HOME% environmental variable to store this value. It saves time when executing WLS commands in the terminal:

%MW_HOME%\wlserver_12.1

07
08
09

13

If you exit the Quick Start utility, and wish to return to it later, you can run the following command script:

%WL_HOME%\common\quickstart\quickstart.cmd

Creating a New WebLogic Server Domain

With WLS installed, the first thing you will want to do is create a new WebLogic Server domain to host your applications. The easiest way to create a domain is the Fusion Middleware Configuration Wizard. To start the Wizard, run the following command script (there is also an executable in the same directory):

%WL_HOME%\common\bin\config.cmd

The following screen-grabs show the creation a basic domain using the Wizard, without any added feature and functionality, such as web services, messaging, or persistence.

01

02

03

Make sure to note the username, password, and port you choose during the set-up. You will need them later to start the domain and to deploy to it.

04

05

06

07

08

09

Accessing the New WebLogic Server Domain

To start the new domain, run the following command script:

%MW_HOME%\user_projects\domains\dev_domain\startWebLogic.cmd

10 Alternate Start

11

Once started, to reach the domain’s Administration Console, open a browser and enter the following URL (adjust it for the port you chose earlier):

http://localhost:7021/console/login/LoginForm.jsp

Log  into WLS using the username and password you chose during the domain creation in the previous steps.

12

13

14

Configuring WebLogic Server in NetBeans

Open NetBeans and switch to the ‘Services’ Tab, right-click on ‘Server’, and select ‘Add Server…’. Enter the values used during the installation and domain creation steps, above.

15

The ‘Server Location’ will be the same value as our %WL_HOME% variable:

C:\Oracle\Middleware\wlserver_12.1

16

The ‘Domain’ path will the root of our new domain, located where all domains are,  in the ‘domains’ directory:

C:\Oracle\Middleware\user_projects\domains\dev_domain

17

18

Creating a Sample Project to Deploy to Domain

To test your new WLS domain, create a quick Java EE Hello World RESTful web service NetBeans sample project. We have used this sample many times before in previous posts to demonstrate various server deployments.

19

20

Right-click on the project, and select ‘Properties’, and then select the ‘Build’ -> ‘Run’ menu item. Change the Server to ‘Oracle WebLogic Server’. Leave all the other options with their default values.

21

Deploying the Sample Project

Right click on the Apache Ant ‘build.xml’ file on the ‘Files’ tab. Select ‘Run Target’ -> ‘Other Targets’ -> ‘run-deploy’. Apache Ant will run the run-deploy target, which will run a series of dependent targets. They will compile the project, build the .war file, and deploy the .war to the newly created WLS domain. Since we did not configure any additional server within the domain, the project will be deployed to the existing ‘AdminServer’ server.

22

Return to the Administrative Console, and switch to the ‘Deployments’ window to view the newly deployed project.

23

To view the deployed project, open a second web browser window and enter the following URL:

http://localhost:7021/HelloWorldWeblogicLocal/resources/helloWorld

24

Conclusion

There you have it, a whirlwind WebLogic Server installation to deployment demonstration. So, how long did it take you?

, , , , , ,

6 Comments

Build Automation – Calling GlassFish’s asadmin and Apache Ant Directly

Automating deployment of applications from NetBeans to GlassFish is easy using Apache Ant and GlassFish’s asadmin utility. Calling these two applications directly, without requiring the complete file path, can be a real time-savings. With Ubuntu (Linux), like with Windows OS, this can be done by adding their file paths to the $PATH environment variable.

Below is an example of adding both asadmin and Ant to the .bashrc file in your home directory. To open the .bashrc file, open the Terminal and enter ‘sudo gedit ~/.bashrc‘. You will be prompted for your password. When the .bashrc file opens, enter the following text at the end of the .bashrc file. Make sure you change the file paths to match your local system if they are different.

export ANT_HOME=./netbeans-7.2/java/ant
export ASADMIN_HOME=./glassfish-3.1.2.2/glassfish
export PATH=$PATH:$ASADMIN_HOME/bin:$ANT_HOME/bin

Close the .bashrc file and type ‘asadmin’ at the Terminal window prompt. You should see the response below. Type ‘exit’ to get out of asadmin. Next, type ‘ant’. Again, you should see the response below. This means both applications are now available directly, on any file path or from within any application, like Jenkins or Hudson.

Adding GlassFish's asadmin and Apache Ant to $Path Environmental Variable

Adding GlassFish’s asadmin and Apache Ant to $Path Environmental Variable

You can also add these variables in other ways. Here are links to other posts, which go into much more detail, and show methods to add these for all users, in addition to just yourself:

, , , , , , , ,

Leave a comment

Discover All Properties Available to an Apache Ant Target

Ever waste time searching for a certain property you need to build an Ant target? Here’s a quick tip to save you some time – echoproperties. According to The Apache Ant Project website, the echoproperties task ” displays all the current properties (or a subset of them specified by a nested <propertyset>) in the project. The output can be sent to a file if desired. This task can be used as a somewhat contrived means of returning data from an <ant> invocation, but is really for debugging build files.”

Recently, I was working on a new Java Web Application Project in NetBeans IDE 7.2.1. I wanted to build an Ant target to automate the deployment of the project’s .war file to GlassFish. To do so, I needed to identify properties that could return 1) the project’s name, 2) the path to the project’s .war file, and 3) the path to GlassFish’s asadmin utility. Calling the echoproperties task from within the Ant target below, from within my open project, returned a list of over 90 property key/value pairs.

<target name="list-all-properties">
    <echoproperties />
</target>

Although the results were enlightening, I couldn’t find the properties I was hoping to reference in the new target. Next however, I ran the Ant target again, adding the two dependency targets my GlassFish deployment target was going to need, clean and dist.

<target name="list-all-properties" depends="clean, dist">
    <echoproperties />
</target>

Running the revised target returned almost 450 properties, all available to Ant. The new properties were a result of the clean and dist targets running before the call to echoproperties. Those target’s properties were now also available. Here is a snippet of the results:

...
ant.project.invoked-targets=list-all-properties
ant.project.name=MySqlEntityWebDemo
ant.version=Apache Ant(TM) version 1.8.3 compiled on February 26 2012
ap.cmd.line.internal=
ap.proc.none.internal=
ap.processors.internal=
ap.supported.internal=true
application.args.param=
awt.toolkit=sun.awt.X11.XToolkit
basedir=/home/gstaffor/NetBeansProjects/MySqlEntityWebDemo
build.classes.dir=build/web/WEB-INF/classes
build.classes.excludes=**/*.java,**/*.form
build.compiler.emacs=true
build.dir=build
build.dir.to.clean=build/web
build.generated.dir=build/generated
build.generated.sources.dir=build/generated-sources
build.meta.inf.dir=build/web/META-INF
build.test.classes.dir=build/test/classes
build.test.results.dir=build/test/results
build.web.dir=build/web
build.web.excludes=**/*.java,**/*.form
client.urlPart=
compile.jsps=false
conf.dir=src/conf
debug-args-line=-Xdebug
debug-transport=dt_socket
debug-transport-by-os=dt_socket
debug.classpath=build/web/WEB-INF/classes\:/home/gstaffor/JavaFiles/eclipselink_2_4_1/jlib/eclipselink.jar...
debug.test.classpath=/home/gstaffor/JavaFiles/eclipselink_2_4_1/jlib/eclipselink.jar...
default.javac.source=1.7
default.javac.target=1.7
deploy.ant.properties.file=/home/gstaffor/.netbeans/7.2/gfv3-430621021.properties
display.browser=true
dist.dir=dist
dist.ear.war=dist/MySqlEntityWebDemo.war
dist.jar.dir=/home/gstaffor/NetBeansProjects/MySqlEntityWebDemo/dist
dist.javadoc.dir=dist/javadoc
dist.war=dist/MySqlEntityWebDemo.war
...
j2ee.compile.on.save=true
j2ee.copy.static.files.on.save=true
j2ee.deploy.on.save=true
j2ee.platform=1.6-web
j2ee.platform.classpath=/home/gstaffor/glassfish-3.1.2.2/glassfish/modules/bean-validator.jar...
j2ee.platform.embeddableejb.classpath=/home/gstaffor/glassfish-3.1.2.2/glassfish/lib/embedded/glassfish-embedded-static-shell.jar
j2ee.platform.is.jsr109=true
j2ee.platform.wscompile.classpath=/home/gstaffor/glassfish-3.1.2.2/glassfish/modules/webservices-osgi.jar...
j2ee.platform.wsit.classpath=
j2ee.server.domain=/home/gstaffor/glassfish-3.1.2.2/glassfish/domains/domain1
j2ee.server.home=/home/gstaffor/glassfish-3.1.2.2/glassfish
j2ee.server.instance=[/home/gstaffor/glassfish-3.1.2.2/glassfish...
j2ee.server.middleware=/home/gstaffor/glassfish-3.1.2.2
j2ee.server.type=gfv3ee6
jar.compress=false
...
war.content.additional=
war.ear.name=MySqlEntityWebDemo.war
war.name=MySqlEntityWebDemo.war
web.docbase.dir=web
webinf.dir=web/WEB-INF

Reviewing the results, I was able to find all the properties I needed to build the target, below.

<target name="glassfish-deploy" depends="clean, dist"
        description="Build distribution (WAR) and deploy to GlassFish">               
    <exec failonerror="true" vmlauncher="false" 
          executable="${j2ee.server.home}/bin/asadmin" >
        <arg line="--host=localhost --port=4848 
            --user=admin --passwordfile=pwdfile --secure=false
            deploy --force=true --name='${ant.project.name}' 
            --contextroot='/${ant.project.name}' '${dist.war}'" />
    </exec>
</target>

Almost any properties you need to develop an Ant Target is probably available if you know where, or how to look.

, , , , , , , , , , , , ,

Leave a comment

RESTful Mobile: Consuming Java EE RESTful Web Services Using jQuery Mobile

Use jQuery Mobile to build a mobile HTML website, capable of calling Jersey-specific Java EE RESTful web services and displaying JSONP in a mobile web browser.

Both NetBeans projects used in this post are available on DropBox. If you like DropBox, please use this link to sign up for a free 2 GB account. It will help me post more files to DropBox for future posts.

Background

In the previous two-part series, Returning JSONP from Java EE RESTful Web Services Using jQuery, Jersey, and GlassFish, we created a Jersey-specific RESTful web service from a database using EclipseLink (JPA 2.0 Reference Implementation), Jersey (JAX-RS Reference Implementation), JAXB, and Jackson Java JSON-processor. The service and associated entity class mapped to a copy of Microsoft SQL Server’s Adventure Works database. An HTML and jQuery-based client called the service, which returned a JSONP response payload. The JSON data it contained was formatted and displayed in a simple HTML table, in a web-browser.

Objectives

In this post, we will extend the previous example to the mobile platform. Using jQuery and jQuery Mobile JavaScript libraries, we will call two RESTful web services and display the resulting JSONP data using the common list/detail UX design pattern. We will display a list of Adventure Works employees. When the end-user clicks on an employee in the web-browser, a new page will display detailed demographic information about that employee.

Similar to the previous post, when the client website is accessed by the end-user in a mobile web browser, the client site’s HTML, CSS, and JavaScript files are downloaded and cached on the end-users machine. The JavaScript file, using jQuery and Ajax, makes a call to the RESTful web service, which returns JSON (or, JSONP in this case). This simulates a typical cross-domain situation where a client needs to consume RESTful web services from a remote source. This is not allowed by the same origin policy, but overcome by returning JSONP to the client, which wraps the JSON payload in a function call.

We will extend both the ‘JerseyRESTfulServices’ and ‘JerseyRESTfulClient’ projects we built in the last series of posts. Here are the high-level steps we will walk-through in this post:

  1. Create a second view (virtual table) in the Adventure Works database;
  2. Create a second entity class that maps to the new database view;
  3. Modify the existing entity class, adding JAXB and Jackson JSON annotations;
  4. Create a second Jersey-specific RESTful web service from the new entity using Jersey and Jackson;
  5. Modify the existing Jersey-specific RESTful web service, adding one new methods;
  6. Modify the web.xml file to allow us to use natural JSON notation;
  7. Implement a JAXBContext resolver to serialize the JSON using natural JSON notation;
  8. Create a simple list/detail two-page mobile HTML5 website using jQuery Mobile;
  9. Use jQuery, Ajax, and CSS to call, parse, and display the JSONP returned by the service.

RESTful Web Services Project

When we are done, the final RESTful web services projects will look like the screen-grab, below. It will contain (2) entity classes, (2) RESTful web service classes, (1) JAXBContext resolver class, and the web.xml configuration file:

JerseyRESTfulServices Project View in NetBeans

JerseyRESTfulServices Project View in NetBeans

1: Create the Second Database View
Create a new database view, vEmployeeNames, in the Adventure Works database:

USE [AdventureWorks]
GO

SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO

CREATE VIEW [HumanResources].[vEmployeeNames]
AS
SELECT TOP (100) PERCENT BusinessEntityID, REPLACE(RTRIM(LastName 
     + COALESCE (' ' + Suffix + '', N'') + COALESCE (', ' + FirstName + ' ', N'') 
     + COALESCE (MiddleName + ' ', N'')), '  ', ' ') AS FullName
FROM Person.Person
WHERE (PersonType = 'EM')
ORDER BY FullName
GO

2: Create the Second Entity
Add the new VEmployeeNames.java entity class, mapped to the vEmployeeNames database view, using NetBeans’ ‘Entity Classes from Database…’ wizard. Then, modify the class to match the code below.

package entities;

import java.io.Serializable;
import javax.persistence.Basic;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.NamedQueries;
import javax.persistence.NamedQuery;
import javax.persistence.Table;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;
import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlType;

@Entity
@Table(name = "vEmployeeNames", catalog = "AdventureWorks", schema = "HumanResources")
@XmlRootElement(name = "vEmployeeNames")
@NamedQueries({
    @NamedQuery(name = "VEmployeeNames.findAll", query = "SELECT v FROM VEmployeeNames v"),
    @NamedQuery(name = "VEmployeeNames.findByBusinessEntityID", query = "SELECT v FROM VEmployeeNames v WHERE v.businessEntityID = :businessEntityID"),
    @NamedQuery(name = "VEmployeeNames.findByFullName", query = "SELECT v FROM VEmployeeNames v WHERE v.fullName = :fullName")})
public class VEmployeeNames implements Serializable {

    private static final long serialVersionUID = 1L;
    @Basic(optional = false)
    @NotNull
    @Id
    @Column(name = "BusinessEntityID")
    private int businessEntityID;
    @Basic(optional = false)
    @NotNull
    @Size(min = 1, max = 102)
    @Column(name = "FullName")
    private String fullName;

    public VEmployeeNames() {
    }

    public int getBusinessEntityID() {
        return businessEntityID;
    }

    public void setBusinessEntityID(int businessEntityID) {
        this.businessEntityID = businessEntityID;
    }

    public String getFullName() {
        return fullName;
    }

    public void setFullName(String fullName) {
        this.fullName = fullName;
    }
}

3: Modify the Existing Entity
Modify the existing VEmployee.java entity class to use JAXB and Jackson JSON Annotations as shown below (class code abridged). Note the addition of the @XmlType(propOrder = { "businessEntityID"... }) to the class, the @JsonProperty(value = ...) tags to each member variable, and the @Id tag to the businessEntityID, which serves as the entity’s primary key. We will see the advantages of the first two annotations later in the post when we return the JSON to the client.

package entities;

import java.io.Serializable;
import javax.persistence.Basic;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.NamedQueries;
import javax.persistence.NamedQuery;
import javax.persistence.Table;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;
import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlType;
import org.codehaus.jackson.annotate.JsonProperty;

@Entity
@Table(name = "vEmployee", catalog = "AdventureWorks", schema = "HumanResources")
@XmlRootElement
@NamedQueries({
    @NamedQuery(name = "VEmployee.findAll", query = "SELECT v FROM VEmployee v"),
    ...})
    @XmlType(propOrder = {
    "businessEntityID",
    "title",
    "firstName",
    "middleName",
    "lastName",
    "suffix",
    "jobTitle",
    "phoneNumberType",
    "phoneNumber",
    "emailAddress",
    "emailPromotion",
    "addressLine1",
    "addressLine2",
    "city",
    "stateProvinceName",
    "postalCode",
    "countryRegionName",
    "additionalContactInfo"
})
public class VEmployee implements Serializable {

    private static final long serialVersionUID = 1L;
    @Basic(optional = false)
    @NotNull
    @Id
    @JsonProperty(value = "Employee ID")
    private int businessEntityID;
    @Size(max = 8)
    @JsonProperty(value = "Title")
    private String title;
    @Basic(optional = false)
    @NotNull
    @Size(min = 1, max = 50)
    @JsonProperty(value = "First Name")
    private String firstName;
    @Size(max = 50)
    @JsonProperty(value = "Middle Name")
    private String middleName;
    @Basic(optional = false)
    @NotNull
    @Size(min = 1, max = 50)
    @JsonProperty(value = "Last Name")
    private String lastName;
    @Size(max = 10)
    @JsonProperty(value = "Suffix")
    private String suffix;
    @Basic(optional = false)
    @NotNull
    @Size(min = 1, max = 50)
    @JsonProperty(value = "Job Title")
    private String jobTitle;
    @Size(max = 25)
    @JsonProperty(value = "Phone Number")
    private String phoneNumber;
    @Size(max = 50)
    @JsonProperty(value = "Phone Number Type")
    private String phoneNumberType;
    @Size(max = 50)
    @JsonProperty(value = "Email Address")
    private String emailAddress;
    @Basic(optional = false)
    @NotNull
    @JsonProperty(value = "Email Promotion")
    private int emailPromotion;
    @Basic(optional = false)
    @NotNull
    @Size(min = 1, max = 60)
    @JsonProperty(value = "Address Line 1")
    private String addressLine1;
    @Size(max = 60)
    @JsonProperty(value = "Address Line 2")
    private String addressLine2;
    @Basic(optional = false)
    @NotNull
    @Size(min = 1, max = 30)
    @JsonProperty(value = "City")
    private String city;
    @Basic(optional = false)
    @NotNull
    @Size(min = 1, max = 50)
    @JsonProperty(value = "State or Province Name")
    private String stateProvinceName;
    @Basic(optional = false)
    @NotNull
    @Size(min = 1, max = 15)
    @JsonProperty(value = "Postal Code")
    private String postalCode;
    @Basic(optional = false)
    @NotNull
    @Size(min = 1, max = 50)
    @JsonProperty(value = "Country or Region Name")
    private String countryRegionName;
    @Size(max = 2147483647)
    @JsonProperty(value = "Additional Contact Info")
    private String additionalContactInfo;

    public VEmployee() {
    }
    ...
}

4: Create the New RESTful Web Service
Add the new VEmployeeNamesFacadeREST.java RESTful web service class using NetBean’s ‘RESTful Web Services from Entity Classes…’ wizard. Then, modify the new class, adding the new findAllJSONP() method shown below (class code abridged). This method call the same super.findAll() method from the parent AbstractFacade.java class as the default findAll({id}) method. However, the findAllJSONP() method returns JSONP instead of XML or JSON, as findAll({id}) does. This is done by passing the results of super.findAll() to a new instance of Jersey’s JSONWithPadding() class (com.sun.jersey.api.json.JSONWithPadding).

package service;

import com.sun.jersey.api.json.JSONWithPadding;
import entities.VEmployeeNames;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.persistence.criteria.CriteriaBuilder;
import javax.persistence.criteria.CriteriaQuery;
import javax.persistence.criteria.Root;
import javax.ws.rs.Consumes;
import javax.ws.rs.DELETE;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.PUT;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.QueryParam;
import javax.ws.rs.core.GenericEntity;

@Stateless
@Path("entities.vemployeenames")
public class VEmployeeNamesFacadeREST extends AbstractFacade<VEmployeeNames> {
    ...
    @GET
    @Path("jsonp")
    @Produces({"application/javascript"})
    public JSONWithPadding findAllJSONP(@QueryParam("callback") String callback) {
        CriteriaBuilder cb = getEntityManager().getCriteriaBuilder();
        CriteriaQuery cq = cb.createQuery();
        Root empRoot = cq.from(VEmployeeNames.class);
        cq.select(empRoot);
        cq.orderBy(cb.asc(empRoot.get("fullName")));
        javax.persistence.Query q = getEntityManager().createQuery(cq);

        List<VEmployeeNames> employees = q.getResultList();
        return new JSONWithPadding(
                new GenericEntity<Collection<VEmployeeNames>>(employees) {
                }, callback);
    }
    ...
}

5: Modify the Existing Service
Modify the existing VEmployeeFacadeREST.java RESTful web service class, adding the findJSONP() method shown below (class code abridged). This method calls the same super.find({id}) in the AbstractFacade.java parent class as the default find({id}) method, but returns JSONP instead of XML or JSON. As with the previous service class above, this is done by passing the results to a new instance of Jersey’s JSONWithPadding() class (com.sun.jersey.api.json.JSONWithPadding). There are no changes required to the default AbstractFacade.java class.

package service;

import com.sun.jersey.api.json.JSONWithPadding;
import entities.VEmployee;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.persistence.criteria.CriteriaBuilder;
import javax.persistence.criteria.CriteriaQuery;
import javax.persistence.criteria.Root;
import javax.ws.rs.Consumes;
import javax.ws.rs.DELETE;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.PUT;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.QueryParam;
import javax.ws.rs.core.GenericEntity;

@Stateless
@Path("entities.vemployee")
public class VEmployeeFacadeREST extends AbstractFacade<VEmployee> {
    ...
    @GET
    @Path("{id}/jsonp")
    @Produces({"application/javascript"})
    public JSONWithPadding findJSONP(@PathParam("id") Integer id,
            @QueryParam("callback") String callback) {
        List<VEmployee> employees = new ArrayList<VEmployee>();
        employees.add(super.find(id));
        return new JSONWithPadding(
                new GenericEntity<Collection<VEmployee>>(employees) {
                }, callback);
    }
    ...
}

6: Allow POJO JSON Support
Add the JSONConfiguration.FEATURE_POJO_MAPPING servlet init parameter to web.xml, as shown below (xml abridged). According to the Jersey website, this will allow us to use POJO support, the easiest way to convert our Java Objects to JSON. It is based on the Jackson library.

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">
    <servlet>
        <servlet-name>ServletAdaptor</servlet-name>
        <servlet-class>com.sun.jersey.spi.container.servlet.ServletContainer</servlet-class>
        <init-param>
            <description>Multiple packages, separated by semicolon(;), can be specified in param-value</description>
            <param-name>com.sun.jersey.config.property.packages</param-name>
            <param-value>service</param-value>
        </init-param>
        <init-param>
            <param-name>com.sun.jersey.api.json.POJOMappingFeature</param-name>
            <param-value>true</param-value>
        </init-param>
        ...

7: Implement a JAXBContext Resolver
Create the VEmployeeFacadeREST.java JAXBContext resolver class, shown below. This allows us to serialize the JSON using natural JSON notation. A good explanation of the use of a JAXBContext resolver can be found on the Jersey website.

package config;

import com.sun.jersey.api.json.JSONConfiguration;
import com.sun.jersey.api.json.JSONJAXBContext;
import javax.ws.rs.ext.ContextResolver;
import javax.ws.rs.ext.Provider;
import javax.xml.bind.JAXBContext;

@Provider
public class JAXBContextResolver implements ContextResolver<JAXBContext> {

    JAXBContext jaxbContext;
    private Class[] types = {entities.VEmployee.class, entities.VEmployeeNames.class};

    public JAXBContextResolver() throws Exception {
        this.jaxbContext =
                new JSONJAXBContext(JSONConfiguration.natural().build(), types);
    }

    @Override
    public JAXBContext getContext(Class<?> objectType) {
        for (Class type : types) {
            if (type == objectType) {
                return jaxbContext;
            }
        }
        return null;
    }
}

What is Natural JSON Notation?
According to the Jersey website, “with natural notation, Jersey will automatically figure out how individual items need to be processed, so that you do not need to do any kind of manual configuration. Java arrays and lists are mapped into JSON arrays, even for single-element cases. Java numbers and booleans are correctly mapped into JSON numbers and booleans, and you do not need to bother with XML attributes, as in JSON, they keep the original names.

What does that mean? Better yet, what does that look like? Here is an example of an employee record, first as plain old JAXB JSON in a JSONP wrapper:

callback({"vEmployee":{"businessEntityID":"211","firstName":"Hazem","middleName":"E","lastName":"Abolrous","jobTitle":"Quality Assurance Manager","phoneNumberType":"Work","phoneNumber":"869-555-0125","emailAddress":"hazem0@adventure-works.com","emailPromotion":"0","addressLine1":"5050 Mt. Wilson Way","city":"Kenmore","stateProvinceName":"Washington","postalCode":"98028","countryRegionName":"United States"}})

And second, JSON wrapped in JSONP, using Jersey’s natural notation. Note the differences in the way the parent vEmployee node, numbers, and nulls are handled in natural JSON notation.

callback([{"Employee ID":211,"Title":null,"First Name":"Hazem","Middle Name":"E","Last Name":"Abolrous","Suffix":null,"Job Title":"Quality Assurance Manager","Phone Number Type":"Work","Phone Number":"869-555-0125","Email Address":"hazem0@adventure-works.com","Email Promotion":0,"Address Line 1":"5050 Mt. Wilson Way","Address Line 2":null,"City":"Kenmore","State or Province Name":"Washington","Postal Code":"98028","Country or Region Name":"United States","Additional Contact Info":null}])

Mobile Client Project

When we are done with the mobile client, the final RESTful web services mobile client NetBeans projects should look like the screen-grab, below. Note the inclusion of jQuery Mobile 1.2.0. You will need to download the library and associated components, and install them in the project. I chose to keep them in a separate folder since there were several files included with the library. This example requires a few new features introduced in jQuery Mobile 1.2.0. Make sure to get this version or later.

JerseyRESTfulClient Project View in NetBeans

JerseyRESTfulClient Project View in NetBeans

8: Create a List/Detail Mobile HTML Site
The process to display the data from the Adventure Works database in the mobile web browser is identical to the process used in the last series of posts. We are still using jQuery with Ajax, calling the same services, but with a few new methods. The biggest change is the use of jQuery Mobile to display the employee data. The jQuery Mobile library, especially with the release of 1.2.0, makes displaying data, quick and elegant. The library does all the hard work under the covers, with the features such as the listview control. We simply need to use jQuery and Ajax to retrieve the data and pass it to the control.

We will create three new files. They include the HTML, CSS, and JavaScript files. We add a ‘.m’ to the file names to differentiate them from the normal web browser files from the last post. As with the previous post, the HTML page and CSS file are minimal. The HTML page uses the jQuery Mobile multi-page template available on the jQuery Mobile website. Although it appears as two different web pages to the end-user, it is actually a single-page site.

Source code for employee.m.html:

<!DOCTYPE html>
<html>
    <head> 
        <title>Employee List</title> 
        <meta name="viewport" content="width=device-width, initial-scale=1"> 
        <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

        <link rel="stylesheet" href="jquery.mobile-1.2.0/jquery.mobile-1.2.0.min.css" />
        <link type="text/css" rel="stylesheet" href="employees.m.css" />

        <script src="jquery-1.8.2.min.js" type="text/javascript"></script>
        <script src="jquery.mobile-1.2.0/jquery.mobile-1.2.0.min.js" type="text/javascript"></script>
        <script src="employees.m.js" type="text/javascript"></script>
    </head> 
    <body> 
        <!-- Start of first page: #one -->
        <div data-role="page" id="one" data-theme="b">
            <div data-role="header" data-theme="b">
                <h1>Employee List</h1>
            </div><!-- /header -->
            <div data-role="content">	
                <div id="errorMessage"></div>
                <div class="ui-grid-solo">
                    <form>
                        <ul data-role="listview" data-filter="true" 
                            id="employeeList" data-theme="c" data-autodividers="true">
                        </ul>
                    </form>
                </div>
            </div><!-- /content -->
            <div data-role="footer" data-theme="b">
                <h4>Programmatic Ponderings, 2012</h4>
            </div><!-- /footer -->
        </div><!-- /page -->
        
        <!-- Start of second page: #two -->
        <div data-role="page" id="two" data-theme="c">
            <div data-role="header" data-theme="b">
                <a href="#one" data-icon="back">Return</a>
                <h1>Employee Detail</h1>
            </div><!-- /header -->
            <div data-role="content" data-theme="c">	
                <div id="employeeDetail"></div>
            </div><!-- /content -->
            <div data-role="footer" data-theme="b">
                <h4>Programmatic Ponderings, 2012</h4>
            </div><!-- /footer -->
        </div><!-- /page two -->
    </body>
</html>

Source code for employee.m.css:

#employeeList {
    clear:both;
}

#employeeDetail div {
    padding-top: 2px;
    white-space: nowrap;
}

.field {
    margin-bottom: 0px;
    font-size: smaller;
    color: #707070;
}

.value {
    font-weight: bolder;
    padding-bottom: 12px;
    border-bottom: 1px #d0d0d0 solid;
}

.ui-block-a{
    padding-left: 6px;
    padding-right: 6px;
}

.ui-grid-a{
    padding-bottom: 12px;
    padding-top: -6px;
}

8: Retrieve, Parse, and Display the Data
The mobile JavaScript file below is identical in many ways to the JavaScript file used in the last series of posts for a non-mobile browser. One useful change we have made is the addition of two arguments to the function that calls jQuery.Ajax(). The address of the service (URI) that the jQuery.Ajax() method requests, and the function that Ajax calls after successful completion, are both passed into the callService(Uri, successFunction) function as arguments. This allows us to reuse the Ajax method for different purposes. In this case, we call the function once to populate the Employee List with the full names of the employees. We call it again to populate the Employee Detail page with demographic information of a single employee chosen from the Employee List. Both calls are to different URIs representing the two different RESTful web services, which in turn are associated with the two different entities, which in turn are mapped to the two different database views.

callService = function (uri, successFunction) {
        $.ajax({
            cache: true,
            url: uri,
            data: "{}",
            type: "GET",
            contentType: "application/javascript",
            dataType: "jsonp",
            error: ajaxCallFailed,
            failure: ajaxCallFailed,
            success: successFunction
        });          
    };

The rest of the functions are self-explanatory. There are two calls to the jQuery Ajax method to return data from the service, two functions to parse and format the JSONP for display in the browser, and one jQuery method that adds click events to the Employee List. We perform a bit of string manipulation to imbed the employee id into the id property of each list item (li element. Later, when the end-user clicks on the employee name in the list, the employee id is extracted from the id property of the selected list item and passed back to the service to retrieve the employee detail. The HTML snippet below shows how a single employee row in the jQuery listview. Note the id property of the li element, id="empId_121", for employee id 121.

<li id="empId_121" class="ui-btn ui-btn-icon-right ui-li-has-arrow ui-li ui-btn-up-c" 
    data-corners="false" data-shadow="false" data-iconshadow="true" 
    data-wrapperels="div" data-icon="arrow-r" data-iconpos="right" data-theme="c">
    <div class="ui-btn-inner ui-li">
        <div class="ui-btn-text">
            <a class="ui-link-inherit" href="#">Ackerman, Pilar G</a>
        </div>
        <span class="ui-icon ui-icon-arrow-r ui-icon-shadow"> </span>
    </div>
</li>

To make this example work, you need to change the restfulWebServiceBaseUri variable to the server and port of the GlassFish domain running your RESTful web services. If you are testing the client locally on your mobile device, I suggest using the IP address for the GlassFish server versus a domain name, which your phone will be able to connect to in your local wireless environment. At least on the iPhone, there is no easy way to change the hosts file to provide local domain name resolution.

Source code for employee.m.js:

// ===========================================================================
// 
// Author: Gary A. Stafford
// Website: http://www.programmaticponderings.com
// Description: Call RESTful Web Services from mobile HTML pages
//              using jQuery mobile, Jersey, Jackson, and EclipseLink
// 
// ===========================================================================

// Immediate function
(function () {
    "use strict";
    
    var restfulWebServiceBaseUri, employeeListFindAllUri, employeeByIdUri,
    callService, ajaxCallFailed,
    getEmployeeById, displayEmployeeList, displayEmployeeDetail;
    
    // Base URI of RESTful web service
    restfulWebServiceBaseUri = "http://your_server_name_or_ip:8080/JerseyRESTfulServices/webresources/";
    
    // URI maps to service.VEmployeeNamesFacadeREST.findAllJSONP
    employeeListFindAllUri = restfulWebServiceBaseUri + "entities.vemployeenames/jsonp";
        
    // URI maps to service.VEmployeeFacadeREST.findJSONP
    employeeByIdUri = restfulWebServiceBaseUri + "entities.vemployee/{id}/jsonp";
    
    
    // Execute after the page one dom is fully loaded
    $(".one").ready(function () {        
        // Retrieve employee list
        callService(employeeListFindAllUri, displayEmployeeList);
        
        // Attach onclick event to each row of employee list on page one
        $("#employeeList").on("click", "li", function(event){
            getEmployeeById($(this).attr("id").split("empId_").pop());
        });
    });
      
    // Call a service URI and return JSONP to a function
    callService = function (Uri, successFunction) {
        $.ajax({
            cache: true,
            url: Uri,
            data: "{}",
            type: "GET",
            contentType: "application/javascript",
            dataType: "jsonp",
            error: ajaxCallFailed,
            failure: ajaxCallFailed,
            success: successFunction
        });          
    };
    
    // Called if ajax call fails
    ajaxCallFailed = function (jqXHR, textStatus) { 
        console.log("Error: " + textStatus);
        console.log(jqXHR);
        $("form").css("visibility", "hidden");
        $("#errorMessage").empty().
        append("Sorry, there was an error.").
        css("color", "red");
    };
    
    // Display employee list on page one
    displayEmployeeList = function (employee) {
        var employeeList = "";
                
        $.each(employee, function(index, employee) {
            employeeList = employeeList.concat(
                "<li id=empId_" + employee.businessEntityID.toString() + ">" + 
                "<a href='#'>" + 
                employee.fullName.toString() + "</a></li>");
        });
        
        $('#employeeList').empty();
        $('#employeeList').append(employeeList).listview("refresh", true);
    };
    
    // Display employee detail on page two
    displayEmployeeDetail = function(employee) {
        $.mobile.loading( 'show', {
            text: '',
            textVisible: false,
            theme: 'a',
            html: ""
            
        });
        window.location = "#two";
        var employeeDetail = "";
                
        $.each(employee, function(key, value) {
            $.each(value, function(key, value) {
                if(!value) {
                    value = "&nbsp;";
                }
                
                employeeDetail = employeeDetail.concat(
                    "<div class='detail'>" +
                    "<div class='field'>" + key + "</div>" +
                    "<div class='value'>" + value + "</div>" +
                    "</div>");   
            });
        });
        
        $("#employeeDetail").empty().append(employeeDetail);
    };
    
    // Retrieve employee detail based on employee id
    getEmployeeById = function (employeeID) {
        callService(employeeByIdUri.replace("{id}", employeeID), displayEmployeeDetail);
    };
} ());

The Final Result

Viewed in Google’s Chrome for Mobile web browser on iOS 6, the previous project’s Employee List looks pretty bland and un-mobile like:

Previous Project as Viewed in Google Chrome Mobile Browser

Previous Project as Viewed in Google Chrome for Mobile Web Browser

However, with a little jQuery Mobile magic you get a simple yet effective and highly functional mobile web presentation. Seen below on page one, the Employee List is displayed in Safari on an iPhone 4 with iOS 6. It features some of the new capabilities of jQuery Mobile 1.2.0’s improved listview, including autodividers.

Employee List

Employee List

Here again is the Employee List using the jQuery Mobile 1.2.0’s improved listview search filter bar:

Employee List - Filtered

Employee List – Filtered

Here is the Employee Detail on page 2. Note the order and names of the fields. Remember previously when we annotated the VEmployeeNames.java entity with the @XmlType(propOrder = {"businessEntityID", ...}) to the class and the @JsonProperty(value = ...) tags to each member variable. This is the results of those efforts; our JSON is delivered pre-sorted and titled the way we want. No need to handle those functions on the client-side. This allows the client to be loosely-coupled to the data. The client simply displays whichever key/value pairs are delivered in the JSONP response payload.

Employee Detail

Employee Detail

Employee Detail - Bottom

Employee Detail – Bottom

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

4 Comments

Returning JSONP from Java EE RESTful Web Services Using jQuery, Jersey, and GlassFish – Part 2 of 2

Create a Jersey-specific Java EE RESTful web service, and an HTML-based client to call the service and display JSONP. Test and deploy the service and the client to different remote instances of GlassFish.

Background

In part 1 of this series, we created a Jersey-specific RESTful web service from a database using NetBeans. The service returns JSONP in addition to JSON and XML. The service was deployed to a GlassFish domain, running on a Windows box. On this same box is the SQL Server instance, running the Adventure Works database, from which the service obtains data, via the entity class.

Objectives

In part two of this series, we will create a simple web client to consume and display the JSONP returned by the RESTful web service. There are many options available for creating a service consumer (client) depending on your development platform and project requirements. We will keep it simple, no complex, complied code, just HTML and JavaScript with jQuery, the well-known JavaScript library.

We will host the client on a separate GlassFish domain, running on an Ubuntu Linux VM using Oracle’s VM VirtualBox. This is a different machine than the service was installed on. When opened by the end-user in a web browser, the client files, including the JavaScript file that calls the service, are downloaded to the end-users machine. This will simulate a typical cross-domain situation where a client application needs to consume RESTful web services from a remote source. This is not allowed by the same origin policy, but overcome by returning JSONP to the client, which wraps the JSON payload in a function call.

Here are the high-level steps we will walk-through in part two:

  1. Create a simple HTML client using jQuery and ajax to call the RESTful web service;
  2. Add jQuery functionality to parse and display the JSONP returned by the service;
  3. Deploy the client to a separate remote instance of GlassFish using Apache Ant;
  4. Test the client’s ability to call the service across domains and display JSONP.

Creating the RESTful Web Service Client

New NetBeans Web Application Project
Create a new Java Web Application project in NetBeans. Name the project ‘JerseyRESTfulClient’. The choice of GlassFish server and domain where the project will be deployed is unimportant. We will use Apache Ant to deploy the client when we finish the building the project. By default, I chose my local instance of GlassFish, for testing purposes.

01a - Create a New Web Application Project in NetBeans

Create a New Web Application Project in NetBeans

01b - Create a New Web Application Project in NetBeans

Name and Location of New Web Application Project

01c - Create a New Web Application Project in NetBeans

Server and Settings of New Web Application Project

01d - Create a New Web Application Project in NetBeans

Optional Frameworks to Include in New Web Application Project

01e - Create a New Web Application Project in NetBeans

View of New Web Application Project in NetBeans

Adding Files to Project
The final client project will contains four new files:

  1. employees.html – HTML web page that displays a list of employees;
  2. employees.css – CSS information used to by employees.html;
  3. employees.js – JavaScript code used to by employees.html;
  4. jquery-1.8.2.min.js – jQuery 1.8.2 JavaScript library, minified.

First, we need to download and install jQuery. At the time of this post, jQuery 1.8.2 was the latest version. I installed the minified version (jquery-1.8.2.min.js) to save space.

Next, we will create the three new files (employees.html, employees.css, and employees.js), using the code below. When finished, we need to place all four files into the ‘Web Pages’ folder. The final project should look like:

03a - Final Client Project View

Final Client Project View

HTML
The HTML file is the smallest of the three files. The HTML page references the CSS file, the JavaScript file, and the jQuery library file. The CSS file provides the presentation (look and feel) and JavaScript file, using jQuery, dynamically provides much of the content that the HTML page normally would contain.

<!DOCTYPE html>
<html>
    <head>
        <title>Employee List</title>
        <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
        <link type="text/css" rel="stylesheet" href="employees.css" />
        <script src="jquery-1.8.2.min.js" type="text/javascript"></script>
        <script src="employees.js" type="text/javascript"></script>
    </head>
    <body>
        <div id="pageTitle">Employee List</div>
        <div id="employeeList"></div>
    </body>
</html>

Cascading Style Sheets (CSS)
The CSS file is also pretty straight-forward. The pageTitle and employeeList id selectors and type selectors are used directly by the HTML page. The class selectors are all applied to the page by jQuery, in the JavaScript file.

body {
    font-family: sans-serif;
    font-size: small;
    padding-left: 6px;
}

span {
    padding: 6px;
    display: inline-block;
}

div {
    border-bottom: lightgray solid 1px;
}

#pageTitle {
    font-size: medium;
    font-weight: bold;
    padding: 12px 0px 12px 0px;
    border: none;
}

#employeeList {
    float: left;
    border: gray solid 1px;
}

.empId {
    width: 50px;
    text-align: center;
    border-right: lightgray solid 1px;
}

.name {
    width: 200px;
    border-right: lightgray solid 1px;
}

.jobTitle {
    width: 250px;
}

.header {
    font-weight: bold;
    border-bottom: gray solid 1px;
}

.even{
    background-color: rgba(0, 255, 128, 0.09);
}

.odd {
    background-color: rgba(0, 255, 128, 0.05);
}

.last {
    border-bottom: none;
}

jQuery and JavaScript
The JavaScript file is where all the magic happens. There are two primary functions. First, getEmployees, which calls the jQuery.ajax() method. According jQuery’s website, the jQuery Ajax method performs an asynchronous HTTP (Ajax) request. In this case, it calls our RESTful web service and returns JSONP. The jQuery Ajax method uses an HTTP GET method to request the following service resource (URI):

http://%5Byour-service's-glassfish-server-name%5D:%5Byour-service's-glassfish-domain-port%5D/JerseyRESTfulService/webresources/entities.vemployee/{from}/{to}/jsonp?callback={callback}.

The base (root) URI of the service in the URI above is as follows:

http://%5Bserver%5D:%5Bport%5D/JerseyRESTfulService/webresources/entities.vemployee/

This is followed by a series of elements (nodes), {from}/{to}/jsonp, which together form a reference to a specific method in our service. As explained in the first post of this series, we include the /jsonp element to indicate we want to call the new findRangeJsonP method to return JSONP, as opposed to findRange method that returns JSON or XML. We pass the {from} path parameter a value of ‘0’ and the {to} path parameter a value of ‘10’.

Lastly, the method specifies the callback function name for the JSONP request, parseResponse, using the jsonpCallback setting. This value will be used instead of the random name automatically generated by jQuery. The callback function name is appended to the end of the URI as a query parameter. The final URL is as follows:

http://%5Bserver%5D:%5Bport%5D/JerseyRESTfulService/webresources/entities.vemployee/0/10/jsonp?callback=parseResponse.

Note the use of the jsonpCallback setting is not required, or necessarily recommended by jQuery. Without it, jQuery generate a unique name as it will make it easier to manage the requests and provide callbacks and error handling. This example will work fine if you exclude the jsonpCallback: "parseResponse" setting.

getEmployees = function () {
    $.ajax({
        cache: true,
        url: restfulWebServiceURI,
        data: "{}",
        type: "GET",
        jsonpCallback: "parseResponse",
        contentType: "application/javascript",
        dataType: "jsonp",
        error: ajaxCallFailed,
        failure: ajaxCallFailed,
        success: parseResponse
    });
};

Once we have successfully returned the JSONP, the jQuery Ajax method calls the parseResponse(data) function, passing the JSON to the data argument. The parseResponse function iterates through the employee objects using the jQuery.each() method. Each field of data is surrounding with span and div tags, and concatenated to the employeeList string variable. The string is appended to the div tag with the id of ‘employeeList’, using jQuery’s .append() method. The result is an HTML table-like grid of employee names, ids, and job title, displayed on the employees.html page.

Lastly, we call the colorRows() function. This function uses jQuery’s .addClass(className) to assign CSS classes to objects in the DOM. The classes are added to stylize the grid with alternating row colors and other formatting.

parseResponse = function (data) {
    var employee = data.vEmployee;

    var employeeList = "";

    employeeList = employeeList.concat("<div class='header'>" +
        "<span class='empId'>Id</span>" +
        "<span class='name'>Employee Name</span>" +
        "<span class='jobTitle'>Job Title</span>" +
        "</div>");

    $.each(employee, function(index, employee) {
        employeeList = employeeList.concat("<div class='employee'>" +
            "<span class='empId'>" +
            employee.businessEntityID +
            "</span><span class='name'>" +
            employee.firstName + " " + employee.lastName +
            "</span><span class='jobTitle'>" +
            employee.jobTitle +
            "</span></div>");
    });

    $("#employeeList").empty();
    $("#employeeList").append(employeeList);
    colorRows();
};

Here are the complete JavaScript file contents:

// Immediate function
(function () {
    "use strict";
    
    var restfulWebServiceURI, getEmployees, ajaxCallFailed, colorRows, parseResponse;
    
    restfulWebServiceURI = "http://[your-service's-server-name]:[your-service's-port]/JerseyRESTfulService/webresources/entities.vemployee/0/10/jsonp";
    
    // Execute after the DOM is fully loaded
    $(document).ready(function () {
        getEmployees();
    });

    // Retrieve Employee List as JSONP
    getEmployees = function () {
        $.ajax({
            cache: true,
            url: restfulWebServiceURI,
            data: "{}",
            type: "GET",
            jsonpCallback: "parseResponse",
            contentType: "application/javascript",
            dataType: "jsonp",
            error: ajaxCallFailed,
            failure: ajaxCallFailed,
            success: parseResponse
        });          
    };
    
    // Called if ajax call fails
    ajaxCallFailed = function (jqXHR, textStatus) { 
        console.log("Error: " + textStatus);
        console.log(jqXHR);
        $("#employeeList").empty();
        $("#employeeList").append("Error: " + textStatus);
    };
            
    // Called if ajax call is successful
    parseResponse = function (data) {
        var employee = data.vEmployee;   
        
        var employeeList = "";
        
        employeeList = employeeList.concat("<div class='header'>" +
            "<span class='empId'>Id</span>" + 
            "<span class='name'>Employee Name</span>" + 
            "<span class='jobTitle'>Job Title</span>" + 
            "</div>"); 
        
        $.each(employee, function(index, employee) {
            employeeList = employeeList.concat("<div class='employee'>" +
                "<span class='empId'>" +
                employee.businessEntityID + 
                "</span><span class='name'>" +
                employee.firstName + " " + employee.lastName +
                "</span><span class='jobTitle'>" +
                employee.jobTitle + 
                "</span></div>");
        });
        
        $("#employeeList").empty();
        $("#employeeList").append(employeeList);
        colorRows();
    };
    
    // Styles the Employee List
    colorRows = function(){
        $("#employeeList .employee:odd").addClass("odd");
        $("#employeeList .employee:even").addClass("even");
        $("#employeeList .employee:last").addClass("last");
    };
} ());

Deployment to GlassFish
To deploy the RESTful web service client to GlassFish, run the following Apache Ant target. The target first calls the clean and dist targets to build the .war file, Then, the target calls GlassFish’s asadmin deploy command. It specifies the remote GlassFish server, admin port, admin user, admin password (in the password file), secure or insecure connection, the name of the container, and the name of the .war file to be deployed. Note that the server is different for the client than it was for the service in part 1 of the series.

<target name="glassfish-deploy-remote" depends="clean, dist"
        description="Build distribution (WAR) and deploy to GlassFish">
    <exec failonerror="true" executable="cmd" description="asadmin deploy">
        <arg value="/c" />
        <arg value="asadmin --host=[your-client's-glassfish-server-name] 
            --port=[your-client's-glassfish-domain-admin-port]
            --user=admin --passwordfile=pwdfile --secure=false
            deploy --force=true --name=JerseyRESTfulClient
            --contextroot=/JerseyRESTfulClient dist\JerseyRESTfulClient.war" />
    </exec>
</target>

Although the client application does not require any Java code, JSP pages, or Servlets, I chose to use NetBeans’ Web Application project template to create the client and chose to create a .war file to make deployment to GlassFish easier. You could just install the four client files (jQuery, HTML, CSS, and JavaScript) on Apache, IIS, or any other web server as a simple HTML site.

08c - Deploy RESTful Web Service Client to Remote GlassFish Server

Deploy Client Application to Remote GlassFish Domain Using Ant Target

Once the application is deployed to GlassFish, you should see the ‘JerseyRESTfulClient’ listed under the Applications tab within the remote server domain.

08d - Deploy RESTful Web Service Client to Remote GlassFish Server

Client Application Deployed to Remote GlassFish Domain

We will call the client application from our browser. The client application, whose files are downloaded and are now local on our machine, will in turn will call the service. The URL to call the client is: http://%5Byour-client's-glassfish-server-name%5D:%5Byour-client's-glassfish-domain-port%5D/JerseyRESTfulClient/employees.html (see call-out 1, in the screen-grab, below).

Using Firefox with Firebug, we can observe a few important items once the results are displayed (see the screen-grab, below):

  1. The four client files (jQuery, HTML, CSS, and JavaScript) are cached after the first time the client URL loads, but the jQuery Ajax service call is never cached (call-out 2);
  2. All the client application files are loaded from one domain, while the service is called from another domain (call-out 3);
  3. The ‘parseRequest’ callback function in the JSONP response payload, wraps the JSON data (call-out 4).
Employee List Displayed by Client Application in Firefox (showing Raw Response in Firebug)

Employee List Displayed by Client Application in Firefox

The JSONP returned by the service to the client (abridged for length):

parseResponse({"vEmployee":[{"addressLine1":"4350 Minute Dr.","businessEntityID":"1","city":"Newport Hills","countryRegionName":"United States","emailAddress":"ken0@adventure-works.com","emailPromotion":"0","firstName":"Ken","jobTitle":"Chief Executive Officer","lastName":"Sánchez","middleName":"J","phoneNumber":"697-555-0142","phoneNumberType":"Cell","postalCode":"98006","stateProvinceName":"Washington"},{"addressLine1":"7559 Worth Ct.","businessEntityID":"2","city":"Renton","countryRegionName":"United States","emailAddress":"terri0@adventure-works.com","emailPromotion":"1","firstName":"Terri","jobTitle":"Vice President of Engineering","lastName":"Duffy","middleName":"Lee","phoneNumber":"819-555-0175","phoneNumberType":"Work","postalCode":"98055","stateProvinceName":"Washington"},{...}]})

The JSON passed to the parseResponse(data) function’s data argument (abridged for length):

{"vEmployee":[{"addressLine1":"4350 Minute Dr.","businessEntityID":"1","city":"Newport Hills","countryRegionName":"United States","emailAddress":"ken0@adventure-works.com","emailPromotion":"0","firstName":"Ken","jobTitle":"Chief Executive Officer","lastName":"Sánchez","middleName":"J","phoneNumber":"697-555-0142","phoneNumberType":"Cell","postalCode":"98006","stateProvinceName":"Washington"},{"addressLine1":"7559 Worth Ct.","businessEntityID":"2","city":"Renton","countryRegionName":"United States","emailAddress":"terri0@adventure-works.com","emailPromotion":"1","firstName":"Terri","jobTitle":"Vice President of Engineering","lastName":"Duffy","middleName":"Lee","phoneNumber":"819-555-0175","phoneNumberType":"Work","postalCode":"98055","stateProvinceName":"Washington"},{...}]}

Firebug also allows us to view the JSON in a more structured and object-oriented view:

Employee List Displayed by Client Application in Firefox (showing JSON in Firebug)

Firefox Showing formatted JSON Data Using Firebug

Conclusion

We have successfully built and deployed a RESTful web service to one GlassFish domain, capable of returning JSONP. We have also built and deployed an HTML client to another GlassFish domain, capable of calling the service and displaying the JSONP. The service and client in this example have very minimal functionality. However, the service can easily be scaled to include multiple entities and RESTful services. The client’s capability can be expanded to perform a full array of CRUD operations on the database, through the RESTful web service(s).

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

4 Comments

Returning JSONP from Java EE RESTful Web Services Using jQuery, Jersey, and GlassFish – Part 1 of 2

Create a Jersey-specific Java EE RESTful web service and an HTML-based client to call the service and display JSONP. Test and deploy the service and the client to different remote instances of GlassFish.

Background

According to Wikipedia, JSONP (JSON with Padding) is a complement to the base JSON (JavaScript Object Notation) data format. It provides a method to request data from a server in a different domain, something prohibited by typical web browsers because of the same origin policy.

Jersey is the open source, production quality, JAX-RS (JSR 311) Reference Implementation for building RESTful Web services on the Java platform according to jersey.java.net. Jersey is a core component of GlassFish.

What do these two things have in common? One of the key features of Jersey is its ability to return JSONP.  According to Oracle’s documentation, using Jersey, if an instance is returned by a resource method and the most acceptable media type is one of application/javascript, application/x-javascript, text/ecmascript, application/ecmascript or text/jscript then the object that is contained by the instance is serialized as JSON (if supported, using the application/json media type) and the result is wrapped around a JavaScript callback function, whose name by default is “callback”. Otherwise, the object is serialized directly according to the most acceptable media type. This means that an instance can be used to produce the media types application/json, application/xml in addition to application.

There is plenty of opinions on the Internet about the pros and cons of using JSONP over other alternatives to get around the same origin policy. Regardless of the cons, JSONP, with the help of Jersey, provides the ability to call a RESTful web service from a remote server, without a lot of additional coding or security considerations.

Objectives

Similar to GlassFish, Jersey is also tightly integrated into NetBeans. NetBeans provides the option to use Jersey-specific features when creating RESTful web services. According to documentation, NetBeans will generate a web.xml deployment descriptor and to register the RESTful services in that deployment descriptor instead of generating an application configuration class. In this post, we will create Jersey-specific RESTful web service from a database using NetBeans. The service will return JSONP in addition to JSON and XML.

In addition to creating the RESTful web service, in part 2 of this series, we will create a simple web client to display the JSONP returned by the service. There are many options available for creating clients, depending on your development platform and project requirements. We will keep it simple – no complex compiled code, just simple JavaScript using Ajax and jQuery, the well-known JavaScript library.

We will host the RESTful web service on one GlassFish domain, running on a Windows box, along with the SQL Server database. We will host the client on a second GlassFish domain, running on an Ubuntu Linux VM using Oracle’s VM VirtualBox. This is a different machine than the service was installed on. When opened by the end-user in a web browser, the client files, including the JavaScript file that calls the service, are downloaded to the end-users machine. This will simulate a typical cross-domain situation where a client application needs to consume RESTful web services from a remote source. This is not allowed by the same origin policy, but overcome by returning JSONP to the client, which wraps the JSON payload in a function call.

Demonstration

Here are the high-level steps we will walk-through in this two-part series of posts:

  1. In a new RESTful web service web application project,
    1. Create an entity class from the Adventure Works database using EclipseLink;
    2. Create a Jersey-specific RESTful web service using the entity class using Jersey and JAXB;
    3. Add a new method to service, which leverages Jersey and Jackson’s abilities to return JSONP;
    4. Deploy the RESTful web service to a remote instance of GlassFish, using Apache Ant;
    5. Test the RESTful web service using cURL.
  2. In a new RESTful web service client web application project,
    1. Create a simple HTML client using jQuery and Ajax to call the RESTful web service;
    2. Add jQuery functionality to parse and display the JSONP returned by the service;
    3. Deploy the client to a separate remote instance of GlassFish using Apache Ant;
    4. Test the client’s ability to call the service across domains and display JSONP.

To demonstrate the example in this post, I have the follow applications installed, configured, and running in my development environment:

For the database we will use the Microsoft SQL Server 2008 R2 Adventure Works database I’ve used in the past few posts. For more on the Adventure Works database, see my post, ‘Convert VS 2010 Database Project to SSDT and Automate Publishing with Jenkins – Part 1/3’. Not using SQL Server? Once you’ve created your data source, most remaining steps in this post are independent of the database you choose, be it MySQL, Oracle, Microsoft SQL Server, Derby, etc.

For a full explanation of the use of Jersey and Jackson JSON Processor, for non-Maven developers, as this post demonstrates, see this link to the Jersey 1.8 User Guide. It discusses several relevant topics to this article: Java Architecture for XML Binding (JAXB), JSON serialization, and natural JSON notation (or, convention). See this link from the User Guide, for more on natural JSON notation. Note this example does not implement natural JSON notation functionality.

Creating the RESTful Web Service

New NetBeans Web Application Project
Create a new Java Web Application project in NetBeans. Name the project. I named mine ‘JerseyRESTfulService’. The choice of GlassFish server and domain where the project will be deployed is unimportant. We will use Apache Ant to deploy the service when we finish the building the project. By default, I chose my local instance of GlassFish, for testing purposes.

01a - Create a New Web ApplicationProject in NetBeans

Create a New Web Application Project in NetBeans

01b - Create a New Web ApplicationProject in NetBeans

Name and Location of New Web Application Project

01c - Create a New Web Application Project in NetBeans

Server and Settings of New Web Application Project

01d - Create a New Web Application Project in NetBeans

Optional Frameworks to Include in New Web Application Project

01e - Create a New Web Application Project in NetBeans

View of New Web Application Project in NetBeans

Create Entity Class from Database
Right-click on the project again and select ‘New’ -> ‘Other…’. From the list of Categories, select ‘Persistence’. From the list of Persistence choices, choose ‘Entity Classes from Database’. Click Next.

02a - Create Entity Classes from the Database

Create Entity Classes from the Database

Before we can choose which database table we want from the Adventure Works database to create entity class, we must create a connection to the database – a SQL Server Data Source. Click on the Data Source drop down and select ‘New Data Source…’. Give a Java Naming and Directory Interface (JNDI) name for the data source. I called mine ‘AdventureWorks_HumanResources’. Click on the ‘Database Connection’ drop down menu, select ‘New Database Connection…’.

02b - Create Entity Classes from the Database

Select Database Tables for Entity Classes (No Data Source Exists Yet)

02c - Create Entity Classes from the Database

Create and Name a New Data Source

This starts the ‘New Connection Wizard’. The first screen, ‘Locate Driver’, is where we point NetBeans to the Microsoft JDBC Driver 4.0 for SQL Server Driver. Locate the sqljdbc4.jar file.

02d - Create Entity Classes from the Database

Add the Microsoft JDBC Driver 4.0 for SQL Server Jar File

On the next screen, ‘Customize the Connection’, input the required SQL Server information. The host is the machine your instance of SQL Server is installed on, such as ‘localhost’. The instance is the name of the SQL Server instance in which the Adventure Works database is installed, such as ‘Development’. Once you complete the form, click ‘Test Connection’. If it doesn’t succeed, check your settings, again. Keep in mind, ‘localhost’ will only work if your SQL Server instance is local to your GlassFish server instance where the service will be deployed. If it is on a separate server, make sure to use that server’s IP address or domain name.

02e - Create Entity Classes from the Database

Configure New Database Connection

As I mentioned in an earlier post, the SQL Server Data Source forces you to select a single database schema. On the ‘Choose Database Schema’ screen, select the ‘HumanResources’ schema. The database tables you will be able to reference from you entity classes are limited to just this schema, when using this data source. To reference other schemas, you will need to create more data sources.

02f - Create Entity Classes from the Database

Select Human Resources Database Schema

Back in the ‘New Entity Classes from Database’ window, you will now have the ‘AdventureWorks’ data source selected as the Data Source. After a few seconds of processing, all ‘Available Tables’ within the ‘HumanResources’ schema are displayed. Choose the ‘vEmployee(view)’. A database view is a virtual database table. Note the Entity ID message. We will need to do an extra step later on, to use the entity class built from the database view.

02g - Create Entity Classes from the Database

Choice of Database Tables and Views from Human Resources Schema

02h - Create Entity Classes from the Database

Choose the ‘vEmployee(view)’ Database View

On the next screen, ‘Entity Classes’, in the ‘New Entity Classes from Database’ window, select or create the Package to place the individual entity classes into. I chose to call mine ‘entities’.

02i-create-entity-classes-from-the-database

Select/Create the Package Location for the Entity Class

On the next screen, ‘Mapping Options’, choose ‘Fully Qualified Database Table Names’. Without this option selected, I have had problems trying to make the RESTful web services function properly. This is also the reason I chose to create the entity classes first, and then create the RESTful web services, separately. NetBeans has an option that combines these two tasks into a single step, by choosing ‘RESTful Web Services from Database’. However, the ‘Fully Qualified Database Table Names’ option is not available on the equivalent screen, using that process (at least in my version of NetBeans 7.2). I prefer the two-step approach.

02j - Create Entity Classes from the Database

Select the ‘Fully Qualified Database Table Names’ Mapping Options

Click finished. You have successfully created the SQL Server data source and entity classes.

02k - Create Entity Classes from the Database

Project View of New VEmployee Entity Class

If you recall, I mentioned a problem with the entity class we created from the database view. To avoid an error when you build and deploy your project to GlassFish, we need to make a small change to the VEmployee.java entity class. Entity classes need a unique identifier, a primary key (or, Entity ID) identified. Since this entity class was built from database view, as opposed to database table, it lacks a primary key. To fix, annotate the businessEntityID field with @Id. This indicates that businessEntityID is the primary key (Entity ID) for this class. The field, businessEntityID, must contain unique values, for this to work properly. NetBeans will make the suggested correction for you, if you allow it.

02l - Create Entity Classes from the Database

Fix the Entity Class’s Missing Primary Key (Entity ID)

02m - Create Entity Classes from the Database

Fix the Entity Class’s Missing Primary Key (Entity ID)

02n - Create Entity Classes from the Database

Entity Class With Primary Key (Entity ID)

The JPA Persistence Unit is found in the ‘persistence.xml’ file in the ‘Configuration Files’ folder. This file describes the Persistence Unit (PU). The PU serves to register the project’s persistable entity class, which are referred to by JPA as ‘managed classes’.

02o - Create Entity Classes from the Database

View of New JPA Persistence Unit

The data source we created, which will be deployed to GlassFish, is referred to as a JDBC Resource and JDBC Connection Pool. This information is stored in the ‘glassfish-resources.xml’.

02p - Create Entity Classes from the Database

View of New JDBC Resource and JDBC Connection Pool

Create RESTful Web Service
Now that have a SQL Server Data Source and our entity class, we will create the RESTful web service. Right-click on the project and select ‘New’ -> ‘Other…’ -> ‘Persistence’ -> ‘RESTful Web Services from ‘Entity Classes’. You will see the entity class we just created, from which to choose. Add the entity class.

04a - Create RESTful Web Services from Entity Classes

Create RESTful Web Services from Entity Classes

04b - Create RESTful Web Services from Entity Classes

Choose from List of Available Entity Classes

04c - Create RESTful Web Services from Entity Classes

Choose the VEmployee Entity Class

On the next screen, select or create the Resource Package to store the service class in; I called mine ‘service’. Select the ‘Use Jersey Specific Features’ option.

04d - Create RESTful Web Services from Entity Classes

Select/Create the Service’s Package Location and Select the Option to ‘Use Jersey Specific Features’

That’s it. You now have a Jersey-specific RESTful web service and the corresponding Enterprise Bean and Façade service class in the project.

04e - Create RESTful Web Services from Entity Classes

Project View of New RESTful Web Service and Associated Files

NetBeans provides an easy way to test the RESTful web services, locally. Right-click on the ‘RESTful Web Services’ project folder within the main project, and select ‘Test RESTful Web Services’. Select the first option, ‘Locally Generated Test Client’, in the ‘Configure REST Test Client’ pop-up window. NetBeans will use the locally configured GlassFish instance to deploy and test the service.

NetBeans opens a web browser window and display the RESTful URIs (Universal Resource Identifier) for the service in a tree structure. There is a parent URI, ‘entities.vemployee’. Selecting this URI will return all employees from the vEmployee database view. The ‘entities.vemployee’ URI has additional children URIs grouped under it, including ‘{id}’, ‘count’, and ‘{from/to}’, each mapped to separate methods in the service class.

Click on the ‘{id}’ URI. Choose the HTTP ‘GET()’ request method from the drop-down, enter ‘1’  for ‘id’, and click the ‘Test’ button. The service should return a status of ‘200 (OK)’, along with xml output containing information on all the Adventure Works employees. Change the MIME type to ‘application/json’. This should return the same result, formatted as JSON. Congratulation, the RESTful web services have just returned data to your browser from the SQL Server Adventure Works database, using the entity classes and data source you created.

Are they URIs or URLs? I found this excellent post that does a very good job explaining the difference between the URL (how to get there) and the URI (the resource), which is part of the URL.

04f - Create RESTful Web Services from Entity Classes

Test the RESTful Web Service Locally in NetBeans (XML  Response Shown)

04g - Create RESTful Web Services from Entity Classes

Test the RESTful Web Service Locally in NetBeans (JSON Response Shown)

Using Jersey for JSONP
GlassFish comes with the jersey-core.jar installed. In order to deliver JSONP, we also need to import and use com.sun.jersey.api.json.JSONWithPadding package from jersey-json.jar. I downloaded and installed version 1.8. You can download the jar from several locations. I chose to download it from www.java2.com. You can also download from the download.java.net Maven2 repository.

03b - Installing Jersey JSON

Add the Jersey JSON Jar File to the Project

The com.sun.jersey.api.json.JSONWithPadding package has dependencies two Jackson JSON Processor jars. You will also need to download the necessary Jackson JSON Processor jars. They are the jackson-core-asl-1.9.8.jar and jackson-mapper-asl-1.9.8.jar. At the time of this post, I downloaded the latest 1.9.8 versions from the grepcode.com Maven2 repository.

03e - Installing Jackson JSON Processor

Add the two Jackson JSON Processor Jar Files to the Project

Create New JSONP Method

NetBeans creates several default methods in the VEmployeeFacadeREST class. One of those is the findRange method. The method accepts two integer parameters, from and to. The parameter values are extracted from the URL (JAX-RS @Path annotation). The parameters are called path parameters (@PathParam). The method returns a List of VEmployee objects (List<VEmployee>). The findRange method can return two MIME types, XML and JSON (@Produces). The List<VEmployee> is serialized in either format and returned to the caller.

@GET
@Path("{from}/{to}")
@Produces({"application/xml", "application/json"})
public List<VEmployee> findRange(@PathParam("from") Integer from, @PathParam("to") Integer to) {
    return super.findRange(new int[]{from, to});
}

Neither XML nor JSON will do, we want to return JSONP. Well, using the JSONWithPadding class we can do just that. We will copy and re-write the findRange method to return JSONP. The new findRangeJsonP method looks similar to the findRange. However instead of returning a List<VEmployee>, the new method returns an instance of the JSONWithPadding class. Since List<E> extends Collection<E>, we make the same call as the first method, then cast the List<VEmployee> to Collection<VEmployee>. We then wrap the Collection in a GenericEntity<T>, which extends Object. The GenericEntity<T> represents a response entity of a generic type T. This is used to instantiate a new instance of the JSONWithPadding class, using the JSONWithPadding(Object jsonSource, String callbackName) constructor. The JSONWithPadding instance, which contains serialized JSON wrapped with the callback function, is returned to the client.

@GET
@Path("{from}/{to}/jsonp")
@Produces({"application/javascript"})
public JSONWithPadding findRangeJsonP(@PathParam("from") Integer from,
        @PathParam("to") Integer to, @QueryParam("callback") String callback) {
    Collection<VEmployee> employees = super.findRange(new int[]{from, to});
    return new JSONWithPadding(new GenericEntity<Collection<VEmployee>>(employees) {
    }, callback);
}

We have added a two new parts to the ‘from/to’ URL. First, we added ‘/jsonp’ to the end to signify the new findRangeJsonP method is to be called, instead of the original findRange method. Secondly, we added a new ‘callback’ query parameter (@QueryParam). The ‘callback’ parameter will pass in the name of the callback function, which will then be returned with the JSONP payload. The new URL format is as follows:

http://%5Byour-service's-glassfish-server-name%5D:%5Byour-service's-glassfish-domain-port%5D/JerseyRESTfulService/webresources/entities.vemployee/{from}/{to}/jsonp?callback={callback}

06a - Adding Jersey JSONP Method

Add the Following Jersey JSONP Method to the RESTful Web Service Class

06b - Adding Jersey JSONP Method

Adding the Method Requires Importing the ‘JSONWithPadding’ Library

Deployment to GlassFish
To deploy the RESTful web service to GlassFish, run the following Apache Ant target. The target first calls the clean and dist targets to build the .war file, Then, the target calls GlassFish’s asadmin deploy command. It specifies the remote GlassFish server, admin port, admin user, admin password (in the password file), secure or insecure connection, the name of the container, and the name of the .war file to be deployed. Note that the server is different for the service than it will be for the client in part 2 of the series.

<target name="glassfish-deploy-remote" depends="clean, dist"
        description="Build distribution (WAR) and deploy to GlassFish">
    <exec failonerror="true" executable="cmd" description="asadmin deploy">
        <arg value="/c" />
        <arg value="asadmin --host=[your-service's-glassfish-server-name] 
            --port=[your-service's-glassfish-domain-admin-port]
            --user=admin --passwordfile=pwdfile --secure=false
            deploy --force=true --name=JerseyRESTfulService
            --contextroot=/JerseyRESTfulServicedist\JerseyRESTfulService.war" />
    </exec>
</target>
Deploy RESTful Web Service to Remote GlassFish Server

Deploy RESTful Web Service to Remote GlassFish Server Using Apache Ant Target

In GlassFish, you should see the several new elements: 1) JerseyRESTfulService Application, 2) AdventureWorks_HumanResources JDBC Resource, 3) microsoft_sql_AdventureWorks_aw_devPool JDBC Connection Pool. These are the elements that were deployed by Ant. Also note, 4) the RESTful web service class, VEmployeeFacadeREST, is an EJB StatelessSessionBean.

08b - Deploy RESTful Web Service to Remote GlassFish Server

RESTful Web Service Deployed to Remote GlassFish Server

Test the Service with cURL
What is the easiest way to test our RESTful web service without a client? Answer, cURL, the free open-source URL tool. According to the website, “curl is a command line tool for transferring data with URL syntax, supporting DICT, FILE, FTP, FTPS, Gopher, HTTP, HTTPS, IMAP, IMAPS, LDAP, LDAPS, POP3, POP3S, RTMP, RTSP, SCP, SFTP, SMTP, SMTPS, Telnet and TFTP. curl supports SSL certificates, HTTP POST, HTTP PUT, FTP uploading, HTTP form based upload, proxies, cookies, user+password authentication (Basic, Digest, NTLM, Negotiate, kerberos…), file transfer resume, proxy tunneling and a busload of other useful tricks.

To use cURL, download and unzip the cURL package to your system’s Programs directory. Add the cURL directory path to your system’s PATH environmental variable. Better yet, create a CURL_HOME environmental variable and add that reference to the PATH variable, as I did. Adding the the cURL directory path to PATH allows you to call the cURL.exe application, directly from the command line.

07b - Test New Method with cURL

Add the cURL Directory Path to the ‘PATH’ Environmental Variable

With cURL installed, we can call the RESTful web service from the command line. To test the service’s new method, call it with the following cURL command:

curl -i -H "Accept: application/x-javascript" -X GET http://%5Byour-service's-glassfish-server-name%5D:%5Byour-service's-glassfish-domain-port%5D/JerseyRESTfulService/webresources/entities.vemployee/1/3/jsonp?callback=parseResponse

07c - Test New Method with cURL

Using cURL to Call RESTful Web Service and Return JSONP

Using cURL is great for testing the RESTful web service. However, the command line results are hard to read. I recommend copy the cURL results into NotePad++ with the JSON Viewer Plugin. Like the NotePad++ XML plugin, the JSON plugin will format the JSONP and provide a tree view of the data structure.

05c - Notepad++ JSON Viewer

Notepad++ Displaying JSONP Using the JSON Viewer Plugin

Conclusion

Congratulations! You have created and deployed a RESTful web service with a method capable of returning JSONP. In part 2 of this series, we will create a client to call the RESTful web service and display the JSONP response payload. There are many options available for creating clients, depending on your development platform and project requirements. We will keep it simple – no complex, compiled code, just simple JavaScript using Ajax and jQuery, the well-known JavaScript library.

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

21 Comments

Automated Deployment to GlassFish Using Jenkins CI Server and Apache Ant

Use Jenkins and Apace Ant to compile, assemble, test, and deploy a RESTful web service to GlassFish. All source code for this post is available on GitHub. Note GitHub repo reflects updates to project on 10/31/2013.

Jenkins, formally Hudson, is the industry-standard, java-based open-source continuous integration server. According to their website, Jenkins provides over 400 plug-ins to support building and testing almost any type of project. According to Apache, Ant is a Java library and command-line tool whose mission is to drive processes described in build files as targets. This post demonstrates the use of Jenkins and Apache Ant to compile, assemble, unit test, and deploy a Java EE 6 RESTful web service to Oracle’s GlassFish open-source application server.

For the sake of brevity, I have chosen to use the HelloWorld RESTful web service example included with NetBeans. I will use NetBeans to create the project, write the unit tests, and produce an Ant target in the build file. I will not delve deeply into the inner workings of the web service itself since the focus of this post is automation.

System Configuration

This post assumes that you have current versions of NetBeans, JUnit, Jenkins, GlassFish, Ant and Java installed and configured on your Microsoft Windows-based computer. A full installation of NetBeans comes with JUnit, Ant, and GlassFish. At the time of the original post, I was using NetBeans 7.1.2, GlassFish 3.1.2, Jenkins 1.4.6.3, Ant 1.8.3, and JDK 1.7.0_02.

For simplicity, I am using a single development machine for this demonstration, on which all applications are installed. In a true production environment you would most likely have a distributed configuration with GlassFish installed on an application server, Jenkins on a build server, and NetBeans on your development machine. Also, for this post, I am also not using a source-code management (SCM) system, also called a version control system (VCS), such as Subversion or Mercurial, to house the project’s source code. Again, in a production environment, your source-code would be placed on SCM/VCS server.

Both GlassFish and Jenkins are configured by default to run on server port 8080. Since I have both applications installed on the same machine, I have changed Jenkins’ default port to another unused port, 9090. Changing Jenkins’ port is easy to do. If you don’t know how, consult this post or similar.

NetBeans

First, create a new project in NetBeans, by selecting the New Project -> Samples -> Java Web Services, REST: Hello World (Java EE 6), as shown below. Rename the project to HelloGlassFish. When complete, the project, in the Projects tab, should look like the screen-grab, below.

New Project View in NetBeans

New Project View in NetBeans

JUnit

Next create a unit-test using JUnit, the open-source unit-testing framework. Jenkins will eventually run this test each time the project is built. Creating unit-tests is easy in NetBeans. Select the ‘NameStorageBean.java’ class object, right-click, and select Tools -> Create JUnit Tests… This will create a default ‘NameStorageBeanTest.java’ class object in a new, ‘Test Packages’ directory. Overwrite NameStorageBeanTest.java contents with the follows code. This will create a single unit test we can use to demonstrate JUnit’s integration with Jenkins. You will also notice new test objects in the Project tab.

Build the project and run the ‘testGetName’ unit-test to make sure it works correctly and the test passes.

Apache Ant

Next, change to the Files tab. Open the ‘build.xml’ file, as shown below. Also, for later reference, note the contents of the ‘HelloGlassFish.war’ and the location of the ‘pwdfile_domain1’ password file.

New Project File View in NetBeans

Place the following Ant target, entitled ‘jenkins-glassfish-deploy’, into the build.xml file, between the end of the commented section and the closing <project/> tag, as shown below.

This is the Ant target Jenkins will use to build, test, and deploy the project. The primary ‘jenkins-glassfish-deploy’ target calls three Ant targets using the antcall element. They include clean, default, and test. Each of these Ant targets has dependencies on other Ant targets, which in turn depend on yet other targets – a dependency tree. For example, default depends on dist and javadoc. The test target depends on other targets to build the .war file. If you are not using test to execute unit tests, you can call the test target to build the .war file.

The last part of the ‘jenkins-glassfish-deploy’ target is a little different. It’s an exec (execute) element, which calls asadmin to deploy the project to GlassFish with a series of GlassFish domain-specific parameters. These parameters include the GlassFish domain’s URL and port, the domain’s administrative user and password account info (found in a password file), the location of the .war file to deploy, and destination of the .war within GlassFish. Calling asadmin deploy gives you fine control over the details of how the project is deployed to GlassFish.

The password file, referenced in the target is a simple text file, which stores the password for the user account used to execute the asadmin deploy call. The contents of the file look like:

AS_ADMIN_PASSWORD=Your_Password_Here

This target could be simplified with the depends attribute. Instead of the three antcall elements, you could simply add depends="clean, default, test" to the target element:

According to Oracle, the asadmin utility is used to perform any administrative tasks for GlassFish from the command line. You can use this asadmin utility in place of using the GlassFish Administrator interface. I am able to call asadmin directly because I have added the path to asadmin.bat to the Windows’ environmental variable, PATH. The asadmin.bat file is in the GlassFish bin directory, similar to ‘C:\Program Files\glassfish-3.1.2\glassfish\bin\’.

Jenkins

Switching to Jenkins, create a new Job named HelloGlassFish. In the HelloGlassFish configuration, we need to add two Build steps and one post-build Action. For the first Build step, since we are not using SCM, we will copy the files from the project in the NetBeans workspace to the Jenkins workspace. To do this, add an ‘Execute Windows batch command’ action with code similar to code snippet below, but substituting your own project’s file path. Note, you can substitute the %WORKSPACE% environmental variable for the xcopy destination (see call-out 1 in the below screen-grab). This variable represents the absolute path of the directory assigned to the build as a workspace, according to Jenkins. Jenkins offers many useful variables, accessible to Windows batch scripts.

xcopy "C:\Users\gstaffor\Documents\NetBeansProjects\HelloGlassFish\HelloGlassFish" "%WORKSPACE%" /s /e /h /y

Next, add the second Build task, ‘Invoke Ant’. I assume you already have Ant configured for Jenkins. In the ‘Target’s text box, enter the Ant target we created in NetBeans build.xml file, entitled ‘jenkins-glassfish-deploy’ (see call-out 2 in the below screen-grab). If the name of your build file is anything other than the default ‘build.xml’, you will need to enter the Ant file name.

Lastly, add the single Post-build Action, ‘Publish JUnit test result report’. This will show us a visual representation of the results of our project’s unit-tests. Input the relative path to your reports from the workspace root. The path should be similar to call-out 3 in the screen-grab, below.

When complete, the HelloGlassFish Job’s configuration should resemble the screen-grab, below.

Jenkins HelloGlassFish Project Configuration

Jenkins HelloGlassFish Project Configuration

Save and close the configuration. Build the HelloGlassFish Job in Jenkins and make sure it succeeds with error.

GlassFish

Open GlassFish’s browser-based Domain Admin Console, usually on server port 4848, by default. On the left-hand side of the main window, under ‘Common Tasks’, tip the ‘Applications’ node. You should see the HelloGlassFish application is now deployed to GlassFish. You don’t have to do anything in GlassFish, Jenkins and Ant has taken care of everything.

GlassFish’s browser-based Domain Admin Console

GlassFish’s browser-based Domain Admin Console

To view the HelloGlassFish application, open a new browser window and direct it to ‘http://localhost:8080/HelloGlassFish/resources/helloWorld’. You should see a ‘Hello World!’ message displayed in your browser’s window. Note, since we only changed the name of the default HelloWorld NetBeans sample project to HelloGlassFish, not the web service’s URI, ‘helloWorld’ is still a required part of the URL path.

Redeploying the Project

Lastly, let’s demonstrate how easily changes to our project can be re-complied, re-tested, and re-deployed to GlassFish by Jenkins and Ant. Return to the HelloGlassFish project in NetBeans and open the NameStorageBean.java class. Change the value of the ‘name’ field from ‘World’ to ‘GlassFish’ and save the changes. Don’t build or do anything else in NetBeans. Instead, return to Jenkins and build the HelloGlassFish Job, again.

Change the NameStorageBean name Field

Change the NameStorageBean name Field

When the Job has finished building, re-direct your browser back to ‘http://localhost:8080/HelloGlassFish/resources/helloWorld’. You should now see a ‘Hello GlassFish!’ message displayed in your browser’s window instead of the earlier message, ‘Hello World!’. Jenkins has called the Ant target, which in turn re-compiled, re-tested, and re-deployed the modified HelloGlassFish application to GlassFish.

HelloGlassFish RESTful Web Service Demo

HelloGlassFish RESTful Web Service Demo

Helpful Links

, , , , , , , , , , , , , , , , ,

5 Comments