Posts Tagged Apache Spark

Exploring Popular Open-source Stream Processing Technologies: Part 2 of 2

A brief demonstration of Apache Spark Structured Streaming, Apache Kafka Streams, Apache Flink, and Apache Pinot with Apache Superset

Introduction

According to TechTarget, “Stream processing is a data management technique that involves ingesting a continuous data stream to quickly analyze, filter, transform or enhance the data in real-time. Once processed, the data is passed off to an application, data store, or another stream processing engine.Confluent, a fully-managed Apache Kafka market leader, defines stream processing as “a software paradigm that ingests, processes, and manages continuous streams of data while they’re still in motion.

This two-part post series and forthcoming video explore four popular open-source software (OSS) stream processing projects: Apache Spark Structured Streaming, Apache Kafka Streams, Apache Flink, and Apache Pinot.

This post uses the open-source projects, making it easier to follow along with the demonstration and keeping costs to a minimum. However, you could easily substitute the open-source projects for your preferred SaaS, CSP, or COSS service offerings.

Part Two

We will continue our exploration in part two of this two-part post, covering Apache Flink and Apache Pinot. In addition, we will incorporate Apache Superset into the demonstration to visualize the real-time results of our stream processing pipelines as a dashboard.

Demonstration #3: Apache Flink

In the third demonstration of four, we will examine Apache Flink. For this part of the post, we will also use the third of the three GitHub repository projects, flink-kafka-demo. The project contains a Flink application written in Java, which performs stream processing, incremental aggregation, and multi-stream joins.

High-level workflow for Apache Flink demonstration

New Streaming Stack

To get started, we need to replace the first streaming Docker Swarm stack, deployed in part one, with the second streaming Docker Swarm stack. The second stack contains Apache Kafka, Apache Zookeeper, Apache Flink, Apache Pinot, Apache Superset, UI for Apache Kafka, and Project Jupyter (JupyterLab).

https://programmaticponderings.wordpress.com/media/601efca17604c3a467a4200e93d7d3ff

The stack will take a few minutes to deploy fully. When complete, there should be ten containers running in the stack.

Viewing the Docker streaming stack’s ten containers

Flink Application

The Flink application has two entry classes. The first class, RunningTotals, performs an identical aggregation function as the previous KStreams demo.

public static void flinkKafkaPipeline(Properties prop) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// assumes PLAINTEXT authentication
KafkaSource<Purchase> source = KafkaSource.<Purchase>builder()
.setBootstrapServers(prop.getProperty("BOOTSTRAP_SERVERS"))
.setTopics(prop.getProperty("PURCHASES_TOPIC"))
.setGroupId("flink_reduce_demo")
.setStartingOffsets(OffsetsInitializer.earliest())
.setValueOnlyDeserializer(new PurchaseDeserializationSchema())
.build();
DataStream<Purchase> purchases = env.fromSource(source, WatermarkStrategy.noWatermarks(), "Kafka Source");
DataStream<RunningTotal> runningTotals = purchases
.flatMap((FlatMapFunction<Purchase, RunningTotal>) (purchase, out) -> out.collect(
new RunningTotal(
purchase.getTransactionTime(),
purchase.getProductId(),
1,
purchase.getQuantity(),
purchase.getTotalPurchase()
))
).returns(RunningTotal.class)
.keyBy(RunningTotal::getProductId)
.reduce((runningTotal1, runningTotal2) -> {
runningTotal2.setTransactions(runningTotal1.getTransactions() + runningTotal2.getTransactions());
runningTotal2.setQuantities(runningTotal1.getQuantities() + runningTotal2.getQuantities());
runningTotal2.setSales(runningTotal1.getSales().add(runningTotal2.getSales()));
return runningTotal2;
});
KafkaSink<RunningTotal> sink = KafkaSink.<RunningTotal>builder()
.setBootstrapServers(prop.getProperty("BOOTSTRAP_SERVERS"))
.setRecordSerializer(KafkaRecordSerializationSchema.builder()
.setTopic(prop.getProperty("RUNNING_TOTALS_TOPIC"))
.setValueSerializationSchema(new RunningTotalSerializationSchema())
.build()
).setDeliveryGuarantee(DeliveryGuarantee.AT_LEAST_ONCE)
.build();
runningTotals.sinkTo(sink);
env.execute("Flink Running Totals Demo");
}

The second class, JoinStreams, joins the stream of data from the demo.purchases topic and the demo.products topic, processing and combining them, in real-time, into an enriched transaction and publishing the results to a new topic, demo.purchases.enriched.

public static void flinkKafkaPipeline(Properties prop) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
// assumes PLAINTEXT authentication
KafkaSource<Product> productSource = KafkaSource.<Product>builder()
.setBootstrapServers(prop.getProperty("BOOTSTRAP_SERVERS"))
.setTopics(prop.getProperty("PRODUCTS_TOPIC"))
.setGroupId("flink_join_demo")
.setStartingOffsets(OffsetsInitializer.earliest())
.setValueOnlyDeserializer(new ProductDeserializationSchema())
.build();
DataStream<Product> productsStream = env.fromSource(
productSource, WatermarkStrategy.noWatermarks(), "Kafka Products Source");
tableEnv.createTemporaryView("products", productsStream);
KafkaSource<Purchase> purchasesSource = KafkaSource.<Purchase>builder()
.setBootstrapServers(prop.getProperty("BOOTSTRAP_SERVERS"))
.setTopics(prop.getProperty("PURCHASES_TOPIC"))
.setGroupId("flink_join_demo")
.setStartingOffsets(OffsetsInitializer.earliest())
.setValueOnlyDeserializer(new PurchaseDeserializationSchema())
.build();
DataStream<Purchase> purchasesStream = env.fromSource(
purchasesSource, WatermarkStrategy.noWatermarks(), "Kafka Purchases Source");
tableEnv.createTemporaryView("purchases", purchasesStream);
Table result =
tableEnv.sqlQuery(
"SELECT " +
"purchases.transactionTime, " +
"TO_TIMESTAMP(purchases.transactionTime), " +
"purchases.transactionId, " +
"purchases.productId, " +
"products.category, " +
"products.item, " +
"products.size, " +
"products.cogs, " +
"products.price, " +
"products.containsFruit, " +
"products.containsVeggies, " +
"products.containsNuts, " +
"products.containsCaffeine, " +
"purchases.price, " +
"purchases.quantity, " +
"purchases.isMember, " +
"purchases.memberDiscount, " +
"purchases.addSupplements, " +
"purchases.supplementPrice, " +
"purchases.totalPurchase " +
"FROM " +
"products " +
"JOIN purchases " +
"ON products.productId = purchases.productId"
);
DataStream<PurchaseEnriched> purchasesEnrichedTable = tableEnv.toDataStream(result,
PurchaseEnriched.class);
KafkaSink<PurchaseEnriched> sink = KafkaSink.<PurchaseEnriched>builder()
.setBootstrapServers(prop.getProperty("BOOTSTRAP_SERVERS"))
.setRecordSerializer(KafkaRecordSerializationSchema.builder()
.setTopic(prop.getProperty("PURCHASES_ENRICHED_TOPIC"))
.setValueSerializationSchema(new PurchaseEnrichedSerializationSchema())
.build()
).setDeliveryGuarantee(DeliveryGuarantee.AT_LEAST_ONCE)
.build();
purchasesEnrichedTable.sinkTo(sink);
env.execute("Flink Streaming Join Demo");
}

The resulting enriched purchases messages look similar to the following:

{
"transaction_time": "2022-09-25 01:58:11.714838",
"transaction_id": "4068565608708439642",
"product_id": "CS08",
"product_category": "Classic Smoothies",
"product_name": "Rockin’ Raspberry",
"product_size": "24 oz.",
"product_cogs": 1.5,
"product_price": 4.99,
"contains_fruit": true,
"contains_veggies": false,
"contains_nuts": false,
"contains_caffeine": false,
"purchase_price": 4.99,
"purchase_quantity": 2,
"is_member": false,
"member_discount": 0,
"add_supplements": false,
"supplement_price": 0,
"total_purchase": 9.98
}
Sample enriched purchase message

Running the Flink Job

To run the Flink application, we must first compile it into an uber JAR.

We can copy the JAR into the Flink container or upload it through the Apache Flink Dashboard, a browser-based UI. For this demonstration, we will upload it through the Apache Flink Dashboard, accessible on port 8081.

The project’s build.gradle file has preset the Main class (Flink’s Entry class) to org.example.JoinStreams. Optionally, to run the Running Totals demo, we could change the build.gradle file and recompile, or simply change Flink’s Entry class to org.example.RunningTotals.

Uploading the JAR to Apache Flink

Before running the Flink job, restart the sales generator in the background (nohup python3 ./producer.py &) to generate a new stream of data. Then start the Flink job.

Apache Flink job running successfully

To confirm the Flink application is running, we can check the contents of the new demo.purchases.enriched topic using the Kafka CLI.

The new demo.purchases.enriched topic populated with messages from Apache Flink

Alternatively, you can use the UI for Apache Kafka, accessible on port 9080.

Viewing messages in the UI for Apache Kafka

Demonstration #4: Apache Pinot

In the fourth and final demonstration, we will explore Apache Pinot. First, we will query the unbounded data streams from Apache Kafka, generated by both the sales generator and the Apache Flink application, using SQL. Then, we build a real-time dashboard in Apache Superset, with Apache Pinot as our datasource.

Creating Tables

According to the Apache Pinot documentation, “a table is a logical abstraction that represents a collection of related data. It is composed of columns and rows (known as documents in Pinot).” There are three types of Pinot tables: Offline, Realtime, and Hybrid. For this demonstration, we will create three Realtime tables. Realtime tables ingest data from streams — in our case, Kafka — and build segments from the consumed data. Further, according to the documentation, “each table in Pinot is associated with a Schema. A schema defines what fields are present in the table along with the data types. The schema is stored in Zookeeper, along with the table configuration.

Below, we see the schema and config for one of the three Realtime tables, purchasesEnriched. Note how the columns are divided into three categories: Dimension, Metric, and DateTime.

{
"schemaName": "purchasesEnriched",
"dimensionFieldSpecs": [
{
"name": "transaction_id",
"dataType": "STRING"
},
{
"name": "product_id",
"dataType": "STRING"
},
{
"name": "product_category",
"dataType": "STRING"
},
{
"name": "product_name",
"dataType": "STRING"
},
{
"name": "product_size",
"dataType": "STRING"
},
{
"name": "product_cogs",
"dataType": "FLOAT"
},
{
"name": "product_price",
"dataType": "FLOAT"
},
{
"name": "contains_fruit",
"dataType": "BOOLEAN"
},
{
"name": "contains_veggies",
"dataType": "BOOLEAN"
},
{
"name": "contains_nuts",
"dataType": "BOOLEAN"
},
{
"name": "contains_caffeine",
"dataType": "BOOLEAN"
},
{
"name": "purchase_price",
"dataType": "FLOAT"
},
{
"name": "is_member",
"dataType": "BOOLEAN"
},
{
"name": "member_discount",
"dataType": "FLOAT"
},
{
"name": "add_supplements",
"dataType": "BOOLEAN"
},
{
"name": "supplement_price",
"dataType": "FLOAT"
}
],
"metricFieldSpecs": [
{
"name": "purchase_quantity",
"dataType": "INT"
},
{
"name": "total_purchase",
"dataType": "FLOAT"
}
],
"dateTimeFieldSpecs": [
{
"name": "transaction_time",
"dataType": "TIMESTAMP",
"format": "1:MILLISECONDS:SIMPLE_DATE_FORMAT:yyyy-MM-dd HH:mm:ss.SSSSSS",
"granularity": "1:MILLISECONDS"
}
]
}
Schema file for purchasesEnriched Realtime table
{
"tableName": "purchasesEnriched",
"tableType": "REALTIME",
"segmentsConfig": {
"timeColumnName": "transaction_time",
"timeType": "MILLISECONDS",
"schemaName": "purchasesEnriched",
"replicasPerPartition": "1"
},
"tenants": {},
"tableIndexConfig": {
"loadMode": "MMAP",
"streamConfigs": {
"streamType": "kafka",
"stream.kafka.consumer.type": "lowlevel",
"stream.kafka.topic.name": "demo.purchases.enriched",
"stream.kafka.decoder.class.name": "org.apache.pinot.plugin.stream.kafka.KafkaJSONMessageDecoder",
"stream.kafka.consumer.factory.class.name": "org.apache.pinot.plugin.stream.kafka20.KafkaConsumerFactory",
"stream.kafka.broker.list": "kafka:29092",
"realtime.segment.flush.threshold.time": "3600000",
"realtime.segment.flush.threshold.rows": "50000",
"stream.kafka.consumer.prop.auto.offset.reset": "smallest"
}
},
"metadata": {}
}
Config file for purchasesEnriched Realtime table

To begin, copy the three Pinot Realtime table schemas and configurations from the streaming-sales-generator GitHub project into the Apache Pinot Controller container. Next, use a docker exec command to call the Pinot Command Line Interface’s (CLI) AddTable command to create the three tables: products, purchases, and purchasesEnriched.

# copy pinot table schema and config files to pinot controller
CONTROLLER_CONTAINER=$(docker container ls –filter name=streaming-stack_pinot-controller.1 –format "{{.ID}}")
cd ~/streaming-sales-generator/apache_pinot_examples
docker cp configs_schemas/ ${CONTROLLER_CONTAINER}:/tmp/
# create three tables
docker exec -it ${CONTROLLER_CONTAINER} \
bin/pinot-admin.sh AddTable \
-tableConfigFile /tmp/configs_schemas/purchases-config.json \
-schemaFile /tmp/configs_schemas/purchases-schema.json -exec
docker exec -it ${CONTROLLER_CONTAINER} \
bin/pinot-admin.sh AddTable \
-tableConfigFile /tmp/configs_schemas/products-config.json \
-schemaFile /tmp/configs_schemas/products-schema.json -exec
docker exec -it ${CONTROLLER_CONTAINER} \
bin/pinot-admin.sh AddTable \
-tableConfigFile /tmp/configs_schemas/purchases-enriched-config.json \
-schemaFile /tmp/configs_schemas/purchases-enriched-schema.json -exec

To confirm the three tables were created correctly, use the Apache Pinot Data Explorer accessible on port 9000. Use the Tables tab in the Cluster Manager.

Cluster Manager’s Tables tab shows the three Realtime tables and corresponding schemas

We can further inspect and edit the table’s config and schema from the Tables tab in the Cluster Manager.

Realtime table’s editable config and schema

The three tables are configured to read the unbounded stream of data from the corresponding Kafka topics: demo.products, demo.purchases, and demo.purchases.enriched.

Querying with Pinot

We can use Pinot’s Query Console to query the Realtime tables using SQL. According to the documentation, “Pinot provides a SQL interface for querying. It uses the [Apache] Calcite SQL parser to parse queries and uses MYSQL_ANSI dialect.

Schema and query results for the purchases table

With the generator still running, re-query the purchases table in the Query Console (select count(*) from purchases). You should notice the document count increasing each time you re-run the query since new messages are published to the demo.purchases topic by the sales generator.

If you do not observe the count increasing, ensure the sales generator and Flink enrichment job are running.

Query Console showing the purchases table’s document count continuing to increase

Table Joins?

It might seem logical to want to replicate the same multi-stream join we performed with Apache Flink in part three of the demonstration on the demo.products and demo.purchases topics. Further, we might presume to join the products and purchases realtime tables by writing a SQL statement in Pinot’s Query Console. However, according to the documentation, at the time of this post, version 0.11.0 of Pinot did not [currently] support joins or nested subqueries.

This current join limitation is why we created the Realtime table, purchasesEnriched, allowing us to query Flink’s real-time results in the demo.purchases.enriched topic. We will use both Flink and Pinot as part of our stream processing pipeline, taking advantage of each tool’s individual strengths and capabilities.

Note, according to the documentation for the latest release of Pinot on the main branch, “the latest Pinot multi-stage supports inner join, left-outer, semi-join, and nested queries out of the box. It is optimized for in-memory process and latency.” For more information on joins as part of Pinot’s new multi-stage query execution engine, read the documentation, Multi-Stage Query Engine.

Query showing results from the demo.purchases.enriched topic in real-time

Aggregations

We can perform real-time aggregations using Pinot’s rich SQL query interface. For example, like previously with Spark and Flink, we can calculate running totals for the number of items sold and the total sales for each product in real time.

Aggregating running totals for each product

We can do the same with the purchasesEnriched table, which will use the continuous stream of enriched transaction data from our Apache Flink application. With the purchasesEnriched table, we can add the product name and product category for richer results. Each time we run the query, we get real-time results based on the running sales generator and Flink enrichment job.

Aggregating running totals for each product

Query Options and Indexing

Note the reference to the Star-Tree index at the start of the SQL query shown above. Pinot provides several query options, including useStarTree (true by default).

Multiple indexing techniques are available in Pinot, including Forward Index, Inverted Index, Star-tree Index, Bloom Filter, and Range Index, among others. Each has advantages in different query scenarios. According to the documentation, by default, Pinot creates a dictionary-encoded forward index for each column.

SQL Examples

Here are a few examples of SQL queries you can try in Pinot’s Query Console:

products
SELECT
COUNT(product_id) AS product_count,
AVG(price) AS avg_price,
AVG(cogs) AS avg_cogs,
AVG(price) AVG(cogs) AS avg_gross_profit
FROM
products;
purchases
SELECT
product_id,
SUMPRECISION(quantity, 10, 0) AS quantity,
SUMPRECISION(total_purchase, 10, 2) AS sales
FROM
purchases
GROUP BY
product_id
ORDER BY
sales DESC;
purchasesEnriched
SELECT
product_id,
product_name,
product_category,
SUMPRECISION(purchase_quantity, 10, 0) AS quantity,
SUMPRECISION(total_purchase, 10, 2) AS sales
FROM
purchasesEnriched
GROUP BY
product_id,
product_name,
product_category
ORDER BY
sales DESC;

Troubleshooting Pinot

If have issues with creating the tables or querying the real-time data, you can start by reviewing the Apache Pinot logs:

CONTROLLER_CONTAINER=$(docker container ls –filter name=streaming-stack_pinot-controller.1 –format "{{.ID}}")
docker exec -it ${CONTROLLER_CONTAINER} cat logs/pinot-all.log
view raw pinot_logs.sh hosted with ❤ by GitHub

Real-time Dashboards with Apache Superset

To display the real-time stream of data produced results of our Apache Flink stream processing job and made queriable by Apache Pinot, we can use Apache Superset. Superset positions itself as “a modern data exploration and visualization platform.” Superset allows users “to explore and visualize their data, from simple line charts to highly detailed geospatial charts.

According to the documentation, “Superset requires a Python DB-API database driver and a SQLAlchemy dialect to be installed for each datastore you want to connect to.” In the case of Apache Pinot, we can use pinotdb as the Python DB-API and SQLAlchemy dialect for Pinot. Since the existing Superset Docker container does not have pinotdb installed, I have built and published a Docker Image with the driver and deployed it as part of the second streaming stack of containers.

# Custom Superset build to add apache pinot driver
# Gary A. Stafford (2022-09-25)
# Updated: 2022-12-18
FROM apache/superset:66138b0ca0b82a94404e058f0cc55517b2240069
# Switching to root to install the required packages
USER root
# Find which driver you need based on the analytics database:
# https://superset.apache.org/docs/databases/installing-database-drivers
RUN pip install mysqlclient psycopg2-binary pinotdb
# Switching back to using the `superset` user
USER superset
view raw Dockerfile hosted with ❤ by GitHub

First, we much configure the Superset container instance. These instructions are documented as part of the Superset Docker Image repository.

# establish an interactive session with the superset container
SUPERSET_CONTAINER=$(docker container ls –filter name=streaming-stack_superset.1 –format "{{.ID}}")
# initialize superset (see superset documentation)
docker exec -it ${SUPERSET_CONTAINER} \
superset fab create-admin \
–username admin \
–firstname Superset \
–lastname Admin \
–email admin@superset.com \
–password sUp3rS3cREtPa55w0rD1
docker exec -it ${SUPERSET_CONTAINER} superset db upgrade
docker exec -it ${SUPERSET_CONTAINER} superset init

Once the configuration is complete, we can log into the Superset web-browser-based UI accessible on port 8088.

Home page of the Superset web-browser-based UI

Pinot Database Connection and Dataset

Next, to connect to Pinot from Superset, we need to create a Database Connection and a Dataset.

Creating a new database connection to Pinot

The SQLAlchemy URI is shown below. Input the URI, test your connection (‘Test Connection’), make sure it succeeds, then hit ‘Connect’.

pinot+http://pinot-broker:8099/query?controller=http://pinot-controller:9000

Next, create a Dataset that references the purchasesEnriched Pinot table.

Creating a new dataset allowing us access to the purchasesEnriched Pinot table

Modify the dataset’s transaction_time column. Check the is_temporal and Default datetime options. Lastly, define the DateTime format as epoch_ms.

Modifying the dataset’s transaction_time column

Building a Real-time Dashboard

Using the new dataset, which connects Superset to the purchasesEnriched Pinot table, we can construct individual charts to be placed on a dashboard. Build a few charts to include on your dashboard.

Example of a chart whose data source is the new dataset
List of charts that included on the dashboard

Create a new Superset dashboard and add the charts and other elements, such as headlines, dividers, and tabs.

Apache Superset dashboard displaying data from Apache Pinot Realtime table

We can apply a refresh interval to the dashboard to continuously query Pinot and visualize the results in near real-time.

Configuring a refresh interval for the dashboard

Conclusion

In this two-part post series, we were introduced to stream processing. We explored four popular open-source stream processing projects: Apache Spark Structured Streaming, Apache Kafka Streams, Apache Flink, and Apache Pinot. Next, we learned how we could solve similar stream processing and streaming analytics challenges using different streaming technologies. Lastly, we saw how these technologies, such as Kafka, Flink, Pinot, and Superset, could be integrated to create effective stream processing pipelines.


This blog represents my viewpoints and not of my employer, Amazon Web Services (AWS). All product names, logos, and brands are the property of their respective owners. All diagrams and illustrations are the property of the author unless otherwise noted.

, , , , , , , , ,

Leave a comment

Stream Processing with Apache Spark, Kafka, Avro, and Apicurio Registry on Amazon EMR and Amazon MSK

Using a registry to decouple schemas from messages in an event streaming analytics architecture

Introduction

In the last post, Getting Started with Spark Structured Streaming and Kafka on AWS using Amazon MSK and Amazon EMR, we learned about Apache Spark and Spark Structured Streaming on Amazon EMR (fka Amazon Elastic MapReduce) with Amazon Managed Streaming for Apache Kafka (Amazon MSK). We consumed messages from and published messages to Kafka using both batch and streaming queries. In that post, we serialized and deserialized messages to and from JSON using schemas we defined as a StructType (pyspark.sql.types.StructType) in each PySpark script. Likewise, we constructed similar structs for CSV-format data files we read from and wrote to Amazon S3.

schema = StructType([
StructField("payment_id", IntegerType(), False),
StructField("customer_id", IntegerType(), False),
StructField("amount", FloatType(), False),
StructField("payment_date", TimestampType(), False),
StructField("city", StringType(), True),
StructField("district", StringType(), True),
StructField("country", StringType(), False),
])

In this follow-up post, we will read and write messages to and from Amazon MSK in Apache Avro format. We will store the Avro-format Kafka message’s key and value schemas in Apicurio Registry and retrieve the schemas instead of hard-coding the schemas in the PySpark scripts. We will also use the registry to store schemas for CSV-format data files.

Note the addition of the registry to the architecture for this post’s demonstration

Video Demonstration

In addition to this post, there is now a video demonstration available on YouTube.

For best results, view at 1080p HD on YouTube

Technologies

In the last post, Getting Started with Spark Structured Streaming and Kafka on AWS using Amazon MSK and Amazon EMR, we learned about Apache Spark, Apache Kafka, Amazon EMR, and Amazon MSK.

In a previous post, Hydrating a Data Lake using Log-based Change Data Capture (CDC) with Debezium, Apicurio, and Kafka Connect on AWS, we explored Apache Avro and Apicurio Registry.

Apache Spark

Apache Spark, according to the documentation, is a unified analytics engine for large-scale data processing. Spark provides high-level APIs in Java, Scala, Python (PySpark), and R. Spark provides an optimized engine that supports general execution graphs (aka directed acyclic graphs or DAGs). In addition, Spark supports a rich set of higher-level tools, including Spark SQL for SQL and structured data processing, MLlib for machine learning, GraphX for graph processing, and Structured Streaming for incremental computation and stream processing.

Interest over time in Apache Spark and PySpark compared to Hive and Presto, according to Google Trends

Spark Structured Streaming

Spark Structured Streaming, according to the documentation, is a scalable and fault-tolerant stream processing engine built on the Spark SQL engine. You can express your streaming computation the same way you would express a batch computation on static data. The Spark SQL engine will run it incrementally and continuously and update the final result as streaming data continues to arrive. In short, Structured Streaming provides fast, scalable, fault-tolerant, end-to-end, exactly-once stream processing without the user having to reason about streaming.

Apache Avro

Apache Avro describes itself as a data serialization system. Apache Avro is a compact, fast, binary data format similar to Apache Parquet, Apache Thrift, MongoDB’s BSON, and Google’s Protocol Buffers (protobuf). However, Apache Avro is a row-based storage format compared to columnar storage formats like Apache Parquet and Apache ORC.

Undecoded Avro-format messages with their keys and values shown in non-human readable binary format

Avro relies on schemas. When Avro data is read, the schema used when writing it is always present. According to the documentation, schemas permit each datum to be written with no per-value overheads, making serialization fast and small. Schemas also facilitate use with dynamic scripting languages since data, together with its schema, is fully self-describing.

Interest over time in Apache Avro compared to Parquet and ORC, according to Google Trends

Apicurio Registry

We can decouple the data from its schema by using schema registries such as Confluent Schema Registry or Apicurio Registry. According to Apicurio, in a messaging and event streaming architecture, data published to topics and queues must often be serialized or validated using a schema (e.g., Apache Avro, JSON Schema, or Google Protocol Buffers). Of course, schemas can be packaged in each application. Still, it is often a better architectural pattern to register schemas in an external system [schema registry] and then reference them from each application.

It is often a better architectural pattern to register schemas in an external system and then reference them from each application.

Amazon EMR

According to AWS documentation, Amazon EMR (fka Amazon Elastic MapReduce) is a cloud-based big data platform for processing vast amounts of data using open source tools such as Apache Spark, Hadoop, Hive, HBase, Flink, Hudi, and Presto. Amazon EMR is a fully managed AWS service that makes it easy to set up, operate, and scale your big data environments by automating time-consuming tasks like provisioning capacity and tuning clusters.

Amazon EMR on EKS, a deployment option for Amazon EMR since December 2020, allows you to run Amazon EMR on Amazon Elastic Kubernetes Service (Amazon EKS). With the EKS deployment option, you can focus on running analytics workloads while Amazon EMR on EKS builds, configures, and manages containers for open-source applications.

If you are new to Amazon EMR for Spark, specifically PySpark, I recommend a recent two-part series of posts, Running PySpark Applications on Amazon EMR: Methods for Interacting with PySpark on Amazon Elastic MapReduce.

Apache Kafka

According to the documentation, Apache Kafka is an open-source distributed event streaming platform used by thousands of companies for high-performance data pipelines, streaming analytics, data integration, and mission-critical applications.

Amazon MSK

Apache Kafka clusters are challenging to set up, scale, and manage in production. According to AWS documentation, Amazon MSK is a fully managed AWS service that makes it easy for you to build and run applications that use Apache Kafka to process streaming data. With Amazon MSK, you can use native Apache Kafka APIs to populate data lakes, stream changes to and from databases, and power machine learning and analytics applications.

Prerequisites

Similar to the previous post, this post will focus primarily on configuring and running Apache Spark jobs on Amazon EMR. To follow along, you will need the following resources deployed and configured on AWS:

  1. Amazon S3 bucket (holds all Spark/EMR resources);
  2. Amazon MSK cluster (using IAM Access Control);
  3. Amazon EKS container or an EC2 instance with the Kafka APIs installed and capable of connecting to Amazon MSK;
  4. Amazon EKS container or an EC2 instance with Apicurio Registry installed and capable of connecting to Amazon MSK (if using Kafka for backend storage) and being accessed by Amazon EMR;
  5. Ensure the Amazon MSK Configuration has auto.create.topics.enable=true; this setting is false by default;

The architectural diagram below shows that the demonstration uses three separate VPCs within the same AWS account and AWS Region us-east-1, for Amazon EMR, Amazon MSK, and Amazon EKS. The three VPCs are connected using VPC Peering. Ensure you expose the correct ingress ports and the corresponding CIDR ranges within your Amazon EMR, Amazon MSK, and Amazon EKS Security Groups. For additional security and cost savings, use a VPC endpoint for private communications between Amazon EMR and Amazon S3.

High-level architecture for this post’s demonstration

Source Code

All source code for this post and the three previous posts in the Amazon MSK series, including the Python and PySpark scripts demonstrated herein, are open-sourced and located on GitHub.

Objective

We will run a Spark Structured Streaming PySpark job to consume a simulated event stream of real-time sales data from Apache Kafka. Next, we will enrich (join) that sales data with the sales region and aggregate the sales and order volumes by region within a sliding event-time window. Next, we will continuously stream those aggregated results back to Kafka. Finally, a batch query will consume the aggregated results from Kafka and display the sales results in the console.

DataOps pipeline demonstrated in this post

Kafka messages will be written in Apache Avro format. The schemas for the Kafka message keys and values and the schemas for the CSV-format sales and sales regions data will all be stored in Apricurio Registry. The Python and PySpark scripts will use Apricurio Registry’s REST API to read, write, and manage the Avro schema artifacts.

We are writing the Kafka message keys in Avro format and storing an Avro key schema in the registry. This is only done for demonstration purposes and not a requirement. Kafka message keys are not required, nor is it necessary to store both the key and the value in a common format of Avro in Kafka.

Schema evolution, compatibility, and validation are important considerations, but out of scope for this post.

PySpark Scripts

PySpark, according to the documentation, is an interface for Apache Spark in Python. PySpark allows you to write Spark applications using the Python API. PySpark supports most of Spark’s features such as Spark SQL, DataFrame, Streaming, MLlib (Machine Learning), and Spark Core. There are three PySpark scripts and one new helper Python script covered in this post:

  1. 10_create_schemas.py: Python script creates all Avro schemas in Apricurio Registry using the REST API;
  2. 11_incremental_sales_avro.py: PySpark script simulates an event stream of sales data being published to Kafka over 15–20 minutes;
  3. 12_streaming_enrichment_avro.py: PySpark script uses a streaming query to read messages from Kafka in real-time, enriches sales data, aggregates regional sales results, and writes results back to Kafka as a stream;
  4. 13_batch_read_results_avro.py: PySpark script uses a batch query to read aggregated regional sales results from Kafka and display them in the console;

Preparation

To prepare your Amazon EMR resources, review the instructions in the previous post, Getting Started with Spark Structured Streaming and Kafka on AWS using Amazon MSK and Amazon EMR. Here is a recap, with a few additions required for this post.

Amazon S3

We will start by gathering and copying the necessary files to your Amazon S3 bucket. The bucket will serve as the location for the Amazon EMR bootstrap script, additional JAR files required by Spark, PySpark scripts, and CSV-format data files.

There are a set of additional JAR files required by the Spark jobs we will be running. Download the JARs from Maven Central and GitHub, and place them in the emr_jars project directory. The JARs will include AWS MSK IAM Auth, AWS SDK, Kafka Client, Spark SQL for Kafka, Spark Streaming, and other dependencies. Compared to the last post, there is one additional JAR for Avro.

Update the SPARK_BUCKET environment variable, then upload the JARs, PySpark scripts, sample data, and EMR bootstrap script from your local copy of the GitHub project repository to your Amazon S3 bucket using the AWS s3 API.

cd ./pyspark/
export SPARK_BUCKET="<your-bucket-111222333444-us-east-1>"
aws s3 cp emr_jars/ "s3://${SPARK_BUCKET}/jars/" –recursive
aws s3 cp pyspark_scripts/ "s3://${SPARK_BUCKET}/spark/" –recursive
aws s3 cp emr_bootstrap/ "s3://${SPARK_BUCKET}/spark/" –recursive
aws s3 cp data/ "s3://${SPARK_BUCKET}/spark/" –recursive
view raw copy_to_s3.sh hosted with ❤ by GitHub

Amazon EMR

The GitHub project repository includes a sample AWS CloudFormation template and an associated JSON-format CloudFormation parameters file. The CloudFormation template, stack.yml, accepts several environment parameters. To match your environment, you will need to update the parameter values such as SSK key, Subnet, and S3 bucket. The template will build a minimally-sized Amazon EMR cluster with one master and two core nodes in an existing VPC. You can easily modify the template and parameters to meet your requirements and budget.

aws cloudformation deploy \
--stack-name spark-kafka-demo-dev \
--template-file ./cloudformation/stack.yml \
--parameter-overrides file://cloudformation/dev.json \
--capabilities CAPABILITY_NAMED_IAM

The CloudFormation template has two essential Spark configuration items — the list of applications to install on EMR and the bootstrap script deployment.

Applications:
Name: 'Hadoop'
Name: 'Spark'
Name: 'JupyterEnterpriseGateway'
Name: 'Livy'
BootstrapActions:
Name: bootstrap-script
ScriptBootstrapAction:
Path: !Join [ '', [ 's3://', !Ref ProjectBucket, '/spark/bootstrap_actions.sh' ] ]

Below, we see the EMR bootstrap shell script, bootstrap_actions.sh.

#!/bin/bash
# Purpose: EMR bootstrap script
# Author: Gary A. Stafford
# Date: 2021-09-10
# arg passed in by CloudFormation
if [ $# -eq 0 ]
then
echo "No arguments supplied"
fi
SPARK_BUCKET=$1
# update yum packages, install jq
sudo yum update -y
sudo yum install -y jq
# jsk truststore for connecting to msk
sudo cp /usr/lib/jvm/java-1.8.0-amazon-corretto.x86_64/jre/lib/security/cacerts \
/tmp/kafka.client.truststore.jks
# set region for boto3
aws configure set region \
"$(curl –silent http://169.254.169.254/latest/dynamic/instance-identity/document | jq -r .region)"
# install python packages for pyspark scripts
sudo python3 -m pip install boto3 botocore ec2-metadata
# install required jars for spark
sudo aws s3 cp \
"s3://${SPARK_BUCKET}/jars/" /usr/lib/spark/jars/ \
–recursive –exclude "*" –include "*.jar"

The bootstrap script performed several tasks, including deploying the additional JAR files we copied to Amazon S3 earlier to EMR cluster nodes.

Amazon EMR cluster ‘bootstrap actions’ tab

Parameter Store

The PySpark scripts in this demonstration will obtain configuration values from the AWS Systems Manager (AWS SSM) Parameter Store. Configuration values include a list of Amazon MSK bootstrap brokers, the Amazon S3 bucket that contains the EMR/Spark assets, and the Apicurio Registry REST API base URL. Using the Parameter Store ensures that no sensitive or environment-specific configuration is hard-coded into the PySpark scripts. Modify and execute the ssm_params.sh script to create the AWS SSM Parameter Store parameters.

aws ssm put-parameter \
–name /kafka_spark_demo/kafka_servers \
–type String \
–value "<b-1.your-brokers.kafka.us-east-1.amazonaws.com:9098,b-2…>" \
–description "Amazon MSK Kafka broker list" \
–overwrite
aws ssm put-parameter \
–name /kafka_spark_demo/kafka_demo_bucket \
–type String \
–value "<your-bucket-111222333444-us-east-1>" \
–description "Amazon S3 bucket" \
–overwrite
aws ssm put-parameter \
–name /kafka_spark_demo/schema_resistry_url_int \
–type String \
–value "http://<your_host&gt;:<your_port>" \
–description "Apicurio Registry REST API base URL (Internal Address)" \
–overwrite
view raw ssm_params.sh hosted with ❤ by GitHub

Create Schemas in Apricurio Registry

To create the schemas necessary for this demonstration, a Python script is included in the project, 10_create_schemas.py. The script uses Apricurio Registry’s REST API to create six new Avro-based schema artifacts.

Apricurio Registry supports several common artifact types, including AsyncAPI specification, Apache Avro schema, GraphQL schema, JSON Schema, Apache Kafka Connect schema, OpenAPI specification, Google protocol buffers schema, Web Services Definition Language, and XML Schema Definition. We will use the registry to store Avro schemas for use with Kafka and CSV data sources and sinks.

Although Apricurio Registry does not support CSV Schema, we can store the schemas for the CSV-format sales and sales region data in the registry as JSON-format Avro schemas.

{
"name": "Sales",
"type": "record",
"doc": "Schema for CSV-format sales data",
"fields": [
{
"name": "payment_id",
"type": "int"
},
{
"name": "customer_id",
"type": "int"
},
{
"name": "amount",
"type": "float"
},
{
"name": "payment_date",
"type": "string"
},
{
"name": "city",
"type": [
"string",
"null"
]
},
{
"name": "district",
"type": [
"string",
"null"
]
},
{
"name": "country",
"type": "string"
}
]
}

We can then retrieve the JSON-format Avro schema from the registry, convert it to PySpark StructType, and associate it to the DataFrame used to persist the sales data from the CSV files.

root
|-- payment_id: integer (nullable = true)
|-- customer_id: integer (nullable = true)
|-- amount: float (nullable = true)
|-- payment_date: string (nullable = true)
|-- city: string (nullable = true)
|-- district: string (nullable = true)
|-- country: string (nullable = true)

Using the registry allows us to avoid hard-coding the schema as a StructType in the PySpark scripts in advance.

# Purpose: Create Avro schemas in Apicurio Registry.
# Author: Gary A. Stafford
# Date: 2021-09-28
import json
import os
import boto3
import requests
params = {}
os.environ['AWS_DEFAULT_REGION'] = "us-east-1"
ssm_client = boto3.client("ssm")
def main():
global params
params = get_parameters()
artifact_id = "pagila.sales.csv"
data = '''{"name":"Sales","type":"record",
"doc":"Schema for CSV-format sales data",
"fields":[
{"name":"payment_id","type":"int"},
{"name":"customer_id","type":"int"},
{"name":"amount","type":"float"},
{"name":"payment_date","type":"string"},
{"name":"city","type":["string","null"]},
{"name":"district","type":["string","null"]},
{"name":"country","type":"string"}]}'''
create_schema(artifact_id, data)
artifact_id = "pagila.sales.regions.csv"
data = '''{"name":"Regions","type":"record",
"doc":"Schema for CSV-format sales regions data",
"fields":[
{"name":"country","type":"string"},
{"name":"region","type":"string"}]}'''
create_schema(artifact_id, data)
artifact_id = "pagila.sales.avro-key"
data = '''{"name":"Key","type":"int",
"doc":"Schema for pagila.sales.avro Kafka topic key"}'''
create_schema(artifact_id, data)
artifact_id = "pagila.sales.avro-value"
data = '''{"name":"Value","type":"record",
"doc":"Schema for pagila.sales.avro Kafka topic value",
"fields":[
{"name":"payment_id","type":"int"},
{"name":"customer_id","type":"int"},
{"name":"amount","type":"float"},
{"name":"payment_date","type":"long","logicalType":"timestamp-millis"},
{"name":"city","type":["string","null"]},
{"name":"district","type":["string","null"]},
{"name":"country","type":"string"}]}'''
create_schema(artifact_id, data)
artifact_id = "pagila.sales.summary.avro-key"
data = '''{"name":"Key","type":"int",
"doc":"Schema for pagila.sales.summary.avro Kafka topic key"}'''
create_schema(artifact_id, data)
artifact_id = "pagila.sales.summary.avro-value"
data = '''{"name":"Value","type":"record",
"doc":"Schema for pagila.sales.summary.avro Kafka topic value",
"fields":[
{"name":"region","type":"string"},
{"name":"sales","type":"float"},
{"name":"orders","type":"int"},
{"name":"window_start","type":"long","logicalType":"timestamp-millis"},
{"name":"window_end","type":"long","logicalType":"timestamp-millis"}]}'''
create_schema(artifact_id, data)
def create_schema(artifact_id, data):
"""Delete existing Avro schema, create new schema, and retrieve the schema"""
delete_schema(artifact_id)
print(json.dumps(json.loads(post_schema(artifact_id, data)), indent=4))
print(json.dumps(json.loads(get_schema(artifact_id)), indent=4))
def post_schema(artifact_id, data):
"""Post Avro schema to Apicurio Registry"""
response = requests.post(
url=f"{params['schema_registry_url']}/apis/registry/v2/groups/default/artifacts",
data=data,
headers={"X-Registry-ArtifactId": artifact_id})
json_format_schema = response.content.decode("utf-8")
return json_format_schema
def get_schema(artifact_id):
"""Get Avro schema from Apicurio Registry"""
response = requests.get(
f"{params['schema_registry_url']}/apis/registry/v2/groups/default/artifacts/{artifact_id}")
json_format_schema = response.content.decode("utf-8")
return json_format_schema
def delete_schema(artifact_id):
"""Delete Avro schema from Apicurio Registry"""
try:
response = requests.delete(
f"{params['schema_registry_url']}/apis/registry/v2/groups/default/artifacts/{artifact_id}")
return response.content.decode("utf-8")
except:
return f"Schema not found: {artifact_id}"
def get_parameters():
"""Load parameter values from AWS Systems Manager (SSM) Parameter Store"""
parameters = {
"schema_registry_url": ssm_client.get_parameter(
Name="/kafka_spark_demo/schema_registry_url_int")["Parameter"]["Value"],
}
return parameters
if __name__ == "__main__":
main()

Add the PySpark script as an EMR Step. EMR will run the Python script the same way it runs PySpark jobs.

export CLUSTER_ID="<your-cluster-id>"
export SPARK_BUCKET="<your-bucket-111222333444-us-east-1>"
aws emr add-steps \
–cluster-id ${CLUSTER_ID} \
–steps """Type=Spark,Name='create-schemas',ActionOnFailure=CONTINUE,
Args=[s3a://${SPARK_BUCKET}/spark/10_create_schemas.py]"""

The Python script creates six schema artifacts in Apricurio Registry, shown below in Apricurio Registry’s browser-based user interface. Schemas include two key/value pairs for two Kafka topics and two for CSV-format sales and sales region data.

Artifacts in Apricurio Registry’s browser-based UI

You have the option of enabling validation and compatibility rules for each schema with Apricurio Registry.

Content Rules options in Apricurio Registry’s browser-based UI

Each Avro schema artifact is stored as a JSON object in the registry.

Detailed view of Avro schema as JSON in Apricurio Registry’s browser-based UI

Simulate Sales Event Stream

Next, we will simulate an event stream of sales data published to Kafka over 15–20 minutes. The PySpark script, 11_incremental_sales_avro.py, reads 1,800 sales records into a DataFrame (pyspark.sql.DataFrame) from a CSV file located in S3. The script then takes each Row (pyspark.sql.Row) of the DataFrame, one row at a time, and writes them to the Kafka topic, pagila.sales.avro, adding a slight delay between each write.

# Purpose: Write sales data from CSV to a new Kafka topic in Avro format.
# Use a delay between each message to simulate an event stream of sales data.
# Author: Gary A. Stafford
# Date: 2021-09-28
import os
import time
import boto3
import pyspark.sql.functions as F
import requests
from ec2_metadata import ec2_metadata
from pyspark.sql import SparkSession
from pyspark.sql.avro.functions import to_avro
from pyspark.sql.types import LongType
sink_topic = "pagila.sales.avro"
# 1800 messages * .75 second delay = ~22.5 minutes added latency
delay_between_messages = 0.75
params = {}
os.environ['AWS_DEFAULT_REGION'] = ec2_metadata.region
ssm_client = boto3.client("ssm")
def main():
global params
params = get_parameters()
spark = SparkSession \
.builder \
.appName("kafka-incremental-sales") \
.getOrCreate()
csv_sales_schema = get_schema("pagila.sales.csv")
schema = struct_from_json(spark, csv_sales_schema)
df_sales = read_from_csv(spark, "sales_incremental_large.csv", schema, "|")
df_sales.show(5, truncate=False)
write_to_kafka(spark, df_sales)
def write_to_kafka(spark, df_sales):
options_write = {
"kafka.bootstrap.servers":
params["kafka_servers"],
"topic":
sink_topic,
"kafka.ssl.truststore.location":
"/tmp/kafka.client.truststore.jks",
"kafka.security.protocol":
"SASL_SSL",
"kafka.sasl.mechanism":
"AWS_MSK_IAM",
"kafka.sasl.jaas.config":
"software.amazon.msk.auth.iam.IAMLoginModule required;",
"kafka.sasl.client.callback.handler.class":
"software.amazon.msk.auth.iam.IAMClientCallbackHandler",
}
sales_schema_key = get_schema("pagila.sales.avro-key")
sales_schema_value = get_schema("pagila.sales.avro-value")
sales_count = df_sales.count()
for r in range(0, sales_count):
row = df_sales.collect()[r]
df_message = spark.createDataFrame([row], df_sales.schema)
df_message \
.drop("payment_date") \
.withColumn("payment_date",
F.unix_timestamp(F.current_timestamp()).cast(LongType())) \
.select(to_avro("customer_id", sales_schema_key).alias("key"),
to_avro(F.struct("*"), sales_schema_value).alias("value")) \
.write \
.format("kafka") \
.options(**options_write) \
.save()
time.sleep(delay_between_messages)
# ***** utility methods *****
def read_from_csv(spark, source_data, schema, sep):
"""Read CSV data from S3"""
df = spark.read \
.csv(path=f"s3a://{params['kafka_demo_bucket']}/spark/{source_data}",
schema=schema, header=True, sep=sep)
return df
def struct_from_json(spark, json_format_schema):
"""Returns a schema as a pyspark.sql.types.StructType from Avro schema"""
df = spark \
.read \
.format("avro") \
.option("avroSchema", json_format_schema) \
.load()
df.printSchema()
return df.schema
def get_schema(artifact_id):
"""Get Avro schema from Apicurio Registry"""
response = requests.get(
f"{params['schema_registry_url']}/apis/registry/v2/groups/default/artifacts/{artifact_id}")
json_format_schema = response.content.decode("utf-8")
return json_format_schema
def get_parameters():
"""Load parameter values from AWS Systems Manager (SSM) Parameter Store"""
parameters = {
"kafka_servers": ssm_client.get_parameter(
Name="/kafka_spark_demo/kafka_servers")["Parameter"]["Value"],
"kafka_demo_bucket": ssm_client.get_parameter(
Name="/kafka_spark_demo/kafka_demo_bucket")["Parameter"]["Value"],
"schema_registry_url": ssm_client.get_parameter(
Name="/kafka_spark_demo/schema_registry_url_int")["Parameter"]["Value"],
}
return parameters
if __name__ == "__main__":
main()

The PySpark scripts first retrieve the JSON-format Avro schema for the CSV data from Apricurio Registry using the Python requests module and Apricurio Registry’s REST API (get_schema()).

{
"name": "Sales",
"type": "record",
"doc": "Schema for CSV-format sales data",
"fields": [
{
"name": "payment_id",
"type": "int"
},
{
"name": "customer_id",
"type": "int"
},
{
"name": "amount",
"type": "float"
},
{
"name": "payment_date",
"type": "string"
},
{
"name": "city",
"type": [
"string",
"null"
]
},
{
"name": "district",
"type": [
"string",
"null"
]
},
{
"name": "country",
"type": "string"
}
]
}

The script then creates a StructType from the JSON-format Avro schema using an empty DataFrame (struct_from_json()). Avro column types are converted to Spark SQL types. The only apparent issue is how Spark mishandles the nullable value for each column. Recognize, column nullability in Spark is an optimization statement, not an enforcement of the object type.

root
|-- payment_id: integer (nullable = true)
|-- customer_id: integer (nullable = true)
|-- amount: float (nullable = true)
|-- payment_date: string (nullable = true)
|-- city: string (nullable = true)
|-- district: string (nullable = true)
|-- country: string (nullable = true)

The resulting StructType is used to read the CSV data into a DataFrame (read_from_csv()).

csv_sales_schema = get_schema("pagila.sales.csv")
schema = struct_from_json(spark, csv_sales_schema)
df_sales = read_from_csv(spark, "sales_incremental_large.csv", schema, "|")
write_to_kafka(spark, df_sales)
def get_schema(artifact_id):
"""Get Avro schema from Apicurio Registry"""
response = requests.get(
f"{params['schema_registry_url']}/apis/registry/v2/groups/default/artifacts/{artifact_id}")
json_format_schema = response.content.decode("utf-8")
return json_format_schema
def struct_from_json(spark, json_format_schema):
"""Returns a schema as a pyspark.sql.types.StructType from Avro schema"""
df = spark \
.read \
.format("avro") \
.option("avroSchema", json_format_schema) \
.load()
df.printSchema()
return df.schema
def read_from_csv(spark, source_data, schema, sep):
"""Read CSV data from S3"""
df = spark.read \
.csv(path=f"s3a://{params['kafka_demo_bucket']}/spark/{source_data}",
schema=schema, header=True, sep=sep)
return df
Code snippet from PySpark script, 10_create_schemas.py

For Avro-format Kafka key and value schemas, we use the same method, get_schema(). The resulting JSON-format schemas are then passed to the to_avro() and from_avro() methods to read and write Avro-format messages to Kafka. Both methods are part of the pyspark.sql.avro.functions module. Avro column types are converted to and from Spark SQL types.

def get_schema(artifact_id):
response = requests.get(
f"{params['schema_registry_url']}/apis/registry/v2/groups/default/artifacts/{artifact_id}")
json_format_schema = response.content.decode("utf-8")
return json_format_schema
def write_to_kafka(spark, df_sales):
sales_schema_key = get_schema("pagila.sales.avro-key")
sales_schema_value = get_schema("pagila.sales.avro-value")
df_message \
.select(to_avro("customer_id", sales_schema_key).alias("key"),
to_avro(F.struct("*"), sales_schema_value).alias("value")) \
.write \
.format("kafka") \
.options(**options_write) \
.save()
Code snippet from PySpark script, 11_incremental_sales_avro.py

We must run this PySpark script, 11_incremental_sales_avro.py, concurrently with the PySpark script, 12_streaming_enrichment_avro.py, to simulate an event stream. We will start both scripts in the next part of the post.

Stream Processing with Structured Streaming

The PySpark script, 12_streaming_enrichment_avro.py, uses a streaming query to read sales data messages from the Kafka topic, pagila.sales.avro, in real-time, enriches the sales data, aggregates regional sales results, and writes the results back to Kafka in micro-batches every two minutes.

# Purpose: Streaming read from Kafka topic in Avro format. Enrich and aggregate
# current sales by sales region to second Kafka topic every n minutes.
# Author: Gary A. Stafford
# Date: 2021-09-28
import os
import boto3
import pyspark.sql.functions as F
import requests
from ec2_metadata import ec2_metadata
from pyspark.sql import SparkSession
from pyspark.sql.avro.functions import from_avro, to_avro
from pyspark.sql.types import IntegerType, FloatType, LongType
source_topic = "pagila.sales.avro"
sink_topic = "pagila.sales.summary.avro"
params = {}
os.environ['AWS_DEFAULT_REGION'] = ec2_metadata.region
ssm_client = boto3.client("ssm")
def main():
global params
params = get_parameters()
spark = SparkSession \
.builder \
.appName("kafka-streaming-sales") \
.getOrCreate()
csv_sales_regions_schema = get_schema("pagila.sales.regions.csv")
schema = struct_from_json(spark, csv_sales_regions_schema)
df_regions = read_from_csv(spark, "sales_regions.csv", schema, ",")
df_regions.cache()
df_regions.show(5, truncate=False)
df_sales = read_from_kafka(spark)
summarize_sales(df_sales, df_regions)
def read_from_kafka(spark):
sales_schema_value = get_schema("pagila.sales.avro-value")
options_read = {
"kafka.bootstrap.servers":
params["kafka_servers"],
"subscribe":
source_topic,
"startingOffsets":
"earliest",
"kafka.ssl.truststore.location":
"/tmp/kafka.client.truststore.jks",
"kafka.security.protocol":
"SASL_SSL",
"kafka.sasl.mechanism":
"AWS_MSK_IAM",
"kafka.sasl.jaas.config":
"software.amazon.msk.auth.iam.IAMLoginModule required;",
"kafka.sasl.client.callback.handler.class":
"software.amazon.msk.auth.iam.IAMClientCallbackHandler"
}
df_sales = spark.readStream \
.format("kafka") \
.options(**options_read) \
.load() \
.select(from_avro("value", sales_schema_value).alias("data"), "timestamp") \
.select("data.*", "timestamp")
return df_sales
def summarize_sales(df_sales, df_regions):
sales_summary_key = get_schema("pagila.sales.summary.avro-key")
sales_summary_value = get_schema("pagila.sales.summary.avro-value")
options_write = {
"kafka.bootstrap.servers":
params["kafka_servers"],
"topic":
sink_topic,
"kafka.ssl.truststore.location":
"/tmp/kafka.client.truststore.jks",
"kafka.security.protocol":
"SASL_SSL",
"kafka.sasl.mechanism":
"AWS_MSK_IAM",
"kafka.sasl.jaas.config":
"software.amazon.msk.auth.iam.IAMLoginModule required;",
"kafka.sasl.client.callback.handler.class":
"software.amazon.msk.auth.iam.IAMClientCallbackHandler",
}
ds_sales = df_sales \
.join(df_regions, on=["country"], how="leftOuter") \
.na.fill("Unassigned") \
.withWatermark("timestamp", "10 minutes") \
.groupBy("region", F.window("timestamp", "10 minutes", "5 minutes")) \
.agg(F.sum("amount"), F.count("amount")) \
.orderBy(F.col("window").desc(), F.col("sum(amount)").desc()) \
.select("region",
F.col("sum(amount)").cast(FloatType()).alias("sales"),
F.col("count(amount)").cast(IntegerType()).alias("orders"),
F.unix_timestamp("window.start").cast(LongType()).alias("window_start"),
F.unix_timestamp("window.end").cast(LongType()).alias("window_end")) \
.coalesce(1) \
.select(to_avro(F.col("window_start").cast(IntegerType()), sales_summary_key).alias("key"),
to_avro(F.struct("*"), sales_summary_value).alias("value")) \
.writeStream \
.trigger(processingTime="2 minute") \
.queryName("streaming_to_kafka") \
.outputMode("complete") \
.format("kafka") \
.options(**options_write) \
.option("checkpointLocation", "/checkpoint/kafka/") \
.start()
ds_sales.awaitTermination()
# ***** utility methods *****
def read_from_csv(spark, source_data, schema, sep):
"""Read CSV data from S3"""
df = spark.read \
.csv(path=f"s3a://{params['kafka_demo_bucket']}/spark/{source_data}",
schema=schema, header=True, sep=sep)
return df
def struct_from_json(spark, json_format_schema):
"""Returns a schema as a pyspark.sql.types.StructType from Avro schema"""
df = spark \
.read \
.format("avro") \
.option("avroSchema", json_format_schema) \
.load()
df.printSchema()
return df.schema
def get_schema(artifact_id):
"""Get Avro schema from Apicurio Registry"""
response = requests.get(
f"{params['schema_registry_url']}/apis/registry/v2/groups/default/artifacts/{artifact_id}")
json_format_schema = response.content.decode("utf-8")
return json_format_schema
def get_parameters():
"""Load parameter values from AWS Systems Manager (SSM) Parameter Store"""
parameters = {
"kafka_servers": ssm_client.get_parameter(
Name="/kafka_spark_demo/kafka_servers")["Parameter"]["Value"],
"kafka_demo_bucket": ssm_client.get_parameter(
Name="/kafka_spark_demo/kafka_demo_bucket")["Parameter"]["Value"],
"schema_registry_url": ssm_client.get_parameter(
Name="/kafka_spark_demo/schema_registry_url_int")["Parameter"]["Value"],
}
return parameters
if __name__ == "__main__":
main()

The PySpark script performs a stream-to-batch join between the streaming sales data from the Kafka topic, pagila.sales.avro, and a CSV file that contains sales regions based on the common country column. Schemas for the CSV data and the Kafka message keys and values are retrieved from Apicurio Registry using the REST API identically to the previous PySpark script.

+———-+———–+——+—————————–+————+——————-+——–+
|payment_id|customer_id|amount|payment_date |city |district |country |
+———-+———–+——+—————————–+————+——————-+——–+
|16666 |204 |3.99 |2021-05-10 13:04:06.996577+00|Usak |Usak |Turkey |
|17044 |187 |10.99 |2021-05-10 13:08:19.996577+00|Sumy |Sumy |Ukraine |
|16330 |416 |3.99 |2021-05-10 13:11:40.996577+00|Dadu |Sind |Pakistan|
|16283 |390 |7.99 |2021-05-10 13:12:14.996577+00|Nakhon Sawan|Nakhon Sawan |Thailand|
|16910 |114 |7.99 |2021-05-10 13:20:41.996577+00|Duisburg |Nordrhein-Westfalen|Germany |
+———-+———–+——+—————————–+————+——————-+——–+
only showing top 5 rows
view raw csv_data.txt hosted with ❤ by GitHub
Sales data from the streaming query of the first Kafka topic
+————–+————–+
|country |region |
+————–+————–+
|Afghanistan |Asia & Pacific|
|Aland Islands |Europe |
|Albania |Europe |
|Algeria |Arab States |
|American Samoa|Asia & Pacific|
+————–+————–+
only showing top 5 rows
view raw csv_regions.txt hosted with ❤ by GitHub
Sales regions data from the CSV file in Amazon S3

The PySpark script then performs a streaming aggregation of the sale amount and order quantity over a sliding 10-minute event-time window, writing results to the Kafka topic, pagila.sales.summary.avro, every two minutes. Below is a sample of the resulting streaming DataFrame, written to external storage, Kafka in this case, using a DataStreamWriter interface (pyspark.sql.streaming.DataStreamWriter).

+————–+———-+——+————+———-+
|region |sales |orders|window_start|window_end|
+————–+———-+——+————+———-+
|Asia & Pacific|1065.47 |153 |1633296600 |1633297200|
|Europe |632.16 |84 |1633296600 |1633297200|
|Latin America |443.34998 |65 |1633296600 |1633297200|
|North America |189.7 |30 |1633296600 |1633297200|
|Africa |137.81 |19 |1633296600 |1633297200|
|Middle East |111.829994|17 |1633296600 |1633297200|
|Unassigned |50.92 |8 |1633296600 |1633297200|
|Arab States |36.96 |4 |1633296600 |1633297200|
|Asia & Pacific|2632.26 |374 |1633296300 |1633296900|
|Europe |1415.0599 |194 |1633296300 |1633296900|
|Latin America |1260.1799 |182 |1633296300 |1633296900|
|North America |436.31998 |68 |1633296300 |1633296900|
|Africa |419.41998 |58 |1633296300 |1633296900|
|Middle East |276.61 |39 |1633296300 |1633296900|
|Unassigned |151.78 |22 |1633296300 |1633296900|
|Arab States |96.869995 |13 |1633296300 |1633296900|
|Asia & Pacific|3130.5898 |441 |1633296000 |1633296600|
|Europe |1679.6499 |235 |1633296000 |1633296600|
|Latin America |1350.0499 |195 |1633296000 |1633296600|
|Africa |603.18 |82 |1633296000 |1633296600|
|North America |573.19 |81 |1633296000 |1633296600|
|Middle East |291.6 |40 |1633296000 |1633296600|
|Unassigned |205.68999 |31 |1633296000 |1633296600|
|Arab States |162.78 |22 |1633296000 |1633296600|
+————–+———-+——+————+———-+
Aggregated, windowed sales results streamed back to the second Kafka topic

Once again, schemas for the second Kafka topic’s message key and value are retrieved from Apicurio Registry using its REST API. The key schema:

{
"name": "Key",
"type": "int",
"doc": "Schema for pagila.sales.summary.avro Kafka topic key"
}

And, the value schema:

{
"name": "Value",
"type": "record",
"doc": "Schema for pagila.sales.summary.avro Kafka topic value",
"fields": [
{
"name": "region",
"type": "string"
},
{
"name": "sales",
"type": "float"
},
{
"name": "orders",
"type": "int"
},
{
"name": "window_start",
"type": "long",
"logicalType": "timestamp-millis"
},
{
"name": "window_end",
"type": "long",
"logicalType": "timestamp-millis"
}
]
}

The schema as applied to the streaming DataFrame utilizing the to_avro() method.

root
|-- region: string (nullable = false)
|-- sales: float (nullable = true)
|-- orders: integer (nullable = false)
|-- window_start: long (nullable = true)
|-- window_end: long (nullable = true)

Submit this streaming PySpark script, 12_streaming_enrichment_avro.py, as an EMR Step.

aws emr add-steps \
–cluster-id ${CLUSTER_ID} \
–steps """Type=Spark,Name='streaming-query',ActionOnFailure=CONTINUE,
Args=[s3a://${SPARK_BUCKET}/spark/12_streaming_enrichment_avro.py]"""

Wait about two minutes to give this third PySpark script time to start its streaming query fully.

PySpark Structured Streaming job running on Amazon EMR cluster

Then, submit the second PySpark script, 11_incremental_sales_avro.py, as an EMR Step. Both PySpark scripts will run concurrently on your Amazon EMR cluster or using two different clusters.

aws emr add-steps \
–cluster-id ${CLUSTER_ID} \
–steps """Type=Spark,Name='sales-event-stream',ActionOnFailure=CONTINUE,
Args=[s3a://${SPARK_BUCKET}/spark/11_incremental_sales_avro.py]"""

The PySpark script, 11_incremental_sales_avro.py, should run for approximately 15–20 minutes.

Simulated event stream of sales data completed on a second Amazon EMR cluster

During that time, every two minutes, the script, 12_streaming_enrichment_avro.py, will write micro-batches of aggregated sales results to the second Kafka topic, pagila.sales.summary.avroin Avro format. An example of a micro-batch recorded in PySpark’s stdout log is shown below.

{
"id" : "bc44379f-9c1a-4d14-8392-4a8b860b24f1",
"runId" : "5ed235ac-5ff6-47d3-bb38-28e04f7ab752",
"name" : "streaming_to_kafka",
"timestamp" : "2021-10-03T22:38:00.000Z",
"batchId" : 24,
"numInputRows" : 127,
"inputRowsPerSecond" : 1.0583333333333333,
"processedRowsPerSecond" : 8.653584082856364,
"durationMs" : {
"addBatch" : 12888,
"getBatch" : 0,
"latestOffset" : 5,
"queryPlanning" : 84,
"triggerExecution" : 14676,
"walCommit" : 1676
},
"eventTime" : {
"avg" : "2021-10-03T22:36:59.638Z",
"max" : "2021-10-03T22:37:59.350Z",
"min" : "2021-10-03T22:36:00.268Z",
"watermark" : "2021-10-03T22:25:59.333Z"
},
"stateOperators" : [ {
"numRowsTotal" : 192,
"numRowsUpdated" : 28,
"memoryUsedBytes" : 204696,
"numRowsDroppedByWatermark" : 0,
"customMetrics" : {
"loadedMapCacheHitCount" : 5364,
"loadedMapCacheMissCount" : 400,
"stateOnCurrentVersionSizeBytes" : 80112
}
} ],
"sources" : [ {
"description" : "KafkaV2[Subscribe[pagila.sales.avro]]",
"startOffset" : {
"pagila.sales.avro" : {
"0" : 1627
}
},
"endOffset" : {
"pagila.sales.avro" : {
"0" : 1754
}
},
"numInputRows" : 127,
"inputRowsPerSecond" : 1.0583333333333333,
"processedRowsPerSecond" : 8.653584082856364
} ],
"sink" : {
"description" : "org.apache.spark.sql.kafka010.KafkaSourceProvider$KafkaTable@2c6d1341",
"numOutputRows" : 96
}
}
Streaming query results of a micro-batch written to Kafka as Avro

Once this script completes, wait another two minutes, then stop the streaming PySpark script, 12_streaming_enrichment_avro.py.

Review the Results

To retrieve and display the results of the previous PySpark script’s streaming computations from Kafka, we can use the final PySpark script, 13_batch_read_results_avro.py.

# Purpose: Batch read and display sales totals from Kafka in Avro format.
# Author: Gary A. Stafford
# Date: 2021-09-28
import os
import boto3
import pyspark.sql.functions as F
import requests
from ec2_metadata import ec2_metadata
from pyspark.sql import SparkSession
from pyspark.sql.avro.functions import from_avro
from pyspark.sql.window import Window
source_topic = "pagila.sales.summary.avro"
params = {}
os.environ['AWS_DEFAULT_REGION'] = ec2_metadata.region
ssm_client = boto3.client("ssm")
def main():
global params
params = get_parameters()
df_sales = read_from_kafka()
df_sales.show(100, truncate=False)
def read_from_kafka():
spark = SparkSession \
.builder \
.appName("kafka-streaming-sales") \
.getOrCreate()
sales_summary_key = get_schema("pagila.sales.summary.avro-key")
sales_summary_value = get_schema("pagila.sales.summary.avro-value")
options_read = {
"kafka.bootstrap.servers":
params["kafka_servers"],
"subscribe":
source_topic,
"startingOffsets":
"earliest",
"kafka.ssl.truststore.location":
"/tmp/kafka.client.truststore.jks",
"kafka.security.protocol":
"SASL_SSL",
"kafka.sasl.mechanism":
"AWS_MSK_IAM",
"kafka.sasl.jaas.config":
"software.amazon.msk.auth.iam.IAMLoginModule required;",
"kafka.sasl.client.callback.handler.class":
"software.amazon.msk.auth.iam.IAMClientCallbackHandler"
}
window = Window.partitionBy("region", "window_start").orderBy(F.col("timestamp").desc())
df_sales = spark.read \
.format("kafka") \
.options(**options_read) \
.load() \
.select("timestamp",
from_avro("key", sales_summary_key).alias("key"),
from_avro("value", sales_summary_value).alias("data")) \
.select("timestamp", "key", "data.*") \
.withColumn("row", F.row_number().over(window)) \
.where(F.col("row") == 1).drop("row") \
.select(F.col("region").alias("sales_region"),
F.format_number("sales", 2).alias("sales"),
F.format_number("orders", 0).alias("orders"),
F.from_unixtime("window_start", format="yyyy-MM-dd HH:mm").alias("window_start"),
F.from_unixtime("window_end", format="yyyy-MM-dd HH:mm").alias("window_end")) \
.orderBy(F.col("window_start").desc(), F.regexp_replace("sales", ",", "").cast("float").desc())
return df_sales
# ***** utility methods *****
def get_schema(artifact_id):
"""Get Avro schema from Apicurio Registry"""
response = requests.get(
f"{params['schema_registry_url']}/apis/registry/v2/groups/default/artifacts/{artifact_id}")
json_format_schema = response.content.decode("utf-8")
return json_format_schema
def get_parameters():
"""Load parameter values from AWS Systems Manager (SSM) Parameter Store"""
parameters = {
"kafka_servers": ssm_client.get_parameter(
Name="/kafka_spark_demo/kafka_servers")["Parameter"]["Value"],
"kafka_demo_bucket": ssm_client.get_parameter(
Name="/kafka_spark_demo/kafka_demo_bucket")["Parameter"]["Value"],
"schema_registry_url": ssm_client.get_parameter(
Name="/kafka_spark_demo/schema_registry_url_int")["Parameter"]["Value"],
}
return parameters
if __name__ == "__main__":
main()

Run the final script PySpark as EMR Step.

aws emr add-steps \
–cluster-id ${CLUSTER_ID} \
–steps """Type=Spark,Name='display-sales-results',ActionOnFailure=CONTINUE,
Args=[s3a://${SPARK_BUCKET}/spark/13_batch_read_results_avro.py]"""

This final PySpark script reads all the Avro-format aggregated sales messages from the Kafka topic, using schemas from Apicurio Registry, using a batch read. The script then summarizes the final sales results for each sliding 10-minute event-time window, by sales region, to the stdout job log.

+————–+——–+——+—————-+—————-+
|sales_region |sales |orders|window_start |window_end |
+————–+——–+——+—————-+—————-+
|Asia & Pacific|1,593.74|226 |2021-10-03 22:30|2021-10-03 22:40|
|Europe |833.89 |111 |2021-10-03 22:30|2021-10-03 22:40|
|Latin America |686.00 |100 |2021-10-03 22:30|2021-10-03 22:40|
|North America |274.57 |43 |2021-10-03 22:30|2021-10-03 22:40|
|Africa |216.70 |30 |2021-10-03 22:30|2021-10-03 22:40|
|Middle East |164.77 |23 |2021-10-03 22:30|2021-10-03 22:40|
|Unassigned |86.88 |12 |2021-10-03 22:30|2021-10-03 22:40|
|Arab States |58.92 |8 |2021-10-03 22:30|2021-10-03 22:40|
+————–+——–+——+—————-+—————-+
|Asia & Pacific|1,828.41|259 |2021-10-03 22:25|2021-10-03 22:35|
|Europe |878.79 |121 |2021-10-03 22:25|2021-10-03 22:35|
|Latin America |861.76 |124 |2021-10-03 22:25|2021-10-03 22:35|
|Africa |284.60 |40 |2021-10-03 22:25|2021-10-03 22:35|
|North America |284.56 |44 |2021-10-03 22:25|2021-10-03 22:35|
|Middle East |175.76 |24 |2021-10-03 22:25|2021-10-03 22:35|
|Unassigned |93.87 |13 |2021-10-03 22:25|2021-10-03 22:35|
|Arab States |78.89 |11 |2021-10-03 22:25|2021-10-03 22:35|
+————–+——–+——+—————-+—————-+
|Asia & Pacific|1,744.52|248 |2021-10-03 22:20|2021-10-03 22:30|
|Europe |948.64 |136 |2021-10-03 22:20|2021-10-03 22:30|
|Latin America |840.81 |119 |2021-10-03 22:20|2021-10-03 22:30|
|Africa |299.59 |41 |2021-10-03 22:20|2021-10-03 22:30|
|North America |282.59 |41 |2021-10-03 22:20|2021-10-03 22:30|
|Middle East |181.74 |26 |2021-10-03 22:20|2021-10-03 22:30|
|Unassigned |101.84 |16 |2021-10-03 22:20|2021-10-03 22:30|
|Arab States |64.92 |8 |2021-10-03 22:20|2021-10-03 22:30|
+————–+——–+——+—————-+—————-+
Tabulated sales results by the event-time windows (window breaks added for clarity)

Conclusion

In this post, we learned how to get started with Spark Structured Streaming on Amazon EMR using PySpark, the Apache Avro format, and Apircurio Registry. We decoupled Kafka message key and value schemas and the schemas of data stored in S3 as CSV, storing those schemas in a registry.


This blog represents my own viewpoints and not of my employer, Amazon Web Services (AWS). All product names, logos, and brands are the property of their respective owners.

, , , , , ,

Leave a comment

Getting Started with Spark Structured Streaming and Kafka on AWS using Amazon MSK and Amazon EMR

Exploring Apache Spark with Apache Kafka using both batch queries and Spark Structured Streaming

Introduction

Structured Streaming is a scalable and fault-tolerant stream processing engine built on the Spark SQL engine. Using Structured Streaming, you can express your streaming computation the same way you would express a batch computation on static data. In this post, we will learn how to use Apache Spark and Spark Structured Streaming with Apache Kafka. Specifically, we will utilize Structured Streaming on Amazon EMR (fka Amazon Elastic MapReduce) with Amazon Managed Streaming for Apache Kafka (Amazon MSK). We will consume from and publish to Kafka using both batch and streaming queries. Spark jobs will be written in Python with PySpark for this post.

High-level AWS architecture for this post’s demonstration

Apache Spark

According to the documentation, Apache Spark is a unified analytics engine for large-scale data processing. It provides high-level APIs in Java, Scala, Python (PySpark), and R, and an optimized engine that supports general execution graphs. In addition, Spark supports a rich set of higher-level tools, including Spark SQL for SQL and structured data processing, MLlib for machine learning, GraphX for graph processing, and Structured Streaming for incremental computation and stream processing.

Apache Spark and PySpark versus Apache Hive and Presto interest over time, according to Google Trends

Spark Structured Streaming

According to the documentation, Spark Structured Streaming is a scalable and fault-tolerant stream processing engine built on the Spark SQL engine. You can express your streaming computation the same way you would express a batch computation on static data. The Spark SQL engine will run it incrementally and continuously and update the final result as streaming data continues to arrive. In short, Structured Streaming provides fast, scalable, fault-tolerant, end-to-end, exactly-once stream processing without the user having to reason about streaming.

Amazon EMR

According to the documentation, Amazon EMR (fka Amazon Elastic MapReduce) is a cloud-based big data platform for processing vast amounts of data using open source tools such as Apache Spark, Hadoop, Hive, HBase, Flink, and Hudi, and Presto. Amazon EMR is a fully managed AWS service that makes it easy to set up, operate, and scale your big data environments by automating time-consuming tasks like provisioning capacity and tuning clusters.

A deployment option for Amazon EMR since December 2020, Amazon EMR on EKS, allows you to run Amazon EMR on Amazon Elastic Kubernetes Service (Amazon EKS). With the EKS deployment option, you can focus on running analytics workloads while Amazon EMR on EKS builds, configures, and manages containers for open-source applications.

If you are new to Amazon EMR for Spark, specifically PySpark, I recommend an earlier two-part series of posts, Running PySpark Applications on Amazon EMR: Methods for Interacting with PySpark on Amazon Elastic MapReduce.

Apache Kafka

According to the documentation, Apache Kafka is an open-source distributed event streaming platform used by thousands of companies for high-performance data pipelines, streaming analytics, data integration, and mission-critical applications.

Amazon MSK

Apache Kafka clusters are challenging to set up, scale, and manage in production. According to the documentation, Amazon MSK is a fully managed AWS service that makes it easy for you to build and run applications that use Apache Kafka to process streaming data. With Amazon MSK, you can use native Apache Kafka APIs to populate data lakes, stream changes to and from databases, and power machine learning and analytics applications.

Prerequisites

This post will focus primarily on configuring and running Apache Spark jobs on Amazon EMR. To follow along, you will need the following resources deployed and configured on AWS:

  1. Amazon S3 bucket (holds Spark resources and output);
  2. Amazon MSK cluster (using IAM Access Control);
  3. Amazon EKS container or an EC2 instance with the Kafka APIs installed and capable of connecting to Amazon MSK;
  4. Connectivity between the Amazon EKS cluster or EC2 and Amazon MSK cluster;
  5. Ensure the Amazon MSK Configuration has auto.create.topics.enable=true; this setting is false by default;

As shown in the architectural diagram above, the demonstration uses three separate VPCs within the same AWS account and AWS Region, us-east-1, for Amazon EMR, Amazon MSK, and Amazon EKS. The three VPCs are connected using VPC Peering. Ensure you expose the correct ingress ports and the corresponding CIDR ranges within your Amazon EMR, Amazon MSK, and Amazon EKS Security Groups. For additional security and cost savings, use a VPC endpoint for private communications between Amazon EMR and Amazon S3.

Source Code

All source code for this post and the two previous posts in the Amazon MSK series, including the Python/PySpark scripts demonstrated here, are open-sourced and located on GitHub.

PySpark Scripts

According to the Apache Spark documentation, PySpark is an interface for Apache Spark in Python. It allows you to write Spark applications using Python API. PySpark supports most of Spark’s features such as Spark SQL, DataFrame, Streaming, MLlib (Machine Learning), and Spark Core.

There are nine Python/PySpark scripts covered in this post:

  1. Initial sales data published to Kafka
    01_seed_sales_kafka.py
  2. Batch query of Kafka
    02_batch_read_kafka.py
  3. Streaming query of Kafka using grouped aggregation
    03_streaming_read_kafka_console.py
  4. Streaming query using sliding event-time window
    04_streaming_read_kafka_console_window.py
  5. Incremental sales data published to Kafka
    05_incremental_sales_kafka.py
  6. Streaming query from/to Kafka using grouped aggregation
    06_streaming_read_kafka_kafka.py
  7. Batch query of streaming query results in Kafka
    07_batch_read_kafka.py
  8. Streaming query using static join and sliding window
    08_streaming_read_kafka_join_window.py
  9. Streaming query using static join and grouped aggregation 
    09_streaming_read_kafka_join.py

Amazon MSK Authentication and Authorization

Amazon MSK provides multiple authentication and authorization methods to interact with the Apache Kafka APIs. For this post, the PySpark scripts use Kafka connection properties specific to IAM Access Control. You can use IAM to authenticate clients and to allow or deny Apache Kafka actions. Alternatively, you can use TLS or SASL/SCRAM to authenticate clients and Apache Kafka ACLs to allow or deny actions. In a recent post, I demonstrated the use of SASL/SCRAM and Kafka ACLs with Amazon MSK:Securely Decoupling Applications on Amazon EKS using Kafka with SASL/SCRAM.

Language Choice

According to the latest Spark 3.1.2 documentation, Spark runs on Java 8/11, Scala 2.12, Python 3.6+, and R 3.5+. The Spark documentation contains code examples written in all four languages and provides sample code on GitHub for Scala, Java, Python, and R. Spark is written in Scala.

Spark language interest over time, according to Google Trends

There are countless posts and industry opinions on choosing the best language for Spark. Taking no sides, I have selected the language I use most frequently for data analytics, Python using PySpark. Compared to Scala, these two languages exhibit some of the significant differences: compiled versus interpreted, statically-typed versus dynamically-typed, JVM- versus non-JVM-based, Scala’s support for concurrency and true multi-threading, and Scala’s 10x raw performance versus the perceived ease-of-use, larger community, and relative maturity of Python.

Preparation

Amazon S3

We will start by gathering and copying the necessary files to your Amazon S3 bucket. The bucket will serve as the location for the Amazon EMR bootstrap script, additional JAR files required by Spark, PySpark scripts, CSV-format data files, and eventual output from the Spark jobs.

There are a small set of additional JAR files required by the Spark jobs we will be running. Download the JARs from Maven Central and GitHub, and place them in the emr_jars project directory. The JARs will include AWS MSK IAM Auth, AWS SDK, Kafka Client, Spark SQL for Kafka, Spark Streaming, and other dependencies.

cd ./pyspark/emr_jars/
wget https://github.com/aws/aws-msk-iam-auth/releases/download/1.1.0/aws-msk-iam-auth-1.1.0-all.jar
wget https://repo1.maven.org/maven2/software/amazon/awssdk/bundle/2.17.28/bundle-2.17.28.jar
wget https://repo1.maven.org/maven2/org/apache/commons/commons-pool2/2.11.0/commons-pool2-2.11.0.jar
wget https://repo1.maven.org/maven2/org/apache/kafka/kafka-clients/2.8.0/kafka-clients-2.8.0.jar
wget https://repo1.maven.org/maven2/org/apache/spark/spark-sql-kafka-0-10_2.12/3.1.2/spark-sql-kafka-0-10_2.12-3.1.2.jar
wget https://repo1.maven.org/maven2/org/apache/spark/spark-streaming_2.12/3.1.2/spark-streaming_2.12-3.1.2.jar
wget https://repo1.maven.org/maven2/org/apache/spark/spark-tags_2.12/3.1.2/spark-tags_2.12-3.1.2.jar
wget https://repo1.maven.org/maven2/org/apache/spark/spark-token-provider-kafka-0-10_2.12/3.1.2/spark-token-provider-kafka-0-10_2.12-3.1.2.jar

Next, update the SPARK_BUCKET environment variable, then upload the JARs and all necessary project files from your copy of the GitHub project repository to your Amazon S3 bucket using the AWS s3 API.

cd ./pyspark/
export SPARK_BUCKET="<your-bucket-111222333444-us-east-1>"

aws s3 cp emr_jars/ \
"s3://${SPARK_BUCKET}/jars/" --recursive
aws s3 cp pyspark_scripts/ \
"s3://${SPARK_BUCKET}/spark/" --recursive
aws s3 cp emr_bootstrap/ \
"s3://${SPARK_BUCKET}/spark/" --recursive
aws s3 cp data/ \
"s3://${SPARK_BUCKET}/spark/" --recursive

Amazon EMR

The GitHub project repository includes a sample AWS CloudFormation template and an associated JSON-format CloudFormation parameters file. The template, stack.yml, accepts several parameters. To match your environment, you will need to update the parameter values such as SSK key, Subnet, and S3 bucket. The template will build a minimally-sized Amazon EMR cluster with one master and two core nodes in an existing VPC. The template can be easily modified to meet your requirements and budget.

aws cloudformation deploy \
--stack-name spark-kafka-demo-dev \
--template-file ./cloudformation/stack.yml \
--parameter-overrides file://cloudformation/dev.json \
--capabilities CAPABILITY_NAMED_IAM

Whether you decide to use the CloudFormation template, two essential Spark configuration items in the EMR template are the list of applications to install and the bootstrap script deployment.

Applications:
Name: 'Hadoop'
Name: 'Spark'
Name: 'JupyterEnterpriseGateway'
Name: 'Livy'
BootstrapActions:
Name: bootstrap-script
ScriptBootstrapAction:
Path: !Join [ '', [ 's3://', !Ref ProjectBucket, '/spark/bootstrap_actions.sh' ] ]

Below, we see the EMR bootstrap shell script, bootstrap_actions.sh, deployed and executed on the cluster’s nodes.

#!/bin/bash
# Purpose: EMR bootstrap script
# Author: Gary A. Stafford
# Date: 2021-09-10
# arg passed in by CloudFormation
if [ $# -eq 0 ]
then
echo "No arguments supplied"
fi
SPARK_BUCKET=$1
# update yum packages, install jq
sudo yum update -y
sudo yum install -y jq
# jsk truststore for connecting to msk
sudo cp /usr/lib/jvm/java-1.8.0-amazon-corretto.x86_64/jre/lib/security/cacerts \
/tmp/kafka.client.truststore.jks
# set region for boto3
aws configure set region \
"$(curl –silent http://169.254.169.254/latest/dynamic/instance-identity/document | jq -r .region)"
# install python packages for pyspark scripts
sudo python3 -m pip install boto3 botocore ec2-metadata
# install required jars for spark
sudo aws s3 cp \
"s3://${SPARK_BUCKET}/jars/" /usr/lib/spark/jars/ \
–recursive –exclude "*" –include "*.jar"

The script performed several tasks, including deploying the additional JAR files we copied to Amazon S3 earlier.

Amazon EMR cluster bootstrap actions tab

AWS Systems Manager Parameter Store

The PySpark scripts in this demonstration will obtain two parameters from the AWS Systems Manager (AWS SSM) Parameter Store. They include the Amazon MSK bootstrap brokers and the Amazon S3 bucket that contains the Spark assets. Using the Parameter Store ensures that no sensitive or environment-specific configuration is hard-coded into the PySpark scripts. Modify and execute the ssm_params.sh script to create two AWS SSM Parameter Store parameters.

aws ssm put-parameter \
--name /kafka_spark_demo/kafka_servers \
--type String \
--value "<b-1.your-brokers.kafka.us-east-1.amazonaws.com:9098,b-2.your-brokers.kafka.us-east-1.amazonaws.com:9098>" \
--description "Amazon MSK Kafka broker list" \
--overwrite

aws ssm put-parameter \
--name /kafka_spark_demo/kafka_demo_bucket \
--type String \
--value "<your-bucket-111222333444-us-east-1>" \
--description "Amazon S3 bucket" \
--overwrite

Spark Submit Options with Amazon EMR

Amazon EMR provides multiple options to run Spark jobs. The recommended method for PySpark scripts is to use Amazon EMR Steps from the EMR console or AWS CLI to submit work to Spark installed on an EMR cluster. In the console and CLI, you do this using a Spark application step, which runs the spark-submit script as a step on your behalf. With the API, you use a Step to invoke spark-submit using command-runner.jar. Alternately, you can SSH into the EMR cluster’s master node and run spark-submit. We will employ both techniques to run the PySpark jobs.

Securely Accessing Amazon MSK from Spark

Each of the PySpark scripts demonstrated in this post uses a common pattern for accessing Amazon MSK from Amazon EMR using IAM Authentication. Whether producing or consuming messages from Kafka, the same security-related options are used to configure Spark (starting at line 10, below). The details behind each option are outlined in the Security section of the Spark Structured Streaming + Kafka Integration Guide and the Configure clients for IAM access control section of the Amazon MSK IAM access control documentation.

Data Source and Analysis Objective

For this post, we will continue to use data from PostgreSQL’s sample Pagila database. The database contains simulated movie rental data. The dataset is fairly small, making it less than ideal for ‘big data’ use cases but small enough to quickly install and minimize data storage and analytical query costs.

payment_id customer_id amount payment_date city district country
16940 130 5.99 2021-05-08 21:21:56.996577 +00:00 guas Lindas de Gois Gois Brazil
16406 459 5.99 2021-05-08 21:22:59.996577 +00:00 Qomsheh Esfahan Iran
16315 408 6.99 2021-05-08 21:32:05.996577 +00:00 Jaffna Northern Sri Lanka
16185 333 7.99 2021-05-08 21:33:07.996577 +00:00 Baku Baki Azerbaijan
17097 222 9.99 2021-05-08 21:33:47.996577 +00:00 Jaroslavl Jaroslavl Russian Federation
16579 549 3.99 2021-05-08 21:36:33.996577 +00:00 Santiago de Compostela Galicia Spain
16050 269 4.99 2021-05-08 21:40:19.996577 +00:00 Salinas California United States
17126 239 7.99 2021-05-08 22:00:12.996577 +00:00 Ciomas West Java Indonesia
16933 126 7.99 2021-05-08 22:29:06.996577 +00:00 Po So Paulo Brazil
16297 399 8.99 2021-05-08 22:30:47.996577 +00:00 Okara Punjab Pakistan
view raw sales_seed.csv hosted with ❤ by GitHub

According to mastersindatascience.org, data analytics is “…the process of analyzing raw data to find trends and answer questions…” Using Spark, we can analyze the movie rental sales data as a batch or in near-real-time using Structured Streaming to answer different questions. For example, using batch computations on static data, we could answer the question, how do the current total all-time sales for France compare to the rest of Europe? Or, what were the total sales for India during August? Using streaming computations, we can answer questions like, what are the sales volumes for the United States during this current four-hour marketing promotional period? Or, are sales to North America beginning to slow as the Olympics are aired during prime time?

Data analytics — the process of analyzing raw data to find trends and answer questions. (mastersindatascience.org)

Batch Queries

Before exploring the more advanced topic of streaming computations with Spark Structured Streaming, let’s first use a simple batch query and a batch computation to consume messages from the Kafka topic, perform a basic aggregation, and write the output to both the console and Amazon S3.

PySpark Job 1: Initial Sales Data

Kafka supports Protocol Buffers, JSON Schema, and Avro. However, to keep things simple in this first post, we will use JSON. We will seed a new Kafka topic with an initial batch of 250 JSON-format messages. This first batch of messages represents previous online movie rental sale transaction records. We will use these sales transactions for both batch and streaming queries.

The PySpark script, 01_seed_sales_kafka.py, and the seed data file, sales_seed.csv, are both read from Amazon S3 by Spark, running on Amazon EMR. The location of the Amazon S3 bucket name and the Amazon MSK’s broker list values are pulled from AWS SSM Parameter Store using the parameters created earlier. The Kafka topic that stores the sales data, pagila.sales.spark.streaming, is created automatically by the script the first time it runs.

# Purpose: Batch write initial sales data from S3 to a new Kafka topic
# Author: Gary A. Stafford
# Date: 2021-09-22
import os
import boto3
import pyspark.sql.functions as F
from ec2_metadata import ec2_metadata
from pyspark.sql import SparkSession
from pyspark.sql.types import StructField, StructType, IntegerType, \
StringType, FloatType
from pyspark.sql.window import Window
sales_data = "sales_seed.csv"
topic_output = "pagila.sales.spark.streaming"
os.environ['AWS_DEFAULT_REGION'] = ec2_metadata.region
ssm_client = boto3.client("ssm")
def main():
params = get_parameters()
spark = SparkSession \
.builder \
.appName("kafka-seed-sales") \
.getOrCreate()
df_sales = read_from_csv(spark, params)
write_to_kafka(params, df_sales)
def read_from_csv(spark, params):
schema = StructType([
StructField("payment_id", IntegerType(), False),
StructField("customer_id", IntegerType(), False),
StructField("amount", FloatType(), False),
StructField("payment_date", StringType(), False),
StructField("city", StringType(), True),
StructField("district", StringType(), True),
StructField("country", StringType(), False),
])
df_sales = spark.read \
.csv(path=f"s3a://{params['kafka_demo_bucket']}/spark/{sales_data}",
schema=schema, header=True, sep="|")
df_sales = update_payment_date(df_sales)
return df_sales
def write_to_kafka(params, df_sales):
options_write = {
"kafka.bootstrap.servers":
params["kafka_servers"],
"topic":
topic_output,
"kafka.ssl.truststore.location":
"/tmp/kafka.client.truststore.jks",
"kafka.security.protocol":
"SASL_SSL",
"kafka.sasl.mechanism":
"AWS_MSK_IAM",
"kafka.sasl.jaas.config":
"software.amazon.msk.auth.iam.IAMLoginModule required;",
"kafka.sasl.client.callback.handler.class":
"software.amazon.msk.auth.iam.IAMClientCallbackHandler",
}
df_sales \
.selectExpr("CAST(payment_id AS STRING) AS key",
"to_json(struct(*)) AS value") \
.write \
.format("kafka") \
.options(**options_write) \
.save()
def update_payment_date(df):
"""Update existing payment date to a current timestamp for streaming simulation"""
record_count = 250
window = Window.orderBy("payment_id")
df = df \
.drop("payment_date") \
.withColumn("index", F.row_number().over(window)) \
.withColumn("payment_date",
(F.unix_timestamp(F.current_timestamp())
(record_count F.col("index"))).cast(IntegerType())) \
.drop("index")
return df
def get_parameters():
"""Load parameter values from AWS Systems Manager (SSM) Parameter Store"""
params = {
"kafka_servers": ssm_client.get_parameter(
Name="/kafka_spark_demo/kafka_servers")["Parameter"]["Value"],
"kafka_demo_bucket": ssm_client.get_parameter(
Name="/kafka_spark_demo/kafka_demo_bucket")["Parameter"]["Value"],
}
return params
if __name__ == "__main__":
main()

Update the two environment variables, then submit your first Spark job as an Amazon EMR Step using the AWS CLI and the emr API:

export CLUSTER_ID="<your-cluster-id>"
export SPARK_BUCKET="<your-bucket-111222333444-us-east-1>"
aws emr add-steps \
–cluster-id ${CLUSTER_ID} \
–steps """Type=Spark,Name='kafka-seed-sales',ActionOnFailure=CONTINUE,
Args=[s3a://${SPARK_BUCKET}/spark/01_seed_sales_kafka.py]"""
Successfully adding a Step (Spark job) to the Amazon EMR cluster

From the Amazon EMR console, we should observe the Spark job has been completed successfully in about 30–90 seconds.

Amazon EMR Step (Spark job) completed successfully

The Kafka Consumer API allows applications to read streams of data from topics in the Kafka cluster. Using the Kafka Consumer API, from within a Kubernetes container running on Amazon EKS or an EC2 instance, we can observe that the new Kafka topic has been successfully created and that messages (initial sales data) have been published to the new Kafka topic.

export BBROKERS="b-1.your-cluster.kafka.us-east-1.amazonaws.com:9098,b-2.your-cluster.kafka.us-east-1.amazonaws.com:9098, ..."
bin/kafka-console-consumer.sh \
--topic pagila.sales.spark.streaming \
--from-beginning \
--property print.key=true \
--property print.value=true \
--property print.offset=true \
--property print.partition=true \
--property print.headers=true \
--property print.timestamp=true \
--bootstrap-server $BBROKERS \
--consumer.config config/client-iam.properties
Initial sales data as messages in Kafka topic

PySpark Job 2: Batch Query of Amazon MSK Topic

The PySpark script, 02_batch_read_kafka.py, performs a batch query of the initial 250 messages in the Kafka topic. When run, the PySpark script parses the JSON-format messages, then aggregates the data by both total sales and order count, by country, and finally, sorts by total sales.

window = Window.partitionBy("country").orderBy("amount")
window_agg = Window.partitionBy("country")
.withColumn("row", F.row_number().over(window)) \
.withColumn("orders", F.count(F.col("amount")).over(window_agg)) \
.withColumn("sales", F.sum(F.col("amount")).over(window_agg)) \
.where(F.col("row") == 1).drop("row") \

The results are written to both the console as stdout and to Amazon S3 in CSV format.

# Purpose: Batch read Kafka topic, aggregate sales and orders by country,
# and output to console and Amazon S3 as CSV
# Author: Gary A. Stafford
# Date: 2021-09-22
import os
import boto3
import pyspark.sql.functions as F
from ec2_metadata import ec2_metadata
from pyspark.sql import SparkSession
from pyspark.sql.types import StructField, StructType, IntegerType, \
StringType, FloatType, TimestampType
from pyspark.sql.window import Window
topic_input = "pagila.sales.spark.streaming"
os.environ['AWS_DEFAULT_REGION'] = ec2_metadata.region
ssm_client = boto3.client("ssm")
def main():
params = get_parameters()
spark = SparkSession \
.builder \
.appName("kafka-batch-sales") \
.getOrCreate()
df_sales = read_from_kafka(spark, params)
summarize_sales(params, df_sales)
def read_from_kafka(spark, params):
options_read = {
"kafka.bootstrap.servers":
params["kafka_servers"],
"subscribe":
topic_input,
"startingOffsets":
"earliest",
"endingOffsets":
"latest",
"kafka.ssl.truststore.location":
"/tmp/kafka.client.truststore.jks",
"kafka.security.protocol":
"SASL_SSL",
"kafka.sasl.mechanism":
"AWS_MSK_IAM",
"kafka.sasl.jaas.config":
"software.amazon.msk.auth.iam.IAMLoginModule required;",
"kafka.sasl.client.callback.handler.class":
"software.amazon.msk.auth.iam.IAMClientCallbackHandler"
}
df_sales = spark.read \
.format("kafka") \
.options(**options_read) \
.load()
return df_sales
def summarize_sales(params, df_sales):
schema = StructType([
StructField("payment_id", IntegerType(), False),
StructField("customer_id", IntegerType(), False),
StructField("amount", FloatType(), False),
StructField("payment_date", TimestampType(), False),
StructField("city", StringType(), True),
StructField("district", StringType(), True),
StructField("country", StringType(), False),
])
window = Window.partitionBy("country").orderBy("amount")
window_agg = Window.partitionBy("country")
df_output = df_sales \
.selectExpr("CAST(value AS STRING)") \
.select(F.from_json("value", schema=schema).alias("data")) \
.select("data.*") \
.withColumn("row", F.row_number().over(window)) \
.withColumn("orders", F.count(F.col("amount")).over(window_agg)) \
.withColumn("sales", F.sum(F.col("amount")).over(window_agg)) \
.where(F.col("row") == 1).drop("row") \
.select("country", (F.format_number(F.col("sales"), 2)).alias("sales"), "orders") \
.coalesce(1) \
.orderBy(F.regexp_replace("sales", ",", "").cast("float"), ascending=False)
df_output \
.write \
.format("console") \
.option("numRows", 25) \
.option("truncate", False) \
.save()
df_output \
.write \
.csv(path=f"s3a://{params['kafka_demo_bucket']}/spark_output/sales_by_country",
header=True, sep="|") \
.mode("overwrite")
def get_parameters():
"""Load parameter values from AWS Systems Manager (SSM) Parameter Store"""
params = {
"kafka_servers": ssm_client.get_parameter(
Name="/kafka_spark_demo/kafka_servers")["Parameter"]["Value"],
"kafka_demo_bucket": ssm_client.get_parameter(
Name="/kafka_spark_demo/kafka_demo_bucket")["Parameter"]["Value"],
}
return params
if __name__ == "__main__":
main()

Again, submit this job as an Amazon EMR Step using the AWS CLI and the emr API:

aws emr add-steps \
–cluster-id ${CLUSTER_ID} \
–steps """Type=Spark,Name='kafka-batch-sales',ActionOnFailure=CONTINUE,
Args=[s3a://${SPARK_BUCKET}/spark/02_batch_read_kafka.py]"""

To view the console output, click on ‘View logs’ in the Amazon EMR console, then click on the stdout logfile, as shown below.

Logs from successful Amazon EMR Step (Spark job)

The stdout logfile should contain the top 25 total sales and order counts, by country, based on the initial 250 sales records.

+------------------+------+------+
|country |sales |orders|
+------------------+------+------+
|India |138.80|20 |
|China |133.80|20 |
|Mexico |106.86|14 |
|Japan |100.86|14 |
|Brazil |96.87 |13 |
|Russian Federation|94.87 |13 |
|United States |92.86 |14 |
|Nigeria |58.93 |7 |
|Philippines |58.92 |8 |
|South Africa |46.94 |6 |
|Argentina |42.93 |7 |
|Germany |39.96 |4 |
|Indonesia |38.95 |5 |
|Italy |35.95 |5 |
|Iran |33.95 |5 |
|South Korea |33.94 |6 |
|Poland |30.97 |3 |
|Pakistan |25.97 |3 |
|Taiwan |25.96 |4 |
|Mozambique |23.97 |3 |
|Ukraine |23.96 |4 |
|Vietnam |23.96 |4 |
|Venezuela |22.97 |3 |
|France |20.98 |2 |
|Peru |19.98 |2 |
+------------------+------+------+
only showing top 25 rows

The PySpark script also wrote the same results to Amazon S3 in CSV format.

CSV file written to Amazon S3 as a result of the Spark job

The total sales and order count for 69 countries were computed, sorted, and coalesced into a single CSV file.

country sales orders
India 138.80 20
China 133.80 20
Mexico 106.86 14
Japan 100.86 14
Brazil 96.87 13
Russian Federation 94.87 13
United States 92.86 14
Nigeria 58.93 7
Philippines 58.92 8
South Africa 46.94 6
Argentina 42.93 7
Germany 39.96 4
Indonesia 38.95 5
Italy 35.95 5
Iran 33.95 5
South Korea 33.94 6
Poland 30.97 3
Pakistan 25.97 3
Taiwan 25.96 4
Mozambique 23.97 3
Vietnam 23.96 4
Ukraine 23.96 4
Venezuela 22.97 3
France 20.98 2
Peru 19.98 2

Streaming Queries

To demonstrate streaming queries with Spark Structured Streaming, we will use a combination of two PySpark scripts. The first script, 03_streaming_read_kafka_console.py, will perform a streaming query and computation of messages in the Kafka topic, aggregating the total sales and number of orders. Concurrently, the second PySpark script, 04_incremental_sales_kafka.py, will read additional Pagila sales data from a CSV file located on Amazon S3 and write messages to the Kafka topic at a rate of two messages per second. The first script, 03_streaming_read_kafka_console.py, will stream aggregations in micro-batches of one-minute increments to the console. Spark Structured Streaming queries are processed using a micro-batch processing engine, which processes data streams as a series of small, batch jobs.

Note that this first script performs grouped aggregations as opposed to aggregations over a sliding event-time window. The aggregated results represent the total, all-time sales at a point in time, based on all the messages currently in the topic when the micro-batch was computed.

To follow along with this part of the demonstration, you can run the two Spark jobs as concurrent steps on the existing Amazon EMR cluster, or create a second EMR cluster, identically configured to the existing cluster, to run the second PySpark script, 04_incremental_sales_kafka.py. Using a second cluster, you can use a minimally-sized single master node cluster with no core nodes to save cost.

PySpark Job 3: Streaming Query to Console

The first PySpark scripts, 03_streaming_read_kafka_console.py, performs a streaming query of messages in the Kafka topic. The script then aggregates the data by both total sales and order count, by country, and finally, sorts by total sales.

.groupBy("country") \
.agg(F.count("amount"), F.sum("amount")) \
.orderBy(F.col("sum(amount)").desc()) \
.select("country",
(F.format_number(F.col("sum(amount)"), 2)).alias("sales"),
(F.col("count(amount)")).alias("orders")) \

The results are streamed to the console using the processingTime trigger parameter. A trigger defines how often a streaming query should be executed and emit new data. The processingTime parameter sets a trigger that runs a micro-batch query periodically based on the processing time (e.g. ‘5 minutes’ or ‘1 hour’). The trigger is currently set to a minimal processing time of one minute for ease of demonstration.

.trigger(processingTime="1 minute") \
.outputMode("complete") \
.format("console") \
.option("numRows", 25) \
# Purpose: Streaming read from Kafka topic and summarize top 25
# all-time total sales by country to the console every minute
# Author: Gary A. Stafford
# Date: 2021-09-08
import os
import boto3
import pyspark.sql.functions as F
from ec2_metadata import ec2_metadata
from pyspark.sql import SparkSession
from pyspark.sql.types import StructField, StructType, IntegerType, StringType, FloatType, TimestampType
topic_input = "pagila.sales.spark.streaming"
os.environ['AWS_DEFAULT_REGION'] = ec2_metadata.region
ssm_client = boto3.client("ssm")
def main():
params = get_parameters()
spark = SparkSession \
.builder \
.appName("kafka-streaming-sales-console") \
.getOrCreate()
df_sales = read_from_kafka(spark, params)
summarize_sales(df_sales)
def read_from_kafka(spark, params):
options_read = {
"kafka.bootstrap.servers":
params["kafka_servers"],
"subscribe":
topic_input,
"startingOffsets":
"earliest",
"kafka.ssl.truststore.location":
"/tmp/kafka.client.truststore.jks",
"kafka.security.protocol":
"SASL_SSL",
"kafka.sasl.mechanism":
"AWS_MSK_IAM",
"kafka.sasl.jaas.config":
"software.amazon.msk.auth.iam.IAMLoginModule required;",
"kafka.sasl.client.callback.handler.class":
"software.amazon.msk.auth.iam.IAMClientCallbackHandler"
}
df_sales = spark.readStream \
.format("kafka") \
.options(**options_read) \
.load()
return df_sales
def summarize_sales(df_sales):
schema = StructType([
StructField("payment_id", IntegerType(), False),
StructField("customer_id", IntegerType(), False),
StructField("amount", FloatType(), False),
StructField("payment_date", TimestampType(), False),
StructField("city", StringType(), True),
StructField("district", StringType(), True),
StructField("country", StringType(), False),
])
ds_sales = df_sales \
.selectExpr("CAST(value AS STRING)") \
.select(F.from_json("value", schema=schema).alias("data")) \
.select("data.*") \
.groupBy("country") \
.agg(F.count("amount"), F.sum("amount")) \
.orderBy(F.col("sum(amount)").desc()) \
.select("country",
(F.format_number(F.col("sum(amount)"), 2)).alias("sales"),
(F.col("count(amount)")).alias("orders")) \
.coalesce(1) \
.writeStream \
.queryName("streaming_to_console") \
.trigger(processingTime="1 minute") \
.outputMode("complete") \
.format("console") \
.option("numRows", 25) \
.option("truncate", False) \
.start()
ds_sales.awaitTermination()
def get_parameters():
"""Load parameter values from AWS Systems Manager (SSM) Parameter Store"""
params = {
"kafka_servers": ssm_client.get_parameter(
Name="/kafka_spark_demo/kafka_servers")["Parameter"]["Value"],
"kafka_demo_bucket": ssm_client.get_parameter(
Name="/kafka_spark_demo/kafka_demo_bucket")["Parameter"]["Value"],
}
return params
if __name__ == "__main__":
main()

For demonstration purposes, we will run the Spark job directly from the master node of the EMR Cluster. This method will allow us to easily view the micro-batches and associated logs events as they are output to the console. The console is normally used for testing purposes. Submitting the PySpark script from the cluster’s master node is an alternative to submitting an Amazon EMR Step. Connect to the master node of the Amazon EMR cluster using SSH, as the hadoop user:

export EMR_MASTER=<your-emr-master-dns.compute-1.amazonaws.com>
export EMR_KEY_PATH=path/to/key/<your-ssk-key.pem>
ssh -i ${EMR_KEY_PATH} hadoop@${EMR_MASTER}

Submit the PySpark script, 03_streaming_read_kafka_console.py, to Spark:

export SPARK_BUCKET="<your-bucket-111222333444-us-east-1>"
spark-submit s3a://${SPARK_BUCKET}/spark/03_streaming_read_kafka_console.py

Before running the second PySpark script, 04_incremental_sales_kafka.py, let the first script run long enough to pick up the existing sales data in the Kafka topic. Within about two minutes, you should see the first micro-batch of aggregated sales results, labeled ‘Batch: 0’ output to the console. This initial micro-batch should contain the aggregated results of the existing 250 messages from Kafka. The streaming query’s first micro-batch results should be identical to the previous batch query results.

-------------------------------------------
Batch: 0
-------------------------------------------
+------------------+------+------+
|country |sales |orders|
+------------------+------+------+
|India |138.80|20 |
|China |133.80|20 |
|Mexico |106.86|14 |
|Japan |100.86|14 |
|Brazil |96.87 |13 |
|Russian Federation|94.87 |13 |
|United States |92.86 |14 |
|Nigeria |58.93 |7 |
|Philippines |58.92 |8 |
|South Africa |46.94 |6 |
|Argentina |42.93 |7 |
|Germany |39.96 |4 |
|Indonesia |38.95 |5 |
|Italy |35.95 |5 |
|Iran |33.95 |5 |
|South Korea |33.94 |6 |
|Poland |30.97 |3 |
|Pakistan |25.97 |3 |
|Taiwan |25.96 |4 |
|Mozambique |23.97 |3 |
|Ukraine |23.96 |4 |
|Vietnam |23.96 |4 |
|Venezuela |22.97 |3 |
|France |20.98 |2 |
|Peru |19.98 |2 |
+------------------+------+------+
only showing top 25 rows

Immediately below the batch output, there will be a log entry containing information about the batch. In the log entry snippet below, note the starting and ending offsets of the topic for the Spark job’s Kafka consumer group, 0 (null) to 250, representing the initial sales data.

{
"id" : "e0168615-dd39-4025-9811-c001a324ed58",
"runId" : "ed76fe07-032c-42ab-881c-57b44f561a29",
"name" : "streaming_to_console",
"timestamp" : "2021-09-08T17:37:58.116Z",
"batchId" : 0,
"numInputRows" : 250,
"inputRowsPerSecond" : 0.0,
"processedRowsPerSecond" : 14.104372355430183,
"durationMs" : {
"addBatch" : 12298,
"getBatch" : 39,
"latestOffset" : 4710,
"queryPlanning" : 542,
"triggerExecution" : 17724,
"walCommit" : 33
},
"stateOperators" : [ {
"numRowsTotal" : 136,
"numRowsUpdated" : 136,
"memoryUsedBytes" : 119008,
"numRowsDroppedByWatermark" : 0,
"customMetrics" : {
"loadedMapCacheHitCount" : 0,
"loadedMapCacheMissCount" : 0,
"stateOnCurrentVersionSizeBytes" : 61408
}
} ],
"sources" : [ {
"description" : "KafkaV2[Subscribe[pagila.sales.spark.streaming]]",
"startOffset" : null,
"endOffset" : {
"pagila.sales.spark.streaming" : {
"0" : 250
}
},
"numInputRows" : 250,
"inputRowsPerSecond" : 0.0,
"processedRowsPerSecond" : 14.104372355430183
} ],
"sink" : {
"description" : "org.apache.spark.sql.execution.streaming.ConsoleTable$@13b8bba3",
"numOutputRows" : 68
}
}

PySpark Job 4: Incremental Sales Data

As described earlier, the second PySpark script, 04_incremental_sales_kafka.py, reads 1,800 additional sales records from a second CSV file located on Amazon S3, sales_incremental_large.csv. The script then publishes messages to the Kafka topic at a deliberately throttled rate of two messages per second. Concurrently, the first PySpark job, still running and performing a streaming query, will consume the new Kafka messages and stream aggregated total sales and orders in micro-batches of one-minute increments to the console over a period of about 15 minutes.

# Purpose: Batch write incremental sales data from S3 to a new Kafka topic
# Use a delay between each message to simulate real-time streaming data
# Author: Gary A. Stafford
# Date: 2021-09-26
import os
import time
import boto3
import pyspark.sql.functions as F
from ec2_metadata import ec2_metadata
from pyspark.sql import SparkSession
from pyspark.sql.types import StructField, StructType, IntegerType, StringType, FloatType
sales_data = "sales_incremental_large.csv"
topic_output = "pagila.sales.spark.streaming"
time_between_messages = 0.5 # 1800 messages * .5 seconds = ~15 minutes
os.environ['AWS_DEFAULT_REGION'] = ec2_metadata.region
ssm_client = boto3.client("ssm")
def main():
params = get_parameters()
spark = SparkSession \
.builder \
.appName("kafka-incremental-sales") \
.getOrCreate()
schema = StructType([
StructField("payment_id", IntegerType(), False),
StructField("customer_id", IntegerType(), False),
StructField("amount", FloatType(), False),
StructField("payment_date", StringType(), False),
StructField("city", StringType(), True),
StructField("district", StringType(), True),
StructField("country", StringType(), False),
])
df_sales = read_from_csv(spark, params, schema)
df_sales.cache()
write_to_kafka(spark, params, df_sales)
def read_from_csv(spark, params, schema):
df_sales = spark.read \
.csv(path=f"s3a://{params['kafka_demo_bucket']}/spark/{sales_data}",
schema=schema, header=True, sep="|")
return df_sales
def write_to_kafka(spark, params, df_sales):
options_write = {
"kafka.bootstrap.servers":
params["kafka_servers"],
"topic":
topic_output,
"kafka.ssl.truststore.location":
"/tmp/kafka.client.truststore.jks",
"kafka.security.protocol":
"SASL_SSL",
"kafka.sasl.mechanism":
"AWS_MSK_IAM",
"kafka.sasl.jaas.config":
"software.amazon.msk.auth.iam.IAMLoginModule required;",
"kafka.sasl.client.callback.handler.class":
"software.amazon.msk.auth.iam.IAMClientCallbackHandler",
}
sales_count = df_sales.count()
for r in range(0, sales_count):
row = df_sales.collect()[r]
df_message = spark.createDataFrame([row], df_sales.schema)
df_message = df_message \
.drop("payment_date") \
.withColumn("payment_date", F.current_timestamp()) \
.selectExpr("CAST(payment_id AS STRING) AS key",
"to_json(struct(*)) AS value") \
.write \
.format("kafka") \
.options(**options_write) \
.save()
df_message.show(1)
time.sleep(time_between_messages)
def get_parameters():
"""Load parameter values from AWS Systems Manager (SSM) Parameter Store"""
params = {
"kafka_servers": ssm_client.get_parameter(
Name="/kafka_spark_demo/kafka_servers")["Parameter"]["Value"],
"kafka_demo_bucket": ssm_client.get_parameter(
Name="/kafka_spark_demo/kafka_demo_bucket")["Parameter"]["Value"],
}
return params
if __name__ == "__main__":
main()

Submit the second PySpark script as a concurrent Amazon EMR Step to the first EMR cluster, or submit as a step to the second Amazon EMR cluster.

aws emr add-steps \
–cluster-id ${CLUSTER_ID} \
–steps """Type=Spark,Name='kafka-incremental-sales',ActionOnFailure=CONTINUE,
Args=[s3a://${SPARK_BUCKET}/spark/04_incremental_sales_kafka.py]"""

The job sends a total of 1,800 messages to Kafka at a rate of two messages per second for 15 minutes. The total runtime of the job should be approximately 19 minutes, given a few minutes for startup and shutdown. Why run for so long? We want to make sure the job’s runtime will span multiple, overlapping, sliding event-time windows.

After about two minutes, return to the terminal output of the first Spark job, 03_streaming_read_kafka_console.py, running on the master node of the first cluster. As long as new messages are consumed every minute, you should see a new micro-batch of aggregated sales results stream to the console. Below we see an example of Batch 3, which reflects additional sales compared to Batch 0, shown previously. The results reflect the current all-time sales by country in real-time as the sales are published to Kafka.

-------------------------------------------
Batch: 5
-------------------------------------------
+------------------+------+------+
|country |sales |orders|
+------------------+------+------+
|China |473.35|65 |
|India |393.44|56 |
|Japan |292.60|40 |
|Mexico |262.64|36 |
|United States |252.65|35 |
|Russian Federation|243.65|35 |
|Brazil |220.69|31 |
|Philippines |191.75|25 |
|Indonesia |142.81|19 |
|South Africa |110.85|15 |
|Nigeria |108.86|14 |
|Argentina |89.86 |14 |
|Germany |85.89 |11 |
|Israel |68.90 |10 |
|Ukraine |65.92 |8 |
|Turkey |58.91 |9 |
|Iran |58.91 |9 |
|Saudi Arabia |56.93 |7 |
|Poland |50.94 |6 |
|Pakistan |50.93 |7 |
|Italy |48.93 |7 |
|French Polynesia |47.94 |6 |
|Peru |45.95 |5 |
|United Kingdom |45.94 |6 |
|Colombia |44.94 |6 |
+------------------+------+------+
only showing top 25 rows

If we fast forward to a later micro-batch, sometime after the second incremental sales job is completed, we should see the top 25 aggregated sales by country of 2,050 messages — 250 seed plus 1,800 incremental messages.

-------------------------------------------
Batch: 20
-------------------------------------------
+------------------+--------+------+
|country |sales |orders|
+------------------+--------+------+
|China |1,379.05|195 |
|India |1,338.10|190 |
|United States |915.69 |131 |
|Mexico |855.80 |120 |
|Japan |831.88 |112 |
|Russian Federation|723.95 |105 |
|Brazil |613.12 |88 |
|Philippines |528.27 |73 |
|Indonesia |381.46 |54 |
|Turkey |350.52 |48 |
|Argentina |298.57 |43 |
|Nigeria |294.61 |39 |
|South Africa |279.61 |39 |
|Taiwan |221.67 |33 |
|Germany |199.73 |27 |
|United Kingdom |196.75 |25 |
|Poland |182.77 |23 |
|Spain |170.77 |23 |
|Ukraine |160.79 |21 |
|Iran |160.76 |24 |
|Italy |156.79 |21 |
|Pakistan |152.78 |22 |
|Saudi Arabia |146.81 |19 |
|Venezuela |145.79 |21 |
|Colombia |144.78 |22 |
+------------------+--------+------+
only showing top 25 rows

Compare the informational output below for Batch 20 to Batch 0, previously. Note the starting offset of the Kafka consumer group on the topic is 1986, and the ending offset is 2050. This is because all messages have been consumed from the topic and aggregated. If additional messages were streamed to Kafka while the streaming job is still running, additional micro-batches would continue to be streamed to the console every one minute.

"sources" : [ {
"description" : "KafkaV2[Subscribe[pagila.sales.spark.streaming]]",
"startOffset" : {
"pagila.sales.spark.streaming" : {
"0" : 1986
}
},
"endOffset" : {
"pagila.sales.spark.streaming" : {
"0" : 2050
}
},
"numInputRows" : 64,
"inputRowsPerSecond" : 1.0666666666666667,
"processedRowsPerSecond" : 13.772326231977619
} ],
"sink" : {
"description" : "org.apache.spark.sql.execution.streaming.ConsoleTable$@13b8bba3",
"numOutputRows" : 105
}

PySpark Job 5: Aggregations over Sliding Event-time Window

In the previous example, we analyzed total all-time sales in real-time (e.g., show me the current, total, all-time sales for France compared to the rest of Europe, at regular intervals). This approach is opposed to sales made during a sliding event-time window (e.g., are the total sales for the United States trending better during this current four-hour marketing promotional period than the previous promotional period). In many cases, real-time sales during a distinct period or event window is probably a more commonly tracked KPI than total all-time sales.

If we add a sliding event-time window to the PySpark script, we can easily observe the total sales and order counts made during the sliding event-time window in real-time.

.withWatermark("timestamp", "10 minutes") \
.groupBy("country",
F.window("timestamp", "10 minutes", "5 minutes")) \
.agg(F.count("amount"), F.sum("amount")) \
.orderBy(F.col("window").desc(),
F.col("sum(amount)").desc()) \

Windowed totals would not include sales (messages) present in the Kafka topic before the streaming query beginning, nor in previous sliding windows. Constructing the correct query always starts with a clear understanding of the question you are trying to answer.

Below, in the abridged console output of the micro-batch from the script, 05_streaming_read_kafka_console_window.py, we see the results of three ten-minute sliding event-time windows with a five-minute overlap. The sales and order totals represent the volume sold during that window, with this micro-batch falling within the active current window, 19:30 to 19:40 UTC.

——————————————-
Batch: 14
——————————————-
+————————————-+——+——+——————-+——————-+
|country |sales |orders|start |end |
+————————————-+——+——+——————-+——————-+
|India |286.60|40 |2021-09-08 19:30:00|2021-09-08 19:40:00|
|China |285.61|39 |2021-09-08 19:30:00|2021-09-08 19:40:00|
|United States |205.69|31 |2021-09-08 19:30:00|2021-09-08 19:40:00|
|Japan |189.74|26 |2021-09-08 19:30:00|2021-09-08 19:40:00|
|Russian Federation |182.74|26 |2021-09-08 19:30:00|2021-09-08 19:40:00|
|Philippines |163.77|23 |2021-09-08 19:30:00|2021-09-08 19:40:00|
|Mexico |159.76|24 |2021-09-08 19:30:00|2021-09-08 19:40:00|
|Brazil |155.77|23 |2021-09-08 19:30:00|2021-09-08 19:40:00|
|Argentina |118.84|16 |2021-09-08 19:30:00|2021-09-08 19:40:00|
|Indonesia |82.88 |12 |2021-09-08 19:30:00|2021-09-08 19:40:00|
|India |600.13|87 |2021-09-08 19:25:00|2021-09-08 19:35:00|
|China |509.27|73 |2021-09-08 19:25:00|2021-09-08 19:35:00|
|United States |416.42|58 |2021-09-08 19:25:00|2021-09-08 19:35:00|
|Japan |329.56|44 |2021-09-08 19:25:00|2021-09-08 19:35:00|
|Mexico |311.54|46 |2021-09-08 19:25:00|2021-09-08 19:35:00|
|Russian Federation |301.55|45 |2021-09-08 19:25:00|2021-09-08 19:35:00|
|Brazil |256.64|36 |2021-09-08 19:25:00|2021-09-08 19:35:00|
|Philippines |219.67|33 |2021-09-08 19:25:00|2021-09-08 19:35:00|
|Turkey |171.76|24 |2021-09-08 19:25:00|2021-09-08 19:35:00|
|Argentina |159.78|22 |2021-09-08 19:25:00|2021-09-08 19:35:00|
|China |353.53|47 |2021-09-08 19:20:00|2021-09-08 19:30:00|
|India |264.62|38 |2021-09-08 19:20:00|2021-09-08 19:30:00|
|Japan |191.74|26 |2021-09-08 19:20:00|2021-09-08 19:30:00|
|United States |173.77|23 |2021-09-08 19:20:00|2021-09-08 19:30:00|
|Mexico |159.77|23 |2021-09-08 19:20:00|2021-09-08 19:30:00|
|Russian Federation |148.78|22 |2021-09-08 19:20:00|2021-09-08 19:30:00|
|Philippines |132.83|17 |2021-09-08 19:20:00|2021-09-08 19:30:00|
|Brazil |123.82|18 |2021-09-08 19:20:00|2021-09-08 19:30:00|
|Indonesia |103.86|14 |2021-09-08 19:20:00|2021-09-08 19:30:00|
|South Africa |63.91 |9 |2021-09-08 19:20:00|2021-09-08 19:30:00|
+————————————-+——+——+——————-+——————-+

Plotting the total sales over time using sliding event-time windows, we will observe the results do not reflect a running total. Total sales only accumulate within a sliding window.

Cumulative sales within a 5-minute sliding event-time windows

Compare these results to the results of the previous script, whose total sales reflect a running total.

Running total of sales (no sliding windows)

PySpark Job 6: Streaming Query from/to Amazon MSK

The PySpark script, 06_streaming_read_kafka_kafka.py, performs the same streaming query and grouped aggregation as the previous script, 03_streaming_read_kafka_console.py. However, instead of outputting results to the console, the results of this job will be written to a new Kafka topic on Amazon MSK.

.format("kafka") \
.options(**options_write) \
.option("checkpointLocation", "/checkpoint/kafka/") \
# Purpose: Streaming read from Kafka topic and aggregate
# sales and orders by country to Kafka every minute
# Author: Gary A. Stafford
# Date: 2021-09-08
import os
import boto3
import pyspark.sql.functions as F
from ec2_metadata import ec2_metadata
from pyspark.sql import SparkSession
from pyspark.sql.types import StructField, StructType, IntegerType,
StringType, FloatType, TimestampType
topic_input = "pagila.sales.spark.streaming.in"
topic_output = "pagila.sales.spark.streaming.out"
os.environ['AWS_DEFAULT_REGION'] = ec2_metadata.region
ssm_client = boto3.client("ssm")
def main():
params = get_parameters()
spark = SparkSession \
.builder \
.appName("kafka-streaming-sales-kafka") \
.getOrCreate()
df_sales = read_from_kafka(spark, params)
summarize_sales(params, df_sales)
def read_from_kafka(spark, params):
options_read = {
"kafka.bootstrap.servers":
params["kafka_servers"],
"subscribe":
topic_input,
"startingOffsets":
"earliest",
"kafka.ssl.truststore.location":
"/tmp/kafka.client.truststore.jks",
"kafka.security.protocol":
"SASL_SSL",
"kafka.sasl.mechanism":
"AWS_MSK_IAM",
"kafka.sasl.jaas.config":
"software.amazon.msk.auth.iam.IAMLoginModule required;",
"kafka.sasl.client.callback.handler.class":
"software.amazon.msk.auth.iam.IAMClientCallbackHandler"
}
df_sales = spark.readStream \
.format("kafka") \
.options(**options_read) \
.load()
return df_sales
def summarize_sales(params, df_sales):
options_write = {
"kafka.bootstrap.servers":
params["kafka_servers"],
"topic":
topic_output,
"kafka.ssl.truststore.location":
"/tmp/kafka.client.truststore.jks",
"kafka.security.protocol":
"SASL_SSL",
"kafka.sasl.mechanism":
"AWS_MSK_IAM",
"kafka.sasl.jaas.config":
"software.amazon.msk.auth.iam.IAMLoginModule required;",
"kafka.sasl.client.callback.handler.class":
"software.amazon.msk.auth.iam.IAMClientCallbackHandler",
}
schema = StructType([
StructField("payment_id", IntegerType(), False),
StructField("customer_id", IntegerType(), False),
StructField("amount", FloatType(), False),
StructField("payment_date", TimestampType(), False),
StructField("city", StringType(), True),
StructField("district", StringType(), True),
StructField("country", StringType(), False),
])
ds_sales = df_sales \
.selectExpr("CAST(value AS STRING)") \
.select(F.from_json("value", schema=schema).alias("data")) \
.select("data.*") \
.groupBy("country") \
.agg(F.count("amount"), F.sum("amount")) \
.orderBy(F.col("sum(amount)").desc()) \
.select(F.sha1("country").alias("id"),