Posts Tagged CDC

The Art of Building Open Data Lakes with Apache Hudi, Kafka, Hive, and Debezium

Build near real-time, open-source data lakes on AWS using a combination of Apache Kafka, Hudi, Spark, Hive, and Debezium

Introduction

In the following post, we will learn how to build a data lake on AWS using a combination of open-source software (OSS), including Red Hat’s Debezium, Apache Kafka, Kafka Connect, Apache Hive, Apache Spark, Apache Hudi, and Hudi DeltaStreamer. We will use fully-managed AWS services to host the datasource, the data lake, and the open-source tools. These services include Amazon RDS, MKS, EKS, EMR, and S3.

The architecture and workflow demonstrated in this post

This post is an in-depth follow-up to the video demonstration, Building Open Data Lakes on AWS with Debezium and Apache Hudi.

Workflow

As shown in the architectural diagram above, these are the high-level steps in the demonstration’s workflow:

  1. Changes (inserts, updates, and deletes) are made to the datasource, a PostgreSQL database running on Amazon RDS;
  2. Kafka Connect Source Connector, utilizing Debezium and running on Amazon EKS (Kubernetes), continuously reads data from PostgreSQL WAL using Debezium;
  3. Source Connector creates and stores message schemas in Apicurio Registry, also running on Amazon EKS, in Avro format;
  4. Source Connector transforms and writes data in Apache Avro format to Apache Kafka, running on Amazon MSK;
  5. Kafka Connect Sink Connector, using Confluent S3 Sink Connector, reads messages from Kafka topics using schemas from Apicurio Registry;
  6. Sink Connector writes data to Amazon S3 in Apache Avro format;
  7. Apache Spark, using Hudi DeltaStreamer and running on Amazon EMR, reads message schemas from Apicurio Registry;
  8. DeltaStreamer reads raw Avro-format data from Amazon S3;
  9. DeltaStreamer writes data to Amazon S3 as both Copy on Write (CoW) and Merge on Read (MoR) table types;
  10. DeltaStreamer syncs Hudi tables and partitions to Apache Hive running on Amazon EMR;
  11. Queries are executed against Apache Hive Metastore or directly against Hudi tables using Apache Spark, with data returned from Hudi tables in Amazon S3;

The workflow described above actually contains two independent processes running simultaneously. Steps 2–6 represent the first process, the change data capture (CDC) process. Kafka Connect is used to continuously move changes from the database to Amazon S3. Steps 7–10 represent the second process, the data lake ingestion process. Hudi’s DeltaStreamer reads raw CDC data from Amazon S3 and writes the data back to another location in S3 (the data lake) in Apache Hudi table format. When combined, these processes can give us near real-time, incremental data ingestion of changes from the datasource to the Hudi-managed data lake.

Alternatives

This demonstration’s workflow is only one of many possible workflows to achieve similar outcomes. Alternatives include:

Source Code

All source code for this post and the previous posts in this series are open-sourced and located on GitHub. The specific resources used in this post are found in the debezium_hudi_demo directory of the GitHub repository. There are also two copies of the Museum of Modern Art (MoMA) Collection dataset from Kaggle, specifically prepared for this post, located in the moma_data directory. One copy is a nearly full dataset, and the other is a smaller, cost-effective dev/test version.

Kafka Connect

In this demonstration, Kafka Connect runs on Kubernetes, hosted on the fully-managed Amazon Elastic Kubernetes Service (Amazon EKS). Kafka Connect runs the Source and Sink Connectors.

Source Connector

The Kafka Connect Source Connector, source_connector_moma_postgres_kafka.json, used in steps 2–4 of the workflow, utilizes Debezium to continuously read changes to an Amazon RDS for PostgreSQL database. The PostgreSQL database hosts the MoMA Collection in two tables: artists and artworks.

{
"connector.class": "io.debezium.connector.postgresql.PostgresConnector",
"database.hostname": "<your_database_hostname>",
"database.port": "5432",
"database.user": "<your_username>",
"database.password": "<your_password>",
"database.dbname": "moma",
"database.server.name": "moma",
"table.include.list": "public.artists,public.artworks",
"plugin.name": "pgoutput",
"key.converter": "io.apicurio.registry.utils.converter.AvroConverter",
"key.converter.apicurio.registry.url": "http://localhost:8080/apis/registry/v2",
"key.converter.apicurio.registry.auto-register": "true",
"key.converter.apicurio.registry.find-latest": "true",
"value.converter": "io.apicurio.registry.utils.converter.AvroConverter",
"value.converter.apicurio.registry.url": "http://localhost:8080/apis/registry/v2",
"value.converter.apicurio.registry.auto-register": "true",
"value.converter.apicurio.registry.find-latest": "true",
"transforms": "unwrap",
"transforms.unwrap.type": "io.debezium.transforms.ExtractNewRecordState",
"transforms.unwrap.drop.tombstones": "false",
"transforms.unwrap.delete.handling.mode": "rewrite",
"transforms.unwrap.add.fields": "op,db,table,schema,lsn,source.ts_ms"
}

The Debezium Connector for PostgreSQL reads record-level insert, update, and delete entries from PostgreSQL’s write-ahead log (WAL). According to the PostgreSQL documentation, changes to data files must be written only after log records describing the changes have been flushed to permanent storage, thus the name, write-ahead log. The Source Connector then creates and stores Apache Avro message schemas in Apicurio Registry also running on Amazon EKS.

Apicurio Registry UI showing Avro-format Kafka message schemas
Apicurio Registry UI showing part of Avro-format Kafka message value schema for artists

Finally, the Source Connector transforms and writes Avro format messages to Apache Kafka running on the fully-managed Amazon Managed Streaming for Apache Kafka (Amazon MSK). Assuming Kafka’s topic.creation.enable property is set to true, Kafka Connect will create any necessary Kafka topics, one per database table.

Below, we see an example of a Kafka message representing an insert of a record with the artist_id 1 in the MoMA Collection database’s artists table. The record was read from the PostgreSQL WAL, transformed, and written to a corresponding Kafka topic, using the Debezium Connector for PostgreSQL. The first version represents the raw data before being transformed by Debezium. Note that the type of operation (_op) indicates a read (r). Possible values include c for create (or insert), u for update, d for delete, and r for read (applies to snapshots).

{
"payload": {
"before": null,
"after": {
"artist_id": 1,
"name": "Robert Arneson",
"nationality": "American",
"gender": "Male",
"birth_year": 1930,
"death_year": 1992
},
"source": {
"version": "1.7.0.Final",
"connector": "postgresql",
"name": "moma",
"ts_ms": 1640703877051,
"snapshot": "true",
"db": "moma",
"sequence": "[null,\"3668170506336\"]",
"schema": "public",
"table": "artists",
"txId": 217094,
"lsn": 3668170506336,
"xmin": null
},
"op": "r",
"ts_ms": 1640703877051,
"transaction": null
}
}

The next version represents the same record after being transformed by Debezium using the event flattening single message transformation (unwrap SMT). The final message structure represents the schema stored in Apicurio Registry. The message structure is identical to the structure of the data written to Amazon S3 by the Sink Connector.

{
"payload": {
"artist_id": 1,
"name": "Robert Arneson",
"nationality": "American",
"gender": "Male",
"birth_year": 1930,
"death_year": 1992,
"__op": "r",
"__db": "moma",
"__table": "artists",
"__schema": "public",
"__lsn": 3668438941792,
"__source_ts_ms": 1640705109121,
"__deleted": "false"
}
}

Sink Connector

The Kafka Connect Sink Connector, sink_connector_moma_kafka_s3.json, used in steps 5–6 of the workflow, implements the Confluent S3 Sink Connector. The Sink Connector reads the Avro-format messages from Kafka using the schemas stored in Apicurio Registry. It then writes the data to Amazon S3, also in Apache Avro format, based on the same schemas.

{
"connector.class": "io.confluent.connect.s3.S3SinkConnector",
"tasks.max": 1,
"topics.regex": "moma.public.(.*)",
"table.name.format": "${topic}",
"s3.region": "us-east-1",
"s3.bucket.name": "<your_data_lake_bucket>",
"s3.part.size": 5242880,
"flush.size": 10000,
"rotate.schedule.interval.ms": 60000,
"timezone": "UTC",
"storage.class": "io.confluent.connect.s3.storage.S3Storage",
"format.class": "io.confluent.connect.s3.format.avro.AvroFormat",
"schema.generator.class": "io.confluent.connect.storage.hive.schema.DefaultSchemaGenerator",
"partitioner.class": "io.confluent.connect.storage.partitioner.DefaultPartitioner",
"schema.compatibility": "NONE",
"behavior.on.null.values": "ignore",
"key.converter": "io.apicurio.registry.utils.converter.AvroConverter",
"key.converter.apicurio.registry.url": "http://localhost:8080/apis/registry/v2",
"key.converter.apicurio.registry.auto-register": "true",
"key.converter.apicurio.registry.find-latest": "true",
"value.converter": "io.apicurio.registry.utils.converter.AvroConverter",
"value.converter.apicurio.registry.url": "http://localhost:8080/apis/registry/v2",
"value.converter.apicurio.registry.auto-register": "true",
"value.converter.apicurio.registry.find-latest": "true"
}

Running Kafka Connect

We first start Kafka Connect in the background to be the CDC process.

bin/connect-distributed.sh \
config/connect-distributed.properties \
> /dev/null 2>&1 &
tail -f logs/connect.log

Then, deploy the Kafka Connect Source and Sink Connectors using Kafka Connect’s RESTful API. Using the API, we can also confirm the status of the Connectors.

curl -s -d @"config/source_connector_moma_postgres_kafka.json" \
-H "Content-Type: application/json" \
-X PUT http://localhost:8083/connectors/source_connector_moma_postgres_kafka/config | jq
curl -s -d @"config/sink_connector_moma_kafka_s3.json" \
-H "Content-Type: application/json" \
-X PUT http://localhost:8083/connectors/sink_connector_moma_kafka_s3/config | jq
curl -s -X GET http://localhost:8083/connectors | jq
curl -s -H "Content-Type: application/json" \
-X GET http://localhost:8083/connectors/source_connector_moma_postgres_kafka/status | jq
curl -s -H "Content-Type: application/json" \
-X GET http://localhost:8083/connectors/sink_connector_moma_kafka_s3/status | jq

To confirm the two Kafka topics, moma.public.artists and moma.public.artworks, were created and contain Avro messages, we can use Kafka’s command-line tools.

# list kafka topics
bin/kafka-topics.sh –list \
–bootstrap-server $BBROKERS \
–command-config config/client-iam.properties
# read first 5 avro-format (binary) messages from topic
bin/kafka-console-consumer.sh \
–topic moma.public.artists \
–from-beginning \
–max-messages 5 \
–property print.value=true \
–property print.offset=true \
–bootstrap-server $BBROKERS \
–consumer.config config/client-iam.properties

In the short video-only clip below, we see the process of deploying the Kafka Connect Source and Sink Connectors and confirming they are working as expected.

Deploying and starting the Kafka Connect Source and Sink Connectors

The Sink Connector writes data to Amazon S3 in batches of 10k messages or every 60 seconds (one-minute intervals). These settings are configurable and highly dependent on your requirements, including message volume, message velocity, real-time analytics requirements, and available compute resources.

Amazon S3 objects containing MoMA Collection artwork records from PostgreSQL

Since we will not be querying this raw Avro-format CDC data in Amazon S3 directly, there is no need to catalog this data in Apache Hive or AWS Glue Data Catalog, a fully-managed Hive-compatible metastore.

Apache Hudi

According to the overview, Apache Hudi (pronounced “hoodie”) is the next-generation streaming data lake platform. Apache Hudi brings core warehouse and database functionality to data lakes. Hudi provides tables, transactions, efficient upserts and deletes, advanced indexes, streaming ingestion services, data clustering, compaction optimizations, and concurrency, all while keeping data in open source file formats.

Without Hudi or an equivalent open-source data lake table format such as Apache Iceberg or Databrick’s Delta Lake, most data lakes are just of bunch of unmanaged flat files. Amazon S3 cannot natively maintain the latest view of the data, to the surprise of many who are more familiar with OLTP-style databases or OLAP-style data warehouses.

DeltaStreamer

DeltaStreamer, aka the HoodieDeltaStreamer utility (part of the hudi-utilities-bundle), used in steps 7–10 of the workflow, provides the way to perform streaming ingestion of data from different sources such as Distributed File System (DFS) and Apache Kafka.

Optionally, HoodieMultiTableDeltaStreamer, a wrapper on top of HoodieDeltaStreamer, ingests multiple tables in a single Spark job, into Hudi datasets. Currently, it only supports sequential processing of tables to be ingested and Copy on Write table type.

We are using HoodieDeltaStreamer to write to both Merge on Read (MoR) and Copy on Write (CoW) table types for demonstration purposes only. The MoR table type is a superset of the CoW table type, which stores data using a combination of columnar-based (e.g., Apache Parquet) plus row-based (e.g., Apache Avro) file formats. Updates are logged to delta files and later compacted to produce new versions of columnar files synchronously or asynchronously. Again, the choice of table types depends on your requirements.

Trade-offs between Hudi table types (table courtesy Apache Hudi documentation)
Trade-offs between Hudi table types (table courtesy Apache Hudi documentation)

Amazon EMR

For this demonstration, I’ve used the recently released Amazon EMR version 6.5.0 configured with Apache Spark 3.1.2 and Apache Hive 3.1.2. EMR 6.5.0 runs Scala version 2.12.10, Python 3.7.10, and OpenJDK Corretto-8.312. I have included the AWS CloudFormation template and parameters file used to create the EMR cluster, on GitHub.

When choosing Apache Spark, Apache Hive, or Presto on EMR 6.5.0, Apache Hudi release 0.9.0 is automatically installed.

Amazon EMR Master Node showing Apache Hudi related resources

DeltaStreamer Configuration

Below, we see the DeltaStreamer properties file, deltastreamer_artists_apicurio_mor.properties. This properties file is referenced by the Spark job that runs DeltaStreamer, shown next. The file contains properties related to the datasource, the data sink, and Apache Hive. The source of the data for DeltaStreamer is the CDC data written to Amazon S3. In this case, the datasource is the objects located in the /topics/moma.public.artworks/partition=0/ S3 object prefix. The data sink is a Hudi MoR table type in Amazon S3. DeltaStreamer will write Parquet data, partitioned by the artist’s nationality, to the /moma_mor/artists/ S3 object prefix. Lastly, DeltaStreamer will sync all tables and table partitions to Apache Hive, including creating the Hive databases and tables if they do not already exist.

# Built for demo of Apache Hudi 0.9.0 (EMR 6.5.0) with Apache Hive and SchemaRegistryProvider
include=base.properties
hoodie.datasource.hive_sync.assume_date_partitioning=false
hoodie.datasource.hive_sync.database=moma_mor
hoodie.datasource.hive_sync.partition_extractor_class=org.apache.hudi.hive.MultiPartKeysValueExtractor
hoodie.datasource.hive_sync.partition_fields=nationality
hoodie.datasource.hive_sync.table=artists
hoodie.datasource.write.drop.partition.columns=true
hoodie.datasource.write.hive_style_partitioning=true
hoodie.datasource.write.partitionpath.field=nationality
hoodie.datasource.write.recordkey.field=artist_id
hoodie.deltastreamer.schemaprovider.registry.url=http://<your_registry_url:post>/apis/ccompat/v6/subjects/moma.public.artists-value/versions/latest
hoodie.deltastreamer.source.dfs.root=s3://<your_data_lake_bucket>/topics/moma.public.artists/partition=0/
# 1,024 * 1,024 * 128 = 134,217,728 (128 MB)
hoodie.parquet.small.file.limit=134217728
# https://dacort.dev/posts/updating-partition-values-with-apache-hudi/
# This is required if we want to ensure we upsert a record, even if the partition changes
hoodie.index.type=GLOBAL_BLOOM
# This is required to write the data into the new partition
# defaults to false in Apache Hudi 0.8.0 (EMR 6.4.0), true in Hudi 0.9.0 (EMR 6.5.0)
# hoodie.bloom.index.update.partition.path=true
DeltaStreamer properties file for artists data using MoR table type

Below, we see the equivalent DeltaStreamer properties file for the MoMA artworks, deltastreamer_artworks_apicurio_mor.properties. There are also comparable DeltaStreamer property files for the Hudi CoW tables on GitHub.

# Built for demo of Apache Hudi 0.9.0 (EMR 6.5.0) with Apache Hive and SchemaRegistryProvider
include=base.properties
hoodie.datasource.hive_sync.assume_date_partitioning=false
hoodie.datasource.hive_sync.database=moma_mor
hoodie.datasource.hive_sync.partition_extractor_class=org.apache.hudi.hive.MultiPartKeysValueExtractor
hoodie.datasource.hive_sync.partition_fields=classification
hoodie.datasource.hive_sync.table=artworks
hoodie.datasource.write.drop.partition.columns=true
hoodie.datasource.write.hive_style_partitioning=true
hoodie.datasource.write.partitionpath.field=classification
hoodie.datasource.write.recordkey.field=artwork_id
hoodie.deltastreamer.schemaprovider.registry.url=http://<your_registry_url:post>/apis/ccompat/v6/subjects/moma.public.artworks-value/versions/latest
hoodie.deltastreamer.source.dfs.root=s3://<your_data_lake_bucket>/topics/moma.public.artworks/partition=0/
# 1,024 * 1,024 * 128 = 134,217,728 (128 MB)
hoodie.parquet.small.file.limit=134217728
# https://dacort.dev/posts/updating-partition-values-with-apache-hudi/
# This is required if we want to ensure we upsert a record, even if the partition changes
hoodie.index.type=GLOBAL_BLOOM
# This is required to write the data into the new partition
# defaults to false in Apache Hudi 0.8.0 (EMR 6.4.0), true in Hudi 0.9.0 (EMR 6.5.0)
# hoodie.bloom.index.update.partition.path=true
DeltaStreamer properties file for artworks data using MoR table type

All DeltaStreamer property files reference Apicurio Registry for the location of the Avro schemas. The schemas are used by both the Kafka Avro-format messages and the CDC-created Avro-format files in Amazon S3. Due to DeltaStreamer’s coupling with Confluent Schema Registry, as opposed to other registries, we must use Apicurio Registry’s Confluent Schema Registry API (Version 6) compatibility API endpoints (e.g., /apis/ccompat/v6/subjects/moma.public.artists-value/versions/latest) when using the org.apache.hudi.utilities.schema.SchemaRegistryProvider datasource option with DeltaStreamer. According to Apicurio, to provide compatibility with Confluent SerDes (Serializer/Deserializer) and other clients, Apicurio Registry implements the API defined by the Confluent Schema Registry.

Apicurio Registry exposes multiple APIs

Running DeltaStreamer

The properties files are loaded by Spark jobs that call the DeltaStreamer library, using spark-submit. Below, we see an example Spark job that calls the DeltaStreamer class. DeltaStreamer reads the raw Avro-format CDC data from S3 and writes the data using the Hudi MoR table type into the /moma_mor/artists/ S3 object prefix. In this Spark particular job, we are using the continuous option. DeltaStreamer runs in continuous mode using this option, running source-fetch, transform, and write in a loop. We are also using the UPSERT write operation (op). Operation options include UPSERT, INSERT, and BULK_INSERT. This set of options is ideal for inserting ongoing changes to CDC data into Hudi tables. You can run jobs in the foreground or background on EMR’s Master Node or as EMR Steps from the Amazon EMR console.

export DATA_LAKE_BUCKET="<your_data_lake_bucket_name>"
# artists data, MoR table type, continuous upserts
spark-submit \
–jars /usr/lib/spark/jars/spark-avro.jar,/usr/lib/hudi/hudi-utilities-bundle.jar \
–conf spark.sql.catalogImplementation=hive \
–class org.apache.hudi.utilities.deltastreamer.HoodieDeltaStreamer /usr/lib/hudi/hudi-utilities-bundle.jar \
–table-type MERGE_ON_READ \
–source-ordering-field __source_ts_ms \
–props "s3://${DATA_LAKE_BUCKET}/hudi/deltastreamer_artists_apicurio_mor.properties" \
–source-class org.apache.hudi.utilities.sources.AvroDFSSource \
–target-base-path "s3://${DATA_LAKE_BUCKET}/moma/artists_mor/" \
–target-table moma_mor.artists \
–schemaprovider-class org.apache.hudi.utilities.schema.SchemaRegistryProvider \
–enable-sync \
–continuous \
–op UPSERT

Below, we see another example DeltaStreamer Spark job that reads the raw Avro-format CDC data from S3 and writes the data using the MoR table type into the /moma_mor/artworks/ S3 object prefix. This example uses the BULK_INSERT write operation (op) and the filter-dupes option. The filter-dupes option ensures that should duplicate records from the source are dropped/filtered out before INSERT or BULK_INSERT. This set of options is ideal for the initial bulk inserting of existing data into Hudi tables. The job runs one time and completes, unlike the previous example that ran continuously.

export DATA_LAKE_BUCKET="<your_data_lake_bucket_name>"
# artworks data, MoR table type, 1x bulk insert
spark-submit \
–jars /usr/lib/spark/jars/spark-avro.jar,/usr/lib/hudi/hudi-utilities-bundle.jar \
–conf spark.sql.catalogImplementation=hive \
–class org.apache.hudi.utilities.deltastreamer.HoodieDeltaStreamer /usr/lib/hudi/hudi-utilities-bundle.jar \
–table-type MERGE_ON_READ \
–source-ordering-field __source_ts_ms \
–props "s3://${DATA_LAKE_BUCKET}/hudi/deltastreamer_artworks_apicurio_mor.properties" \
–source-class org.apache.hudi.utilities.sources.AvroDFSSource \
–target-base-path "s3://${DATA_LAKE_BUCKET}/moma/artworks_mor/" \
–target-table moma_mor.artworks \
–schemaprovider-class org.apache.hudi.utilities.schema.SchemaRegistryProvider \
–enable-sync \
–op BULK_INSERT \
–filter-dupes

Syncing with Hive

The following abridged, video-only clip demonstrates the differences between the Hudi CoW and MoR table types with respect to Apache Hive. In the video, we run the deltastreamer_jobs_bulk_bkgd.sh script, included on GitHub. This script runs four different Apache Spark jobs, using Hudi DeltaStreamer to bulk-ingest all the artists and artworks CDC data from Amazon S3 into both Hudi CoW and MoR table types. Once the four Spark jobs are complete, the script queries Apache Hive and displays the new Hive databases and database tables created by DeltaStreamer.

Hudi DeltaStreamer Spark jobs running on the Amazon EMR

In both the video above and terminal screengrab below, note the difference in the tables created within the two Hive databases, the Hudi CoW table type (moma_cow) and the MoR table type (moma_mor). The MoR table type creates both a read-optimized table (_ro) as well as a real-time table (_rt) for each datasource (e.g., artists_ro and artists_rt).

View of the Apache Hive CoW and MoR database tables

According to documentation, Hudi creates two tables in the Hive metastore for the MoR table type. The first, a table which is a read-optimized view appended with _ro and the second, a table with the same name appended with _rt which is a real-time view. According to Hudi, the read-optimized view exposes columnar Parquet while the real-time view exposes columnar Parquet and/or row-based logs; you can query both tables. The CoW table type creates a single table without a suffix for each datasource (e.g., artists). Below, we see the Hive table structure for the artists_rt table, created by DeltaStreamer, using SHOW CREATE TABLE moma_mor.artists_rt;.

CREATE EXTERNAL TABLE `moma_mor.artists_rt`(
`_hoodie_commit_time` string,
`_hoodie_commit_seqno` string,
`_hoodie_record_key` string,
`_hoodie_partition_path` string,
`_hoodie_file_name` string,
`artist_id` int,
`name` string,
`gender` string,
`birth_year` int,
`death_year` int,
`__op` string,
`__db` string,
`__table` string,
`__schema` string,
`__lsn` bigint,
`__source_ts_ms` bigint,
`__deleted` string)
PARTITIONED BY (
`nationality` string)
ROW FORMAT SERDE
'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
WITH SERDEPROPERTIES (
'hoodie.query.as.ro.table'='false',
'path'='s3://<your_data_lake_bucket>/moma/artists_mor')
STORED AS INPUTFORMAT
'org.apache.hudi.hadoop.realtime.HoodieParquetRealtimeInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
LOCATION
's3://<your_data_lake_bucket>/moma/artists_mor'
TBLPROPERTIES (
'bucketing_version'='2',
'last_commit_time_sync'='20211230180429',
'spark.sql.partitionProvider'='catalog',
'spark.sql.sources.provider'='hudi',
'spark.sql.sources.schema.numPartCols'='1',
'spark.sql.sources.schema.numParts'='1',
'spark.sql.sources.schema.part.0'='{"type":"struct","fields":[{"name":"_hoodie_commit_time","type":"string","nullable":true,"metadata":{}},{"name":"_hoodie_commit_seqno","type":"string","nullable":true,"metadata":{}},{"name":"_hoodie_record_key","type":"string","nullable":true,"metadata":{}},{"name":"_hoodie_partition_path","type":"string","nullable":true,"metadata":{}},{"name":"_hoodie_file_name","type":"string","nullable":true,"metadata":{}},{"name":"artist_id","type":"integer","nullable":false,"metadata":{}},{"name":"name","type":"string","nullable":true,"metadata":{}},{"name":"gender","type":"string","nullable":true,"metadata":{}},{"name":"birth_year","type":"integer","nullable":true,"metadata":{}},{"name":"death_year","type":"integer","nullable":true,"metadata":{}},{"name":"__op","type":"string","nullable":true,"metadata":{}},{"name":"__db","type":"string","nullable":true,"metadata":{}},{"name":"__table","type":"string","nullable":true,"metadata":{}},{"name":"__schema","type":"string","nullable":true,"metadata":{}},{"name":"__lsn","type":"long","nullable":true,"metadata":{}},{"name":"__source_ts_ms","type":"long","nullable":true,"metadata":{}},{"name":"__deleted","type":"string","nullable":true,"metadata":{}},{"name":"nationality","type":"string","nullable":true,"metadata":{}}]}',
'spark.sql.sources.schema.partCol.0'='nationality',
'transient_lastDdlTime'='1640919578')

Having run the demonstration’s deltastreamer_jobs_bulk_bkgd.sh script, the resulting object structure in the Hudi-managed section of the Amazon S3 bucket looks as follows.

S3 object structure in Hudi-managed Amazon S3 bucket

Below is an example of Hudi files created in the /moma/artists_cow/ S3 object prefix. When using data lake table formats like Hudi, given its specialized directory structure and the high number of objects, interactions with the data should be abstracted through Hudi’s programming interfaces. Generally speaking, you do not interact directly with the objects in a data lake.

"moma/artists_cow/.hoodie/.aux/.bootstrap/.fileids_$folder$",
"moma/artists_cow/.hoodie/.aux/.bootstrap/.partitions_$folder$",
"moma/artists_cow/.hoodie/.aux/.bootstrap_$folder$",
"moma/artists_cow/.hoodie/.aux_$folder$",
"moma/artists_cow/.hoodie/.temp_$folder$",
"moma/artists_cow/.hoodie/20211231203737.commit",
"moma/artists_cow/.hoodie/20211231203737.commit.requested",
"moma/artists_cow/.hoodie/20211231203737.inflight",
"moma/artists_cow/.hoodie/20211231203738.rollback",
"moma/artists_cow/.hoodie/20211231203738.rollback.inflight",
"moma/artists_cow/.hoodie/archived_$folder$",
"moma/artists_cow/.hoodie/hoodie.properties",
"moma/artists_cow/.hoodie_$folder$",
"moma/artists_cow/nationality=Afghan/.hoodie_partition_metadata",
"moma/artists_cow/nationality=Afghan/4f39e019-e3d7-4a6a-a7bd-6d07eddd495a-0_0-28-3352_20211231203737.parquet",
"moma/artists_cow/nationality=Afghan_$folder$",
"moma/artists_cow/nationality=Albanian/.hoodie_partition_metadata",
"moma/artists_cow/nationality=Albanian/4f39e019-e3d7-4a6a-a7bd-6d07eddd495a-1_0-28-3352_20211231203737.parquet",
"moma/artists_cow/nationality=Albanian_$folder$",
"moma/artists_cow/nationality=Algerian/.hoodie_partition_metadata",
"moma/artists_cow/nationality=Algerian/4f39e019-e3d7-4a6a-a7bd-6d07eddd495a-2_0-28-3352_20211231203737.parquet",
"moma/artists_cow/nationality=Algerian_$folder$",
"moma/artists_cow/nationality=American/.hoodie_partition_metadata",
"moma/artists_cow/nationality=American/0065ed77-4a6c-4755-b133-45126310936d-0_502-28-3854_20211231203737.parquet",
"moma/artists_cow/nationality=American/011d5c57-c918-40d8-8518-c3cb56747133-0_15-28-3367_20211231203737.parquet"
Hudi CLI commands used in the next video

Hudi CLI

Optionally, we can inspect the Hudi tables using the Hudi CLI (hudi-cli). The CLI offers an extensive list of available commands. Using the CLI, we can inspect the Hudi tables and their schemas, and review operational statistics like write amplification (the number of bytes written for 1 byte of incoming data), commits, and compactions.

> hudi-cli
help
connect –path s3://<your_data_lake_bucket>/moma/artworks_mor/
connect –path s3://<your_data_lake_bucket>/moma/artworks_cow/
desc
fetch table schema
commits show
stats wa
compactions show all
Using the Hudi CLI from the Amazon EMR Master Node

The following short video-only clip shows the use of the Hudi CLI, running on the Amazon EMR Master Node, to inspect the Hudi tables in S3.

Using the Hudi CLI from the Amazon EMR Master Node

Hudi Data Structure

Recall the sample Kafka message we saw earlier in the post representing an insert of an artist record with the artist_id 1. Below, we see what the same record looks like after being ingested by Hudi DeltaStreamer. Note the five additional fields added by Hudi with the _hoodie_ prefix.

{
"_hoodie_commit_time": "20211227215352",
"_hoodie_commit_seqno": "20211227215352_63_7301",
"_hoodie_record_key": "1",
"_hoodie_partition_path": "nationality=American",
"_hoodie_file_name": "0e91bb5b-aa93-42a9-933d-242f5fda1b8f-0_63-24-4710_20211227215352.parquet",
"artist_id": 1,
"name": "Robert Arneson",
"nationality": "American",
"gender": "Male",
"birth_year": 1930,
"death_year": 1992,
"__op": "r",
"__db": "moma",
"__table": "artists",
"__schema": "public",
"__lsn": 3637434647944,
"__source_ts_ms": 1640566580452,
"__deleted": "false"
}

Querying Hudi-managed Data

With the initial data ingestion complete and the CDC and DeltaStreamer processes monitoring for future changes, we can query the resulting data stored in Hudi tables. First, we will make some changes to the PostgreSQL MoMA Collection database to see how Hudi manages the data mutations. We could also make changes directly to the Hudi tables using Hive, Spark, or Presto. However, that would cause our datasource to be out of sync with the Hudi tables, potentially negating the entire CDC process. When developing a data lake, this is a critically important consideration — how changes are introduced to Hudi tables, especially when CDC is involved, and whether data continuity between datasources and the data lake is essential.

For the demonstration, I have made a series of arbitrary updates to a piece of artwork in the MoMA Collection database, ‘Picador (La Pique)’ by Pablo Picasso.

'Picador (La Pique)', by Pablo Picasso
SELECT *
FROM artworks
WHERE artwork_id = 128447 AND classification = 'Print';
firts update (creation date)
UPDATE artworks
SET date = 1959
WHERE artwork_id = 128447;
second update (acquisition date)
UPDATE artworks
SET acquisition_date = '2009-04-15'
WHERE artwork_id = 128447;
third update (in vs. '')
UPDATE artworks
SET dimensions = 'composition: 20 13/16 x 25 3/16 in (52.9 x 64 cm); sheet: 24 7/16 x 29 1/2 in (62.1 x 75 cm)'
WHERE artwork_id = 128447;
fourth update (acquisition date)
UPDATE artworks
SET acquisition_date = '2009-04-19'
WHERE artwork_id = 128447;

Below, note the last four objects shown in S3. Judging by the file names and dates, we can see that the CDC process, using Kafka Connect, has picked up the four updates I made to the record in the database. The Source Connector first wrote the changes to Kafka. The Sink Connector then read those Kafka messages and wrote the data to Amazon S3 in Avro format, as shown below.

Looking again at S3, we can also observe that DeltaStreamer picked up the new CDC objects in Amazon S3 and wrote them to both the Hudi CoW and MoR tables. Note the file types shown below. Given Hudi’s MoR table type structure, Hudi first logged the changes to row-based delta files and later compacted them to produce a new version of the columnar-format Parquet file.

Hudi MoR row-based delta log files and compacted Parquet files

Querying Results from Apache Hive

There are several ways to query Hudi-managed data in S3. In this demonstration, they include against Apache Hive using the hive client from the command line, against Hive using Spark, and against the Hudi tables also using Spark. We could also install Presto on EMR to query the Hudi data directly or via Hive.

Querying the real-time artwork_rt table in Hive after we make each database change, we can observe the data in Hudi reflects the updates. Note that the value of the _hoodie_file_name field for the first three updates is a Hudi delta log file, while the value for the last update is a Parquet file. The Parquet file signifies compaction occurred between the fourth update was made, and the time the Hive query was executed. Lastly, note the type of operation (_op) indicates an update change (u) for all records.

Querying the data in the Hudi MoR real-time table as we make changes to the database

Once all fours database updates are complete and compaction has occurred, we should observe identical results from all Hive tables. Below, note the _hoodie_file_name field for all three tables is a Parquet file. Logically, the Parquet file for the MoR read-optimized and real-time Hive tables is the same.

Querying the same record in all three Hive tables: Hudi MoR _ro and _rt tables and CoW table

Had we queried the data previous to compaction, the results would have differed. Below we have three queries. I further updated the artwork record, changing the date field from 1959 to 1960. The read-optimized MoR table, artworks_ro, still reflects the original date value, 1959, before the update and prior to compaction. The real-time table,artworks_rt , reflects the latest update to the date field, 1960. Note that the value of the _hoodie_file_name field for the read-optimized table is a Parquet file, while the value for the real-time table (artworks_rt), the third and final query, is a delta log file. The delta log allows the real-time table to display the most current state of the data in Hudi.

Querying the same record in all three Hive tables

Below are a few useful Hive commands to query the changes in Hudi.

beeline or hive
beeline connect
!connect jdbc:hive2://localhost:10000/default
SHOW DATABASES;
DESCRIBE DATABASE moma_mor;
USE moma_cow;SHOW TABLES;
USE moma_mor;SHOW TABLES;
USE moma_mor;DESCRIBE artworks_ro;
MSCK REPAIR TABLE moma_mor.artworks_ro;
SHOW PARTITIONS moma_mor.artworks_ro;
ANALYZE TABLE moma_mor.artists_rt COMPUTE STATISTICS;
DESCRIBE EXTENDED moma_mor.artists_rt;
test query performance without caching
set hive.query.results.cache.enabled=false;
100 rows selected (1.394 seconds) <- read-optimized vs. real-time table
SELECT * FROM moma_mor.artworks_ro WHERE department='Prints & Illustrated Books' LIMIT 100;
100 rows selected (2.371 seconds)
SELECT * FROM moma_mor.artworks_rt WHERE department='Prints & Illustrated Books' LIMIT 100;
10 rows selected (0.719 seconds) <- read-optimized vs. real-time table, classification is partitioned
SELECT * FROM moma_mor.artworks_ro WHERE classification='Print' LIMIT 10;
10 rows selected (1.482 seconds)
SELECT * FROM moma_mor.artworks_rt WHERE classification='Print' LIMIT 10;
EXPLAIN EXTENDED SELECT * FROM moma_mor.artworks_rt WHERE artwork_id=128447 AND classification='Print';
1 row selected (14.126 seconds) <- read-optimized vs. real-time table
SELECT * FROM moma_mor.artworks_ro WHERE artwork_id=128447;
1 row selected (32.877 seconds)
SELECT * FROM moma_mor.artworks_rt WHERE artwork_id=128447;
1 row selected (1.491 seconds) <- classification is partitioned
SELECT * FROM moma_mor.artworks_rt WHERE artwork_id=128447 AND classification='Print';
84 rows selected (8.618 seconds)
SELECT artworks.title AS title,
artworks.`date` AS created,
artworks.name AS artist,
artists.nationality AS nationality,
artworks.classification AS classification
FROM moma_cow.artworks artworks
JOIN moma_cow.artists artists ON (artworks.artist_id = artists.artist_id)
WHERE artworks.artist_id = 4609
AND nationality = 'Spanish'
AND classification = 'Print'
AND artworks.`date` IS NOT NULL
ORDER BY created, title;

Deletes with Hudi

In addition to inserts and updates (upserts), Apache Hudi can manage deletes. Hudi supports implementing two types of deletes on data stored in Hudi tables: soft deletes and hard deletes. Given this demonstration’s specific configuration for CDC and DeltaStreamer, we will use soft deletes. Soft deletes retain the record key and nullify the other field’s values. Hard deletes, a stronger form of deletion, physically remove any record trace from the Hudi table.

Below, we see the CDC record for the artist with artist_id 441. The event flattening single message transformation (SMT), used by the Debezium-based Kafka Connect Source Connector, adds the __deleted field with a value of true and nullifies all fields except the record’s key, artist_id, which is required.

{
"artist_id" : 441,
"name" : null,
"nationality" : null,
"gender" : null,
"birth_year" : null,
"death_year" : null,
"__op" : {
"string" : "d"
},
"__db" : {
"string" : "moma"
},
"__table" : {
"string" : "artists"
},
"__schema" : {
"string" : "public"
},
"__lsn" : {
"long" : 3692866569488
},
"__source_ts_ms" : {
"long" : 1640814436010
},
"__deleted" : {
"string" : "true"
}
}

Below, we see the same delete record for the artist with artist_id 441 in the Hudi MoR table. All the null fields have been removed.

{
"_hoodie_commit_time": "20211229225047",
"_hoodie_commit_seqno": "20211229225047_1_1",
"_hoodie_record_key": "441",
"_hoodie_partition_path": "nationality=default",
"_hoodie_file_name": "2a98931a-6015-438e-be78-1eff80a75f83-2_1-24-15431_20211229225047.parquet",
"artist_id": 441,
"__op": "d",
"__db": "moma",
"__table": "artists",
"__schema": "public",
"__lsn": 3692866569488,
"__source_ts_ms": 1640814436010,
"__deleted": "true"
}

Below, we see how the deleted record appears in the three Hive CoW and MoR artwork tables. Note the query results from the read-optimized MoR table, artworks_ro, contains two records — the original record (r) and the deleted record (d). The data is partitioned by nationality, and since the record was deleted, the nationality field is changed to null. In S3, Hudi represents this partition as nationality=default. The record now exists in two different Parquet files, within two separate partitions, something to be aware of when querying the read-optimized MoR table.

Results of a database delete as shown in Hive CoW and MoR tables

Time Travel

According to the documentation, Hudi has supported time travel queries since version 0.9.0. With time travel, you can query the previous state of your data. Time travel is particularly useful for use cases, including rollbacks, debugging, and audit history.

To demonstrate time travel queries in Hudi, we start by making some additional changes to the source database. For this demonstration, I made a series of five updates and finally a delete to the artist record with artist_id 299 in the PostgreSQL database over a few-hour period.

first update (birth)
UPDATE public.artists
SET birth_year = 1907
WHERE artist_id = 299;
second update (death)
UPDATE public.artists
SET death_year = 1989
WHERE artist_id = 299;
third update (middle initial)
UPDATE public.artists
SET name = 'Gerhard M. Bakker'
WHERE artist_id = 299;
fourth update (nationality – impacts partitions)
UPDATE public.artists
SET nationality = 'German'
WHERE artist_id = 299;
fifth update (birth)
UPDATE public.artists
SET birth_year = 1905
WHERE artist_id = 299;
delete
DELETE
FROM public.artists
WHERE artist_id = 299;

Once the CDC and DeltaStreamer ingestion processes are complete, we can use Hudi’s time travel query capability to view the state of data in Hudi at different points in time (instants). To do so, we need to provide an as.an.instant date/time value to Spark (see line 21 below).

Based on the time period in which I made the five updates and the delete, I have chosen six instants during that period where I want to examine the state of the record. Below is an example of the PySpark code from a Jupyter Notebook used to perform the six time travel queries against the Hudi MoR artist’s table.

from datetime import timedelta
from dateutil import parser
base_path = "s3://open-data-lake-demo-us-east-1/moma/artists_mor"
instances = [ # times in EST
"2021-12-30 08:00:00", # reflects original record (r)
"2021-12-30 09:00:00", # refects updates 1 and 2 (u)
"2021-12-30 09:30:00", # refects updates 3 (u)
"2021-12-30 11:00:00", # refects updates 4 (u)
"2021-12-30 12:30:00", # refects updates 5 (u)
"2021-12-30 14:00:00", # refects delete (d)
]
for instant in instants:
as_of_instant = parser.parse(instant) + timedelta(hours=5) # adjust EST for UTC
print(f"Record state as of: {as_of_instant}")
artistsSnapshotDF = (
spark.read.format("hudi").option("as.of.instant", as_of_instant).load(base_path)
)
artistsSnapshotDF.createOrReplaceTempView("hudi_artists_snapshot")
spark.sql(
"""
SELECT _hoodie_commit_time, __op, _hoodie_partition_path, name, nationality, gender, birth_year, death_year
FROM hudi_artists_snapshot
WHERE artist_id=299;
"""
).show()

Below, we see the results of the time travel queries. At each instant, we can observe the mutating state of the data in the Hudi MoR Artist’s table, including the initial bulk insert of the existing snapshot of data (r) and the delete record (d). Since the delete made in the PostgreSQL database was recorded as a soft delete in Hudi, as opposed to a hard delete, we are still able to retrieve the record at any instant.

Record state as of: 2021-12-30 13:00:00
+——————-+—-+———————-+—————–+———–+——+———-+———-+
|_hoodie_commit_time|__op|_hoodie_partition_path| name|nationality|gender|birth_year|death_year|
+——————-+—-+———————-+—————–+———–+——+———-+———-+
| 20211230034812| r| nationality=American|Gerhard H. Bakker| American| Male| 1906| 1988|
+——————-+—-+———————-+—————–+———–+——+———-+———-+
Record state as of: 2021-12-30 14:00:00
+——————-+—-+———————-+—————–+———–+——+———-+———-+
|_hoodie_commit_time|__op|_hoodie_partition_path| name|nationality|gender|birth_year|death_year|
+——————-+—-+———————-+—————–+———–+——+———-+———-+
| 20211230132628| u| nationality=American|Gerhard H. Bakker| American| Male| 1907| 1989|
+——————-+—-+———————-+—————–+———–+——+———-+———-+
Record state as of: 2021-12-30 14:30:00
+——————-+—-+———————-+—————–+———–+——+———-+———-+
|_hoodie_commit_time|__op|_hoodie_partition_path| name|nationality|gender|birth_year|death_year|
+——————-+—-+———————-+—————–+———–+——+———-+———-+
| 20211230142035| u| nationality=American|Gerhard M. Bakker| American| Male| 1907| 1989|
+——————-+—-+———————-+—————–+———–+——+———-+———-+
Record state as of: 2021-12-30 16:00:00
+——————-+—-+———————-+—————–+———–+——+———-+———-+
|_hoodie_commit_time|__op|_hoodie_partition_path| name|nationality|gender|birth_year|death_year|
+——————-+—-+———————-+—————–+———–+——+———-+———-+
| 20211230144237| u| nationality=German|Gerhard M. Bakker| German| Male| 1907| 1989|
+——————-+—-+———————-+—————–+———–+——+———-+———-+
Record state as of: 2021-12-30 17:30:00
+——————-+—-+———————-+—————–+———–+——+———-+———-+
|_hoodie_commit_time|__op|_hoodie_partition_path| name|nationality|gender|birth_year|death_year|
+——————-+—-+———————-+—————–+———–+——+———-+———-+
| 20211230171925| u| nationality=German|Gerhard M. Bakker| German| Male| 1905| 1989|
+——————-+—-+———————-+—————–+———–+——+———-+———-+
Record state as of: 2021-12-30 19:00:00
+——————-+—-+———————-+—————–+———–+——+———-+———-+
|_hoodie_commit_time|__op|_hoodie_partition_path| name|nationality|gender|birth_year|death_year|
+——————-+—-+———————-+—————–+———–+——+———-+———-+
| 20211230180429| d| nationality=default| null| null| null| null| null|
+——————-+—-+———————-+—————–+———–+——+———-+———-+
Results of the time travel queries, ordered by commit time

In addition to time travel queries, Hudi also offers incremental queries and point in time queries.

Conclusion

Although this post only scratches the surface of the capabilities of Debezium and Hudi, you can see the power of CDC using Kafka Connect and Debezium, combined with Hudi, to build and manage open data lakes on AWS.


This blog represents my own viewpoints and not of my employer, Amazon Web Services (AWS). All product names, logos, and brands are the property of their respective owners.

, , , , , , ,

Leave a comment

Video Demonstration: Building Open Data Lakes on AWS with Debezium and Apache Hudi

Build an open-source data lake on AWS using a combination of Debezium, Apache Kafka, Apache Hudi, Apache Spark, and Apache Hive

Introduction

In the following recorded demonstration, we will build a simple open data lake on AWS using a combination of open-source software (OSS), including Red Hat’s Debezium, Apache Kafka, and Kafka Connect for change data capture (CDC), and Apache Hive, Apache Spark, Apache Hudi, and Hudi’s DeltaStreamer for managing our data lake. We will use fully-managed AWS services to host the open data lake components, including Amazon RDS, Amazon MKS, Amazon EKS, and EMR.

The data pipeline architecture used in the demonstration

Demonstration

For best results, view at 1080p HD on YouTube

Source Code

All source code for this post and the previous posts in this series are open-sourced and located on GitHub. The following files are used in the demonstration:


This blog represents my own viewpoints and not of my employer, Amazon Web Services (AWS). All product names, logos, and brands are the property of their respective owners.

, , , , ,

Leave a comment

Hydrating a Data Lake using Log-based Change Data Capture (CDC) with Debezium, Apicurio, and Kafka Connect on AWS

Import data from Amazon RDS into Amazon S3 using Amazon MSK, Apache Kafka Connect, Debezium, Apicurio Registry, and Amazon EKS

Introduction

In the last post, Hydrating a Data Lake using Query-based CDC with Apache Kafka Connect and Kubernetes on AWS, we utilized Kafka Connect to export data from an Amazon RDS for PostgreSQL relational database and import the data into a data lake built on Amazon Simple Storage Service (Amazon S3). The data imported into S3 was converted to Apache Parquet columnar storage file format, compressed, and partitioned for optimal analytics performance, all using Kafka Connect. To improve data freshness, as data was added or updated in the PostgreSQL database, Kafka Connect automatically detected those changes and streamed them into the data lake using query-based Change Data Capture (CDC).

This follow-up post will examine log-based CDC as a marked improvement over query-based CDC to continuously stream changes from the PostgreSQL database to the data lake. We will perform log-based CDC using Debezium’s Kafka Connect Source Connector for PostgreSQL rather than Confluent’s Kafka Connect JDBC Source connector, which was used in the previous post for query-based CDC. We will store messages as Apache Avro in Kafka running on Amazon Managed Streaming for Apache Kafka (Amazon MSK). Avro message schemas will be stored in Apicurio Registry. The schema registry will run alongside Kafka Connect on Amazon Elastic Kubernetes Service (Amazon EKS).

High-level architecture for this post’s demonstration

Change Data Capture

According to Gunnar Morling, Principal Software Engineer at Red Hat, who works on the Debezium and Hibernate projects, and well-known industry speaker, there are two types of Change Data Capture — Query-based and Log-based CDC. Gunnar detailed the differences between the two types of CDC in his talk at the Joker International Java Conference in February 2021, Change data capture pipelines with Debezium and Kafka Streams.

Joker 2021: Change data capture pipelines with Debezium and Kafka Streams (image: YouTube)

You can find another excellent explanation of CDC in the recent post by Lewis Gavin of Rockset, Change Data Capture: What It Is and How to Use It.

Query-based vs. Log-based CDC

To demonstrate the high-level differences between query-based and log-based CDC, let’s examine the results of a simple SQL UPDATE statement captured with both CDC methods.

UPDATE public.address
SET address2 = 'Apartment #1234'
WHERE address_id = 105;

Here is how that change is represented as a JSON message payload using the query-based CDC method described in the previous post.

{
"address_id": 105,
"address": "733 Mandaluyong Place",
"address2": "Apartment #1234",
"district": "Asir",
"city_id": 2,
"postal_code": "77459",
"phone": "196568435814",
"last_update": "2021-08-13T00:43:38.508Z"
}

Here is how the same change is represented as a JSON message payload using log-based CDC with Debezium. Note the metadata-rich structure of the log-based CDC message as compared to the query-based message.

{
"after": {
"address": "733 Mandaluyong Place",
"address2": "Apartment #1234",
"phone": "196568435814",
"district": "Asir",
"last_update": "2021-08-13T00:43:38.508453Z",
"address_id": 105,
"postal_code": "77459",
"city_id": 2
},
"source": {
"schema": "public",
"sequence": "[\"1090317720392\",\"1090317720392\"]",
"xmin": null,
"connector": "postgresql",
"lsn": 1090317720624,
"name": "pagila",
"txId": 16973,
"version": "1.6.1.Final",
"ts_ms": 1628815418508,
"snapshot": "false",
"db": "pagila",
"table": "address"
},
"op": "u",
"ts_ms": 1628815418815
}

Avro and Schema Registry

Apache Avro is a compact, fast, binary data format, according to the documentation. Avro relies on schemas. When Avro data is read, the schema used when writing it is always present. This permits each datum to be written with no per-value overheads, making serialization both fast and small. This also facilitates use with dynamic scripting languages since data, together with its schema, is fully self-describing.

We can decouple the data from its schema by using schema registries like the Confluent Schema Registry or Apicurio Registry. According to Apicurio, in a messaging and event streaming architecture, data published to topics and queues must often be serialized or validated using a schema (e.g., Apache Avro, JSON Schema, or Google Protocol Buffers). Of course, schemas can be packaged in each application. Still, it is often a better architectural pattern to register schemas in an external system [schema registry] and then reference them from each application.

It is often a better architectural pattern to register schemas in an external system and then reference them from each application.

Using Debezium’s PostgreSQL source connector, we will store changes from the PostgreSQL database’s write-ahead log (WAL) as Avro in Kafka, running on Amazon MSK. The message’s schema will be stored separately in Apicurio Registry as opposed to with the message, thus reducing the size of the messages in Kafka and allowing for schema validation and schema evolution.

Apicurio Registry showing versions of the pagila.public.film schema

Debezium

Debezium, according to their website, continuously monitors your databases and lets any of your applications stream every row-level change in the same order they were committed to the database. Event streams can be used to purge caches, update search indexes, generate derived views and data, and keep other data sources in sync. Debezium is a set of distributed services that capture row-level changes in your databases. Debezium records all row-level changes committed to each database table in a transaction log. Then, each application reads the transaction logs they are interested in, and they see all of the events in the same order in which they occurred. Debezium is built on top of Apache Kafka and integrates with Kafka Connect.

The latest version of Debezium includes support for monitoring MySQL database servers, MongoDB replica sets or sharded clusters, PostgreSQL servers, and SQL Server databases. We will be using Debezium’s PostgreSQL connector to capture row-level changes in the Pagila PostgreSQL database. According to Debezium’s documentation, the first time it connects to a PostgreSQL server or cluster, the connector takes a consistent snapshot of all schemas. After that snapshot is complete, the connector continuously captures row-level changes that insert, update, and delete database content committed to the database. The connector generates data change event records and streams them to Kafka topics. For each table, the default behavior is that the connector streams all generated events to a separate Kafka topic for that table. Applications and services consume data change event records from that topic.

Prerequisites

Similar to the previous post, this post will focus on data movement, not how to deploy the required AWS resources. To follow along with the post, you will need the following resources already deployed and configured on AWS:

  1. Amazon RDS for PostgreSQL instance (data source);
  2. Amazon S3 bucket (data sink);
  3. Amazon MSK cluster;
  4. Amazon EKS cluster;
  5. Connectivity between the Amazon RDS instance and Amazon MSK cluster;
  6. Connectivity between the Amazon EKS cluster and Amazon MSK cluster;
  7. Ensure the Amazon MSK Configuration has auto.create.topics.enable=true. This setting is false by default;
  8. IAM Role associated with Kubernetes service account (known as IRSA) that will allow access from EKS to MSK and S3 (see details below);

As shown in the architectural diagram above, I am using three separate VPCs within the same AWS account and AWS Region, us-east-1, for Amazon RDS, Amazon EKS, and Amazon MSK. The three VPCs are connected using VPC Peering. Ensure you expose the correct ingress ports, and the corresponding CIDR ranges on your Amazon RDS, Amazon EKS, and Amazon MSK Security Groups. For additional security and cost savings, use a VPC endpoint to ensure private communications between Amazon EKS and Amazon S3.

Source Code

All source code for this post and the previous post, including the Kafka Connect and connector configuration files and the Helm charts, is open-sourced and located on GitHub.GitHub — garystafford/kafka-connect-msk-demo: For the post, Hydrating a Data Lake using Change Data…
For the post, Hydrating a Data Lake using Change Data Capture (CDC), Apache Kafka, and Kubernetes on AWS — GitHub …github.com

Authentication and Authorization

Amazon MSK provides multiple authentication and authorization methods to interact with the Apache Kafka APIs. For example, you can use IAM to authenticate clients and to allow or deny Apache Kafka actions. Alternatively, you can use TLS or SASL/SCRAM to authenticate clients and Apache Kafka ACLs to allow or deny actions. In my last post, I demonstrated the use of SASL/SCRAM and Kafka ACLs with Amazon MSK:Securely Decoupling Applications on Amazon EKS using Kafka with SASL/SCRAM
Securely decoupling Go-based microservices on Amazon EKS using Amazon MSK with IRSA, SASL/SCRAM, and data encryptionitnext.io

Any MSK authentication and authorization should work with Kafka Connect, assuming you correctly configure Amazon MSK, Amazon EKS, and Kafka Connect. For this post, we are using IAM Access Control. An IAM Role associated with a Kubernetes service account (known as IRSA) allows EKS to access MSK and S3 using IAM (see more details below).

Sample PostgreSQL Database

For this post, we will continue to use PostgreSQL’s Pagila database. The database contains simulated movie rental data. The dataset is fairly small, making it less ideal for ‘big data’ use cases but small enough to quickly install and minimize data storage and analytical query costs.

Pagila database schema diagram

Before continuing, create a new database on the Amazon RDS PostgreSQL instance and populate it with the Pagila sample data. A few people have posted updated versions of this database with easy-to-install SQL scripts. Check out the Pagila scripts provided by Devrim Gündüz on GitHub and also by Robert Treat on GitHub.

Last Updated Trigger

Each table in the Pagila database has a last_update field. A simplistic way to detect changes in the Pagila database is to use the last_update field. This is a common technique to determine if and when changes were made to data using query-based CDC, as demonstrated in the previous post. As changes are made to records in these tables, an existing database function and a trigger to each table will ensure the last_update field is automatically updated to the current date and time. You can find further information on how the database function and triggers work with Kafka Connect in this post, kafka connect in action, part 3, by Dominick Lombardo.

CREATE OR REPLACE FUNCTION update_last_update_column()
RETURNS TRIGGER AS
$$
BEGIN
NEW.last_update = now();
RETURN NEW;
END;
$$ language 'plpgsql';
CREATE TRIGGER update_last_update_column_address
BEFORE UPDATE
ON address
FOR EACH ROW
EXECUTE PROCEDURE update_last_update_column();

Kafka Connect and Schema Registry

There are several options for deploying and managing Kafka Connect, the Kafka management APIs and command-line tools, and the Apicurio Registry. I prefer deploying a containerized solution to Kubernetes on Amazon EKS. Some popular containerized Kafka options include Strimzi, Confluent for Kubernetes (CFK), and Debezium. Another option is building your own Docker Image using the official Apache Kafka binaries. I chose to build my own Kafka Connect Docker Image using the latest Kafka binaries for this post. I then installed the necessary Confluent and Debezium connectors and their associated Java dependencies into the Kafka installation. Although not as efficient as using an off-the-shelf container, building your own image will teach you how Kafka, Kafka Connect, and Debezium work, in my opinion.

In regards to the schema registry, both Confluent and Apicurio offer containerized solutions. Apicurio has three versions of their registry, each with a different storage mechanism: in-memory, SQL, and Kafka. Since we already have an existing Amazon RDS PostgreSQL instance as part of the demonstration, I chose the Apicurio SQL-based registry Docker Image for this post, apicurio/apicurio-registry-sql:2.0.1.Final.

If you choose to use the same Kafka Connect and Apicurio solution I used in this post, a Helm Chart is included in the post’s GitHub repository, kafka-connect-msk-v2. The Helm chart will deploy a single Kubernetes pod to the kafka Namespace on Amazon EKS. The pod comprises both the Kafka Connect and Apicurio Registry containers. The deployment is intended for demonstration purposes and is not designed for use in Production.

apiVersion: v1
kind: Service
metadata:
name: kafka-connect-msk
spec:
type: NodePort
selector:
app: kafka-connect-msk
ports:
- port: 8080
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: kafka-connect-msk
labels:
app: kafka-connect-msk
component: service
spec:
replicas: 1
strategy:
type: Recreate
selector:
matchLabels:
app: kafka-connect-msk
component: service
template:
metadata:
labels:
app: kafka-connect-msk
component: service
spec:
serviceAccountName: kafka-connect-msk-iam-serviceaccount
containers:
- image: garystafford/kafka-connect-msk:1.1.0
name: kafka-connect-msk
imagePullPolicy: IfNotPresent
- image: apicurio/apicurio-registry-sql:2.0.1.Final
name: apicurio-registry-mem
imagePullPolicy: IfNotPresent
env:
- name: REGISTRY_DATASOURCE_URL
value: jdbc:postgresql://your-pagila-database-url.us-east-1.rds.amazonaws.com:5432/apicurio-registry
- name: REGISTRY_DATASOURCE_USERNAME
value: apicurio_registry
- name: REGISTRY_DATASOURCE_PASSWORD
value: 1L0v3Kafka!

Before deploying the chart, create a new PostgreSQL database, user, and grants on your RDS instance for the Apicurio Registry to use for storage:

CREATE DATABASE "apicurio-registry";
CREATE USER apicurio_registry WITH PASSWORD '1L0v3KafKa!';

GRANT CONNECT, CREATE ON DATABASE "apicurio-registry" to apicurio_registry;

Update the Helm chart’s value.yaml file with the name of your Kubernetes Service Account associated with the Kafka Connect pod (serviceAccountName) and your RDS URL (registryDatasourceUrl). The IAM Policy attached to the IAM Role associated with the pod’s Service Account should provide sufficient access to Kafka running on the Amazon MSK cluster from EKS. The policy should also provide access to your S3 bucket, as detailed here by Confluent. Below is an example of an (overly broad) IAM Policy that would allow full access to any Kafka clusters running on Amazon MSK and to your S3 bucket from Kafka Connect running on Amazon EKS.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "kafka-cluster:*",
"Resource": [
"arn:aws:kafka:us-east-1:111222333444:cluster/*/*",
"arn:aws:kafka:us-east-1:111222333444:group/*/*/*",
"arn:aws:kafka:us-east-1:111222333444:transactional-id/*/*/*",
"arn:aws:kafka:us-east-1:111222333444:topic/*/*/*"
]
},
{
"Effect": "Allow",
"Action": [
"s3:ListAllMyBuckets"
],
"Resource": "arn:aws:s3:us-east-1:111222333444:*"
},
{
"Effect": "Allow",
"Action": [
"s3:ListBucket",
"s3:GetBucketLocation"
],
"Resource": "arn:aws:s3:us-east-1:111222333444:<your-bucket-name>"
},
{
"Effect": "Allow",
"Action": [
"s3:PutObject",
"s3:GetObject",
"s3:AbortMultipartUpload",
"s3:ListMultipartUploadParts",
"s3:ListBucketMultipartUploads"
],
"Resource": "arn:aws:s3:us-east-1:111222333444:<your-bucket-name>/*"
}
]
}

Once the variables are updated, use the following command to deploy the Helm chart:

helm install kafka-connect-msk-v2 ./kafka-connect-msk-v2 \
--namespace $NAMESPACE --create-namespace

Confirm the chart was installed successfully by checking the pod’s status:

kubectl get pods -n kafka -l app=kafka-connect-msk
View of the pod running both containers successfully with no errors

If you have any issues with either container while deploying, review the individual container’s logs:

export KAFKA_CONTAINER=$(
kubectl get pods -n kafka -l app=kafka-connect-msk | \
awk 'FNR == 2 {print $1}')
kubectl logs $KAFKA_CONTAINER -n kafka kafka-connect-msk
kubectl logs $KAFKA_CONTAINER -n kafka apicurio-registry-mem

Kafka Connect

Get a shell to the running Kafka Connect container using the kubectl exec command:

export KAFKA_CONTAINER=$(
kubectl get pods -n kafka -l app=kafka-connect-msk | \
awk 'FNR == 2 {print $1}')
kubectl exec -it $KAFKA_CONTAINER -n kafka -c kafka-connect-msk -- bash
Interacting with Kafka Connect container running on EKS

Confirm Access to Registry from Kafka Connect

If the Helm Chart was deployed successfully, you should now observe 11 new tables in the public schema of the new apicurio-registry database. Below, we see the new database and tables, as shown in pgAdmin.

Confirm the registry is running and accessible from the Kafka Connect container by calling the registry’s system/info REST API endpoint:

curl -s http://localhost:8080/apis/registry/v2/system/info | jq
Calling Apicurio Registry’s REST API from Kafka Connect container

The Apicurio Registry’s Service targets TCP port 8080. The Service is exposed on the Kubernetes worker node’s external IP address at a static port, the NodePort. To get the NodePort of the service, use the following command:

kubectl describe services kafka-client-msk -n kafka

To access the Apicurio Registry’s web-based UI, add the NodePort to the Security Group of the EKS nodes with the source being your IP address, a /32 CIDR block.

To get the external IP address (EXTERNAL-IP) of any Amazon EKS worker nodes, use the following command:

kubectl get nodes -o wide

Use the <NodeIP>:<NodePort> combination to access the UI from your web browser, for example, http://54.237.41.128:30433. The registry will be empty at this point in the demonstration.

Apicurio Registry UI

Configure Bootstrap Brokers

Before starting Kafka Connect, you will need to modify Kafka Connect’s configuration file. Kafka Connect is capable of running workers in standalone or distributed modes. Since we will be using Kafka Connect’s distributed mode, modify the config/connect-distributed.properties file. A complete sample of the configuration file I used in this post is shown below.

Kafka Connect and the schema registry will run on Amazon EKS, while Kafka and Apache ZooKeeper run on Amazon MSK. Update the bootstrap.servers property to reflect your own comma-delimited list of Amazon MSK Kafka Bootstrap Brokers. To get the list of the Bootstrap Brokers for your Amazon MSK cluster, use the AWS Management Console, or the following AWS CLI commands:

# get the msk cluster's arn
aws kafka list-clusters --query 'ClusterInfoList[*].ClusterArn'
# use msk arn to get the brokers
aws kafka get-bootstrap-brokers --cluster-arn your-msk-cluster-arn
# alternately, if you only have one cluster, then
aws kafka get-bootstrap-brokers --cluster-arn $(
aws kafka list-clusters | jq -r '.ClusterInfoList[0].ClusterArn')

Update the config/connect-distributed.properties file.

# ***** CHANGE ME! *****
bootstrap.servers=b-1.your-cluster.123abc.c2.kafka.us-east-1.amazonaws.com:9098,b-2.your-cluster.123abc.c2.kafka.us-east-1.amazonaws.com:9098, b-3.your-cluster.123abc.c2.kafka.us-east-1.amazonaws.com:9098
group.id=connect-cluster
key.converter.schemas.enable=true
value.converter.schemas.enable=true
offset.storage.topic=connect-offsets
offset.storage.replication.factor=2
#offset.storage.partitions=25
config.storage.topic=connect-configs
config.storage.replication.factor=2
status.storage.topic=connect-status
status.storage.replication.factor=2
#status.storage.partitions=5
offset.flush.interval.ms=10000
plugin.path=/usr/local/share/kafka/plugins
# kafka connect auth using iam
ssl.truststore.location=/tmp/kafka.client.truststore.jks
security.protocol=SASL_SSL
sasl.mechanism=AWS_MSK_IAM
sasl.jaas.config=software.amazon.msk.auth.iam.IAMLoginModule required;
sasl.client.callback.handler.class=software.amazon.msk.auth.iam.IAMClientCallbackHandler
# kafka connect producer auth using iam
producer.ssl.truststore.location=/tmp/kafka.client.truststore.jks
producer.security.protocol=SASL_SSL
producer.sasl.mechanism=AWS_MSK_IAM
producer.sasl.jaas.config=software.amazon.msk.auth.iam.IAMLoginModule required;
producer.sasl.client.callback.handler.class=software.amazon.msk.auth.iam.IAMClientCallbackHandler
# kafka connect consumer auth using iam
consumer.ssl.truststore.location=/tmp/kafka.client.truststore.jks
consumer.security.protocol=SASL_SSL
consumer.sasl.mechanism=AWS_MSK_IAM
consumer.sasl.jaas.config=software.amazon.msk.auth.iam.IAMLoginModule required;
consumer.sasl.client.callback.handler.class=software.amazon.msk.auth.iam.IAMClientCallbackHandler

For convenience when executing Kafka commands, set the BBROKERS environment variable to the same comma-delimited list of Kafka Bootstrap Brokers, for example:

export BBROKERS="b-1.your-cluster.123abc.c2.kafka.us-east-1.amazonaws.com:9098,b-2.your-cluster.123abc.c2.kafka.us-east-1.amazonaws.com:9098, b-3.your-cluster.123abc.c2.kafka.us-east-1.amazonaws.com:9098"

Confirm Access to Amazon MSK from Kafka Connect

To confirm you have access to Kafka running on Amazon MSK, from the Kafka Connect container running on Amazon EKS, try listing the exiting Kafka topics:

bin/kafka-topics.sh --list \
--bootstrap-server $BBROKERS \
--command-config config/client-iam.properties

You can also try listing the existing Kafka consumer groups:

bin/kafka-consumer-groups.sh --list \
--bootstrap-server $BBROKERS \
--command-config config/client-iam.properties

If either of these fails, you likely have networking or security issues blocking access from Amazon EKS to Amazon MSK. Check your VPC Peering, Route Tables, IAM/IRSA, and Security Group ingress settings. Any one of these items can cause communications issues between the container and Kafka running on Amazon MSK.

Once configured, start Kafka Connect as a background process.

Kafka Connect

bin/connect-distributed.sh \
config/connect-distributed.properties > /dev/null 2>&1 &

To confirm Kafka Connect starts properly, immediately tail the connect.log file. The log will capture any startup errors for troubleshooting.

tail -f logs/connect.log
Kafka Connect log showing Kafka Connect starting as a background process

You can also examine the background process with the ps command to confirm Kafka Connect is running. Note the process with PID 4915, shown below. Use the kill command along with the PID to stop Kafka Connect if necessary.

Kafka Connect running as a background process

If configured properly, Kafka Connect will create three new topics, referred to as Kafka Connect internal topics, when Kafka Connect starts up. The topics are defined in the config/connect-distributed.properties file: connect-configs, connect-offsets, and connect-status. According to Confluent, Connect stores connector and task configurations, offsets, and status in these topics. The Internal topics must have a high replication factor, a compaction cleanup policy, and an appropriate number of partitions. These new topics can be confirmed using the following command.

bin/kafka-topics.sh --list \
--bootstrap-server $BBROKERS \
--command-config config/client-iam.properties \
| grep connect-

Kafka Connect Connectors

This post demonstrates the use of a set of Kafka Connect source and sink connectors. The source connector is based on the Debezium Source Connector for PostgreSQL and the Apicurio Registry. The sink connector is based on the Confluent Amazon S3 Sink connector and the Apicurio Registry.

Connector Source

Create or modify the file, config/debezium_avro_source_connector_postgresql_05.json. Update lines 3–6, as shown below, to reflect your RDS instance connection details.

{
"connector.class": "io.debezium.connector.postgresql.PostgresConnector",
"database.hostname": "your-pagila-database-url.us-east-1.rds.amazonaws.com",
"database.port": "5432",
"database.user": "your-username",
"database.password": "your-password",
"database.dbname": "pagila",
"database.server.name": "pagila",
"table.include.list": "public.actor,public.film,public.film_actor,public.category,public.film_category,public.language",
"plugin.name": "pgoutput",
"key.converter": "io.apicurio.registry.utils.converter.AvroConverter",
"key.converter.apicurio.registry.url": "http://localhost:8080/apis/registry/v2",
"key.converter.apicurio.registry.auto-register": "true",
"key.converter.apicurio.registry.find-latest": "true",
"value.converter": "io.apicurio.registry.utils.converter.AvroConverter",
"value.converter.apicurio.registry.url": "http://localhost:8080/apis/registry/v2",
"value.converter.apicurio.registry.auto-register": "true",
"value.converter.apicurio.registry.find-latest": "true"
}

The source connector exports existing data and ongoing changes from six related tables within the Pagila database’s public schema: actor , film, film_actor , category, film_category, and language. Data will be imported into a corresponding set of six new Kafka topics: pagila.public.actor, pagila.public.film, and so forth. (see line 9, above).

Schema diagram showing six tables to be exported

Data from the tables is stored in Apache Avro format in Kafka, and the schemas are stored separately in the Apicurio Registry (lines 11–18, above).

Connector Sink

Create or modify the file, config/s3_sink_connector_05_debezium_avro.json. Update line 7, as shown below to reflect your Amazon S3 bucket’s name.

{
"connector.class": "io.confluent.connect.s3.S3SinkConnector",
"tasks.max": 1,
"topics.regex": "pagila.public.(.*)",
"table.name.format": "${topic}",
"s3.region": "us-east-1",
"s3.bucket.name": "your-s3-bucket",
"s3.part.size": 5242880,
"flush.size": 300,
"rotate.schedule.interval.ms": 60000,
"timezone": "UTC",
"storage.class": "io.confluent.connect.s3.storage.S3Storage",
"format.class": "io.confluent.connect.s3.format.parquet.ParquetFormat",
"parquet.codec": "gzip",
"schema.compatibility": "NONE",
"behavior.on.null.values": "ignore",
"key.converter": "io.apicurio.registry.utils.converter.AvroConverter",
"key.converter.apicurio.registry.url": "http://localhost:8080/apis/registry/v2",
"key.converter.apicurio.registry.auto-register": "true",
"key.converter.apicurio.registry.find-latest": "true",
"value.converter": "io.apicurio.registry.utils.converter.AvroConverter",
"value.converter.apicurio.registry.url": "http://localhost:8080/apis/registry/v2",
"value.converter.apicurio.registry.auto-register": "true",
"value.converter.apicurio.registry.find-latest": "true"
}

The sink connector flushes new data to S3 every 300 records or 60 seconds from the six Kafka topics (lines 4–5, 9–10, above). The schema for the data being written to S3 is extracted from the Apicurio Registry (lines 17–24, above).

The sink connector optimizes the raw data imported into S3 for downstream processing by writing GZIP-compressed Apache Parquet files to Amazon S3. Using Parquet’s columnar file format and file compression should help optimize ELT against the raw data once in S3 (lines 12–13, above).

Deploy Connectors

Deploy the source and sink connectors using the Kafka Connect REST Interface:

curl -s -d @"config/debezium_avro_source_connector_postgresql_05.json" \
-H "Content-Type: application/json" \
-X PUT http://localhost:8083/connectors/debezium_avro_source_connector_postgresql_05/config | jq
curl -s -d @"config/s3_sink_connector_05_debezium_avro.json" \
-H "Content-Type: application/json" \
-X PUT http://localhost:8083/connectors/s3_sink_connector_05_debezium_avro/config | jq

Confirming the Deployment

Use the following commands to confirm the new set of connectors are deployed and running correctly.

curl -s -X GET http://localhost:8083/connectors | jq
curl -s -H "Content-Type: application/json" \
-X GET http://localhost:8083/connectors/debezium_avro_source_connector_postgresql_05/status | jq
curl -s -H "Content-Type: application/json" \
-X GET http://localhost:8083/connectors/s3_sink_connector_05_debezium_avro/status | jq
Kafka Connect source and sink connectors running successfully

The items stored in Apicurio Registry, such as event schemas and API designs, are known as registry artifacts. If we re-visit the Apicurio Registry’s UI, we should observe 12 artifacts — a ‘key’ and ‘value’ artifact for each of the six tables we exported from the Pagila database.

Examing the Amazon S3, you should note six sets of S3 objects within the /topics/ object key prefix organized by topic name.

Amazon S3 bucket showing results of Kafka Connect S3 sink connector, organized by topic names

Within each topic name key, there should be a set of GZIP-compressed Parquet files.

Amazon S3 bucket showing GZIP-compressed Apache Parquet-format files

Use the Amazon S3 console’s ‘Query with S3 Select’ again to view the data contained in the Parquet-format files. Alternately, you can use the AWS CLI with the s3 API:

export SINK_BUCKET="your-s3-bucket"
export KEY="topics/pagila.public.film/partition=0/pagila.public.film+0+0000000000.gz.parquet"
aws s3api select-object-content \
--bucket $SINK_BUCKET \
--key $KEY \
--expression "select * from s3object limit 5" \
--expression-type "SQL" \
--input-serialization '{"Parquet": {}}' \
--output-serialization '{"JSON": {}}' "output.json" \
&& cat output.json | jq \
&& rm output.json

In the sample data below, note the metadata-rich structure of the log-based CDC messages as compared to the query-based messages we observed in the previous post:

{
"after": {
"special_features": [
"Deleted Scenes",
"Behind the Scenes"
],
"rental_duration": 6,
"rental_rate": 0.99,
"release_year": 2006,
"length": 86,
"replacement_cost": 20.99,
"rating": "PG",
"description": "A Epic Drama of a Feminist And a Mad Scientist who must Battle a Teacher in The Canadian Rockies",
"language_id": 1,
"title": "ACADEMY DINOSAUR",
"original_language_id": null,
"last_update": "2017-09-10T17:46:03.905795Z",
"film_id": 1
},
"source": {
"schema": "public",
"sequence": "[null,\"1177089474560\"]",
"xmin": null,
"connector": "postgresql",
"lsn": 1177089474560,
"name": "pagila",
"txId": 18422,
"version": "1.6.1.Final",
"ts_ms": 1629340334432,
"snapshot": "true",
"db": "pagila",
"table": "film"
},
"op": "r",
"ts_ms": 1629340334434
}

Database Changes with Log-based CDC

What happens when we change data within the tables that Debezium and Kafka Connect are monitoring? To answer this question, let’s make a few DML changes to the Pagila database: inserts, updates, and deletes:

INSERT INTO public.category (name)
VALUES ('Techno Thriller');
UPDATE public.film
SET release_year = 2021,
rental_rate = 2.99
WHERE film_id = 1;
UPDATE public.film
SET rental_duration = 3
WHERE film_id = 2;
UPDATE public.film_category
SET category_id = (
SELECT DISTINCT category_id
FROM public.category
WHERE name = 'Techno Thriller')
WHERE film_id = 3;
UPDATE public.actor
SET first_name = upper('Kate'),
last_name = upper('Winslet')
WHERE actor_id = 6;
DELETE
FROM public.film_actor
WHERE film_id = 375;

To see how these changes propagate, first, examine the Kafka Connect logs. Below, we see example log events corresponding to some of the database changes shown above. The Kafka Connect source connector detects changes, which are then exported from PostgreSQL to Kafka. The sink connector then writes these changes to Amazon S3.

Kafka Connect log showing changes to Pagila database being exported/imported

We can view the S3 bucket, which should now have new Parquet files corresponding to our changes. For example, the two updates we made to the film record with film_id of 1. Note the operation is an update ("op": "u") and the presence of the data in after block.

{
"after": {
"special_features": [
"Deleted Scenes",
"Behind the Scenes"
],
"rental_duration": 6,
"rental_rate": 2.99,
"release_year": 2021,
"length": 86,
"replacement_cost": 20.99,
"rating": "PG",
"description": "A Epic Drama of a Feminist And a Mad Scientist who must Battle a Teacher in The Canadian Rockies",
"language_id": 1,
"title": "ACADEMY DINOSAUR",
"original_language_id": null,
"last_update": "2021-08-19T03:19:57.073053Z",
"film_id": 1
},
"source": {
"schema": "public",
"sequence": "[\"1177693455424\",\"1177693455424\"]",
"xmin": null,
"connector": "postgresql",
"lsn": 1177693471392,
"name": "pagila",
"txId": 18445,
"version": "1.6.1.Final",
"ts_ms": 1629343197100,
"snapshot": "false",
"db": "pagila",
"table": "film"
},
"op": "u",
"ts_ms": 1629343197389
}

In another example, we see the delete made in the film_actor table, to the record with the film_id of 375. Note the operation is a delete ("op": "d") and the presence of the before block but no after block.

{
"before": {
"last_update": "1970-01-01T00:00:00Z",
"actor_id": 5,
"film_id": 375
},
"source": {
"schema": "public",
"sequence": "[\"1177693516520\",\"1177693516520\"]",
"xmin": null,
"connector": "postgresql",
"lsn": 1177693516520,
"name": "pagila",
"txId": 18449,
"version": "1.6.1.Final",
"ts_ms": 1629343198400,
"snapshot": "false",
"db": "pagila",
"table": "film_actor"
},
"op": "d",
"ts_ms": 1629343198426
}

Debezium Event Flattening SMT

The challenge with the Debezium message structure shown above in S3 is the verbosity of the payload and the nested nature of the data. As a result, developing SQL queries against such records would be difficult. For example, given the message structure shown above, even the simplest query in Amazon Athena becomes significantly more complex:

SELECT after.actor_id, after.first_name, after.last_name, after.last_update
FROM
(SELECT *,
ROW_NUMBER()
OVER ( PARTITION BY after.actor_id
ORDER BY after.last_UPDATE DESC) AS row_num
FROM "pagila_kafka_connect"."pagila_public_actor") AS x
WHERE x.row_num = 1
ORDER BY after.actor_id;

To specifically address the needs of different consumers, Debezium offers the event flattening single message transformation (SMT). The event flattening transformation is a Kafka Connect SMT. We covered Kafka Connect SMTs in the previous post. Using the event flattening SMT, we can shape the message received by Kafka to be more attuned to the specific consumers of our data lake. To implement the event flattening SMT, modify and redeploy the source connector, adding additional configuration (lines 19–23, below).

{
"connector.class": "io.debezium.connector.postgresql.PostgresConnector",
"database.hostname": "your-pagila-database-url.us-east-1.rds.amazonaws.com",
"database.port": "5432",
"database.user": "your-username",
"database.password": "your-password",
"database.dbname": "pagila",
"database.server.name": "pagila",
"table.include.list": "public.actor,public.film,public.film_actor,public.category,public.film_category,public.language",
"plugin.name": "pgoutput",
"key.converter": "io.apicurio.registry.utils.converter.AvroConverter",
"key.converter.apicurio.registry.url": "http://localhost:8080/apis/registry/v2",
"key.converter.apicurio.registry.auto-register": "true",
"key.converter.apicurio.registry.find-latest": "true",
"value.converter": "io.apicurio.registry.utils.converter.AvroConverter",
"value.converter.apicurio.registry.url": "http://localhost:8080/apis/registry/v2",
"value.converter.apicurio.registry.auto-register": "true",
"value.converter.apicurio.registry.find-latest": "true",
"transforms": "unwrap",
"transforms.unwrap.type": "io.debezium.transforms.ExtractNewRecordState",
"transforms.unwrap.drop.tombstones": "false",
"transforms.unwrap.delete.handling.mode": "rewrite",
"transforms.unwrap.add.fields": "op,db,table,schema,lsn,source.ts_ms"
}

We will include the op, db, schema, lsn, and source.ts_ms metadata fields, along with the actual record data (table) in the transformed message. This means we have chosen to exclude all other fields from the messages. The transform will flatten the message’s nested structure.

Making this change to the message structure by adding the transformation results in new versions of the message’s schemas automatically being added to the Apicurio Registry by the source connector:

Apicurio Registry showing revised versions of the pagila.public.film schema

As a result of the event flattening SMT by the source connector, our message structure is significantly simplified:

{
"actor_id": 7,
"first_name": "BOB",
"last_name": "MOSTEL",
"last_update": "2021-08-19T21:01:55.090858Z",
"__op": "u",
"__db": "pagila",
"__schema": "public",
"__table": "actor",
"__lsn": 1191920555344,
"__source_ts_ms": 1629406915091,
"__deleted": "false"
}

Note the new __deleted field, which results from lines 21–22 of the source connector configuration, shown above. Debezium keeps tombstone records for DELETE operations in the event stream and adds __deleted , set to true or false. Below, we see an example of two DELETE operations on the film_actor table.

{
"actor_id": 52,
"film_id": 376,
"last_update": "1970-01-01T00:00:00Z",
"__op": "d",
"__db": "pagila",
"__schema": "public",
"__table": "film_actor",
"__lsn": 1192390296016,
"__source_ts_ms": 1629408869556,
"__deleted": "true"
}
{
"actor_id": 60,
"film_id": 376,
"last_update": "1970-01-01T00:00:00Z",
"__op": "d",
"__db": "pagila",
"__schema": "public",
"__table": "film_actor",
"__lsn": 1192390298976,
"__source_ts_ms": 1629408869556,
"__deleted": "true"
}

Viewing Data in the Data Lake

A convenient way to examine both the existing data and ongoing data changes in our data lake is to crawl and catalog the S3 bucket’s contents with AWS Glue, then query the results with Amazon Athena. AWS Glue’s Data Catalog is an Apache Hive-compatible, fully-managed, persistent metadata store. AWS Glue can store the schema, metadata, and location of our data in S3. Amazon Athena is a serverless Presto-based (PrestoDB) ad-hoc analytics engine, which can query AWS Glue Data Catalog tables and the underlying S3-based data.

AWS Glue Data Catalog (metastore) showing six new tables

With the data crawled and cataloged in Glue, let’s perform some additional changes to the Pagila database’s film table.

UPDATE public.film
SET release_year = 2019,
rental_rate = 3.99
WHERE film_id = 1;

UPDATE public.film
SET rental_duration = 4
WHERE film_id = 2;

UPDATE public.film
SET rental_duration = 7
WHERE film_id = 2;
INSERT INTO public.category (name)
VALUES ('Steampunk');
UPDATE public.film_category
SET category_id = (
SELECT DISTINCT category_id
FROM public.category
WHERE name = 'Steampunk')
WHERE film_id = 3;
UPDATE public.film
SET release_year = 2017,
rental_rate = 3.99
WHERE film_id = 4;
UPDATE public.film_actor
SET film_id = 100
WHERE film_id = 5;

UPDATE public.film_category
SET film_id = 100
WHERE film_id = 5;

UPDATE public.inventory
SET film_id = 100
WHERE film_id = 5;

DELETE
FROM public.film
WHERE film_id = 5;

We should be able to almost immediately observe these database changes by executing a query with Amazon Athena. The changes are propagated from PostgreSQL to Kafka to S3 within seconds or less by Kafka Connect based on the connector configurations. Performing a typical query in Athena will return all of the original records as well as any updates or deletes we made as duplicate records (records identical film_id primary keys).

SELECT film_id, title, release_year, rental_rate, rental_duration,
date_format(from_unixtime(__source_ts_ms/1000), '%Y-%m-%d %h:%i:%s') AS timestamp
FROM "pagila_kafka_connect"."pagila_public_film"
ORDER BY film_id, timestamp
Amazon Athena showing SQL query and the result set with duplicate records

Note the original records as well as each change we made earlier. The timestamp field, derived from the __source_ts_ms metadata field represents the server time at which the transaction was committed, according to Debezium. Also, note the records with their film_id of 5 in the query results — the record we deleted from the film table. The field values are (mostly) null in the latest record, except for any fields with default values in the Pagila table definition. If there are default values (e.g., rental_duration smallint default 3 not null or rental_rate numeric(4,2) default 4.99 not null) set on a field, those values end up in the deleted record when using the event flattening SMT. It doesn’t negatively impact anything except adding additional size to a tombstone record (unclear if this is expected behavior with Debezium or an artifact of the WAL entry).

film_id title release_year rental_rate rental_duration timestamp
1 ACADEMY DINOSAUR 2021 2.99 6 2021-08-20 01:43:37
1 ACADEMY DINOSAUR 2019 3.99 6 2021-08-20 02:41:32
2 ACE GOLDFINGER 2006 4.99 3 2021-08-20 02:49:17
2 ACE GOLDFINGER 2006 4.99 4 2021-08-20 02:49:33
2 ACE GOLDFINGER 2006 4.99 7 2021-08-20 02:49:33
3 ADAPTATION HOLES 2006 2.99 7 2021-08-20 01:43:37
4 AFFAIR PREJUDICE 2006 2.99 5 2021-08-20 01:43:37
4 AFFAIR PREJUDICE 2017 3.99 5 2021-08-20 02:55:23
5 AFRICAN EGG 2006 2.99 6 2021-08-20 01:43:37
5 4.99 3 2021-08-20 03:00:49
view raw films_query.csv hosted with ❤ by GitHub

To view only the most current data and ignore deleted records, we can use the ROW_NUMBER() function and add a predicate to check the value of the __deleted field:

SELECT film_id, title, release_year, rental_rate, rental_duration,
date_format(from_unixtime(__source_ts_ms/1000), '%Y-%m-%d %h:%i:%s') AS timestamp
FROM
(SELECT *,
ROW_NUMBER()
OVER ( PARTITION BY film_id
ORDER BY __source_ts_ms DESC) AS row_num
FROM "pagila_kafka_connect"."pagila_public_film") AS x
WHERE x.row_num = 1
AND __deleted != 'true'
ORDER BY film_id
Amazon Athena showing SQL query and the result set with the latest records

Now we only see the latest records, including the removal of any deleted records. Although this method is effective for a single set of records, the query is far too intricate to apply to complex joins and aggregations, in my opinion.

film_id title release_year rental_rate rental_duration timestamp
1 ACADEMY DINOSAUR 2019 3.99 6 2021-08-20 02:41:32
2 ACE GOLDFINGER 2006 4.99 7 2021-08-20 02:49:33
3 ADAPTATION HOLES 2006 2.99 7 2021-08-20 01:43:37
4 AFFAIR PREJUDICE 2017 3.99 5 2021-08-20 02:55:23

Data Movement

Using Amazon Athena, we can easily write the results of our ROW_NUMBER() query back to the data lake for further enrichment or analysis. Athena’s CREATE TABLE AS SELECT (CTAS) SQL statement creates a new table in Athena (an external table in AWS Glue Data Catalog) from the results of a SELECT statement in the subquery. Athena stores data files created by the CTAS statement in a specified location in Amazon S3 and created a new AWS Glue Data Catalog table to store the result set’s schema and metadata information. CTAS supports several file formats and storage options.

High-level architecture for this post’s demonstration

Wrapping the last query in Athena’s CTAS statement, as shown below, we can write the query results as SNAPPY-compressed Parquet-format files, partitioned by the movie rating, to a new location in the Amazon S3 bucket. Using common data lake terminology, I will refer to the resulting filtered and cleaned dataset as refined or silver instead of the raw ingestion or bronze data originating from our data source, PostgreSQL, via Kafka.

CREATE TABLE pagila_kafka_connect.pagila_public_film_refined
WITH (
format='PARQUET',
parquet_compression='SNAPPY',
partitioned_by=ARRAY['rating'],
external_location='s3://my-s3-table/refined/film/'
) AS
SELECT film_id, title, release_year, rental_rate, rental_duration,
date_format(from_unixtime(__source_ts_ms/1000), '%Y-%m-%d %h:%i:%s') AS timestamp, rating
FROM
(SELECT *,
ROW_NUMBER()
OVER ( PARTITION BY film_id
ORDER BY __source_ts_ms DESC) AS row_num
FROM "pagila_kafka_connect"."pagila_public_film") AS x
WHERE x.row_num = 1
AND __deleted = 'false'
ORDER BY film_id
Amazon Athena showing CTAS statement and the resulting new table to the left

Examing the Amazon S3 bucket, again, you should observe a new set of S3 objects within the /refined/film/ key path, partitioned by rating.

Amazon S3 bucket showing results of CTAS statement

We should also see a new table in the same AWS Glue Data Catalog containing metadata, location, and schema information about the data we wrote to S3 using the CTAS statement. We can perform additional queries on the refined dataset.

SELECT *
FROM "pagila_kafka_connect"."pagila_public_film_refined"
ORDER BY film_id
Amazon Athena showing query results from the refined film data

CRUD Operations in the Data Lake

To fully take advantage of CDC and maximize the freshness of data in the data lake, we would need to also adopt modern data lake file formats like Apache Hudi, Apache Iceberg, or Delta Lake, along with analytics engines such as Apache Spark with Spark Structured Streaming to process the data changes. Using these technologies, it is possible to perform record-level upserts and deletes of data in an object store like Amazon S3. Hudi, Iceberg, and Delta Lake offer features including ACID transactions, schema evolution, upserts, deletes, time travel, and incremental data consumption in a data lake. ELT engines like Spark can read streaming Debezium-generated CDC messages from Kafka and process those changes using Hudi, Iceberg, or Delta Lake.

Conclusion

This post explored how log-based CDC could help us hydrate data from an Amazon RDS database into an Amazon S3-based data lake. We leveraged the capabilities of Amazon MSK, Amazon EKS, Apache Kafka Connect, Debezium, Apache Avro, and Apicurio Registry. In a subsequent post, we will learn how data lake file formats like Apache Hudi, Apache Iceberg, and Delta Lake, along with Apache Spark Structured Streaming, can help us actively manage the data in our data lake.


This blog represents my own viewpoints and not of my employer, Amazon Web Services (AWS). All product names, logos, and brands are the property of their respective owners.

, , , , , , ,

Leave a comment

Hydrating a Data Lake using Query-based CDC with Apache Kafka Connect and Kubernetes on AWS

Import data from an Amazon RDS database into an Amazon S3-based data lake using Amazon EKS, Amazon MSK, and Apache Kafka Connect

Introduction

A data lake, according to AWS, is a centralized repository that allows you to store all your structured and unstructured data at any scale. Data is collected from multiple sources and moved into the data lake. Once in the data lake, data is organized, cataloged, transformed, enriched, and converted to common file formats, optimized for analytics and machine learning.

One of an organization’s first challenges when building a data lake is how to continually import data from different data sources, such as relational and non-relational database engines, enterprise ERP, SCM, CRM, and SIEM software, flat-files, messaging platforms, IoT devices, and logging and metrics collection systems. Each data source will have its own unique method of connectivity, security, data storage format, and data export capabilities. There are many closed- and open-source tools available to help extract data from different data sources.

A popular open-source tool is Kafka Connect, part of the Apache Kafka ecosystem. Apache Kafka is an open-source distributed event streaming platform used by thousands of companies for high-performance data pipelines, streaming analytics, data integration, and mission-critical applications. Kafka Connect is a tool for scalably and reliably streaming data between Apache Kafka and other systems. Kafka Connect makes it simple to quickly define connectors that move large collections of data into and out of Kafka.

In the following post, we will learn how to use Kafka Connect to export data from our data source, an Amazon RDS for PostgreSQL relational database, into Kafka. We will then export that data from Kafka into our data sink — a data lake built on Amazon Simple Storage Service (Amazon S3). The data imported into S3 will be converted to Apache Parquet columnar storage file format, compressed, and partitioned for optimal analytics performance, all using Kafka Connect.

Best of all, to maintain data freshness of the data lake, as data is added or updated in PostgreSQL, Kafka Connect will automatically detect those changes and stream those changes into the data lake. This process is commonly referred to as Change Data Capture (CDC).

High-level architecture for this post’s demonstration

Change Data Capture

According to Gunnar Morling, Principal Software Engineer at Red Hat who works on the Debezium and Hibernate projects and well-known industry speaker, there are two types of Change Data Capture — Query-based and Log-based CDC. Gunnar detailed the differences between the two types of CDC in his talk at the Joker International Java Conference in February 2021, Change data capture pipelines with Debezium and Kafka Streams.

Joker 2021: Change data capture pipelines with Debezium and Kafka Streams (image: YouTube)

You can find another good explanation of CDC in the recent post by Lewis Gavin of Rockset, Change Data Capture: What It Is and How to Use It.

Query-based vs. Log-based CDC

To effectively demonstrate the difference between query-based and log-based CDC, examine the results of a SQL UPDATE statement, captured with both methods.

UPDATE public.address
SET address2 = 'Apartment #1234'
WHERE address_id = 105;

Here is how the change is represented as a JSON message payload using the query-based CDC method described in this post.

{
"address_id": 105,
"address": "733 Mandaluyong Place",
"address2": "Apartment #1234",
"district": "Asir",
"city_id": 2,
"postal_code": "77459",
"phone": "196568435814",
"last_update": "2021-08-13T00:43:38.508Z"
}

Here is how the same change is represented as a JSON message payload using log-based CDC with Debezium. Note the metadata-rich structure of the log-based CDC message as compared to the query-based message.

{
"after": {
"address": "733 Mandaluyong Place",
"address2": "Apartment #1234",
"phone": "196568435814",
"district": "Asir",
"last_update": "2021-08-13T00:43:38.508453Z",
"address_id": 105,
"postal_code": "77459",
"city_id": 2
},
"source": {
"schema": "public",
"sequence": "[\"1090317720392\",\"1090317720392\"]",
"xmin": null,
"connector": "postgresql",
"lsn": 1090317720624,
"name": "pagila",
"txId": 16973,
"version": "1.6.1.Final",
"ts_ms": 1628815418508,
"snapshot": "false",
"db": "pagila",
"table": "address"
},
"op": "u",
"ts_ms": 1628815418815
}

In an upcoming post, we will explore Debezium along with Apache Arvo and a schema registry to build a log-based CDC solution using PostgreSQL’s write-ahead log (WAL). In this post, we will examine query-based CDC using the ‘update timestamp’ technique.

Kafka Connect Connectors

In this post, we will use source and sink connectors from Confluent. Confluent is the undisputed leader in providing enterprise-grade managed Kafka through their Confluent Cloud and Confluent Platform products. Confluent offers dozens of source and sink connectors that cover the most popular data sources and sinks. Connectors used in this post will include:

  • Confluent’s Kafka Connect JDBC Source connector imports data from any relational database with a JDBC driver into an Apache Kafka topic. The Kafka Connect JDBC Sink connector exports data from Kafka topics to any relational database with a JDBC driver.
  • Confluent’s Kafka Connect Amazon S3 Sink connector exports data from Apache Kafka topics to S3 objects in either Avro, Parquet, JSON, or Raw Bytes.

Prerequisites

This post will focus on data movement with Kafka Connect, not how to deploy the required AWS resources. To follow along with the post, you will need the following resources already deployed and configured on AWS:

  1. Amazon RDS for PostgreSQL instance (data source);
  2. Amazon S3 bucket (data sink);
  3. Amazon MSK cluster;
  4. Amazon EKS cluster;
  5. Connectivity between the Amazon RDS instance and Amazon MSK cluster;
  6. Connectivity between the Amazon EKS cluster and Amazon MSK cluster;
  7. Ensure the Amazon MSK Configuration has auto.create.topics.enable=true. This setting is false by default;
  8. IAM Role associated with Kubernetes service account (known as IRSA) that will allow access from EKS to MSK and S3 (see details below);

As shown in the architectural diagram above, I am using three separate VPCs within the same AWS account and AWS Region, us-east-1, for Amazon RDS, Amazon EKS, and Amazon MSK. The three VPCs are connected using VPC Peering. Ensure you expose the correct ingress ports, and the corresponding CIDR ranges on your Amazon RDS, Amazon EKS, and Amazon MSK Security Groups. For additional security and cost savings, use a VPC endpoint to ensure private communications between Amazon EKS and Amazon S3.

Source Code

All source code for this post, including the Kafka Connect configuration files and the Helm chart, is open-sourced and located on GitHub.

Authentication and Authorization

Amazon MSK provides multiple authentication and authorization methods to interact with the Apache Kafka APIs. For example, you can use IAM to authenticate clients and to allow or deny Apache Kafka actions. Alternatively, you can use TLS or SASL/SCRAM to authenticate clients and Apache Kafka ACLs to allow or deny actions. In my last post, I demonstrated the use of SASL/SCRAM and Kafka ACLs with Amazon MSK, Securely Decoupling Applications on Amazon EKS using Kafka with SASL/SCRAM.

Any MSK authentication and authorization should work with Kafka Connect, assuming you correctly configure Amazon MSK, Amazon EKS, and Kafka Connect. For this post, we are using IAM Access Control. An IAM Role associated with a Kubernetes service account (IRSA) allows EKS to access MSK and S3 using IAM (see more details below).

Sample PostgreSQL Database

There are many sample PostgreSQL databases we could use to explore Kafka Connect. One of my favorite, albeit a bit dated, is PostgreSQL’s Pagila database. The database contains simulated movie rental data. The dataset is fairly small, making it less ideal for ‘big data’ use cases but small enough to quickly install and minimize data storage and analytics costs.

Pagila database schema diagram

Before continuing, create a new database on the Amazon RDS PostgreSQL instance and populate it with the Pagila sample data. A few people have posted updated versions of this database with easy-to-install SQL scripts. Check out the Pagila scripts provided by Devrim Gündüz on GitHub and also by Robert Treat on GitHub.

Last Updated Trigger

Each table in the Pagila database has a last_update field. A convenient way to detect changes in the Pagila database, and ensure those changes make it from RDS to S3, is to have Kafka Connect use the last_update field. This is a common technique to determine if and when changes were made to data using query-based CDC.

As changes are made to records in these tables, an existing database function and a trigger to each table will ensure the last_update field is automatically updated to the current date and time. You can find further information on how the database function and triggers work with Kafka Connect in this post, kafka connect in action, part 3, by Dominick Lombardo.

CREATE OR REPLACE FUNCTION update_last_update_column()
RETURNS TRIGGER AS
$$
BEGIN
NEW.last_update = now();
RETURN NEW;
END;
$$ language 'plpgsql';

CREATE TRIGGER update_last_update_column_address
BEFORE UPDATE
ON address
FOR EACH ROW
EXECUTE PROCEDURE update_last_update_column();

Kubernetes-based Kafka Connect

There are several options for deploying and managing Kafka Connect and other required Kafka management tools to Kubernetes on Amazon EKS. Popular solutions include Strimzi and Confluent for Kubernetes (CFK) or building your own Docker Image using the official Apache Kafka binaries. For this post, I chose to build my own Kafka Connect Docker Image using the latest Kafka binaries. I then installed Confluent’s connectors and their dependencies into the Kafka installation. Although not as efficient as using an off-the-shelf OSS container, building your own image can really teach you how Kafka and Kafka Connect work, in my opinion.

If you chose to use the same Kafka Connect Image used in this post, a Helm Chart is included in the post’s GitHub repository. The Helm chart will deploy a single Kubernetes pod to the kafka Namespace on Amazon EKS.

apiVersion: apps/v1
kind: Deployment
metadata:
name: kafka-connect-msk
labels:
app: kafka-connect-msk
component: service
spec:
replicas: 1
strategy:
type: Recreate
selector:
matchLabels:
app: kafka-connect-msk
component: service
template:
metadata:
labels:
app: kafka-connect-msk
component: service
spec:
serviceAccountName: kafka-connect-msk-iam-serviceaccount
containers:
- image: garystafford/kafka-connect-msk:1.0.0
name: kafka-connect-msk
imagePullPolicy: IfNotPresent

Before deploying the chart, update the value.yaml file with the name of your Kubernetes Service Account associated with the Kafka Connect pod (serviceAccountName). The IAM Policy attached to the IAM Role associated with the pod’s Service Account should provide sufficient access to Kafka running on the Amazon MSK cluster from EKS. The policy should also provide access to your S3 bucket, as detailed here by Confluent. Below is an example of an (overly broad) IAM Policy that would allow full access to any Kafka clusters running on MSK and to S3 from Kafka Connect running on EKS.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "kafka-cluster:*",
"Resource": [
"arn:aws:kafka:us-east-1:111222333444:cluster/*/*",
"arn:aws:kafka:us-east-1:111222333444:group/*/*/*",
"arn:aws:kafka:us-east-1:111222333444:transactional-id/*/*/*",
"arn:aws:kafka:us-east-1:111222333444:topic/*/*/*"
]
},
{
"Effect": "Allow",
"Action": [
"s3:ListAllMyBuckets"
],
"Resource": "arn:aws:s3:us-east-1:111222333444:*"
},
{
"Effect": "Allow",
"Action": [
"s3:ListBucket",
"s3:GetBucketLocation"
],
"Resource": "arn:aws:s3:us-east-1:111222333444:<your-bucket-name>"
},
{
"Effect": "Allow",
"Action": [
"s3:PutObject",
"s3:GetObject",
"s3:AbortMultipartUpload",
"s3:ListMultipartUploadParts",
"s3:ListBucketMultipartUploads"
],
"Resource": "arn:aws:s3:us-east-1:111222333444:<your-bucket-name>/*"
}
]
}

Once the Service Account variable is updated, use the following command to deploy the Helm chart:

helm install kafka-connect-msk ./kafka-connect-msk \
--namespace $NAMESPACE --create-namespace

To get a shell to the running Kafka Connect container, use the following kubectl exec command:

export KAFKA_CONTAINER=$(
kubectl get pods -n kafka -l app=kafka-connect-msk | \
awk 'FNR == 2 {print $1}')
kubectl exec -it $KAFKA_CONTAINER -n kafka -- bash
Interacting with Kafka Connect container running on EKS

Configure Bootstrap Brokers

Before starting Kafka Connect, you will need to modify Kafka Connect’s configuration file. Kafka Connect is capable of running workers in standalone and distributed modes. Since we will use Kafka Connect’s distributed mode, modify the config/connect-distributed.properties file. A complete sample of the configuration file I used in this post is shown below.

Kafka Connect will run within the pod’s container, while Kafka and Apache ZooKeeper run on Amazon MSK. Update the bootstrap.servers property to reflect your own comma-delimited list of Amazon MSK Kafka Bootstrap Brokers. To get the list of the Bootstrap Brokers for your Amazon MSK cluster, use the AWS Management Console, or the following AWS CLI commands:

# get the msk cluster's arn
aws kafka list-clusters --query 'ClusterInfoList[*].ClusterArn'
# use msk arn to get the brokers
aws kafka get-bootstrap-brokers --cluster-arn your-msk-cluster-arn
# alternately, if you only have one cluster, then
aws kafka get-bootstrap-brokers --cluster-arn $(
aws kafka list-clusters | jq -r '.ClusterInfoList[0].ClusterArn')

Update the config/connect-distributed.properties file.

# ***** CHANGE ME! *****
bootstrap.servers=b-1.your-cluster.123abc.c2.kafka.us-east-1.amazonaws.com:9098,b-2.your-cluster.123abc.c2.kafka.us-east-1.amazonaws.com:9098, b-3.your-cluster.123abc.c2.kafka.us-east-1.amazonaws.com:9098
group.id=connect-cluster
key.converter.schemas.enable=true
value.converter.schemas.enable=true
offset.storage.topic=connect-offsets
offset.storage.replication.factor=2
#offset.storage.partitions=25
config.storage.topic=connect-configs
config.storage.replication.factor=2
status.storage.topic=connect-status
status.storage.replication.factor=2
#status.storage.partitions=5
offset.flush.interval.ms=10000
plugin.path=/usr/local/share/kafka/plugins
# kafka connect auth using iam
ssl.truststore.location=/tmp/kafka.client.truststore.jks
security.protocol=SASL_SSL
sasl.mechanism=AWS_MSK_IAM
sasl.jaas.config=software.amazon.msk.auth.iam.IAMLoginModule required;
sasl.client.callback.handler.class=software.amazon.msk.auth.iam.IAMClientCallbackHandler
# kafka connect producer auth using iam
producer.ssl.truststore.location=/tmp/kafka.client.truststore.jks
producer.security.protocol=SASL_SSL
producer.sasl.mechanism=AWS_MSK_IAM
producer.sasl.jaas.config=software.amazon.msk.auth.iam.IAMLoginModule required;
producer.sasl.client.callback.handler.class=software.amazon.msk.auth.iam.IAMClientCallbackHandler
# kafka connect consumer auth using iam
consumer.ssl.truststore.location=/tmp/kafka.client.truststore.jks
consumer.security.protocol=SASL_SSL
consumer.sasl.mechanism=AWS_MSK_IAM
consumer.sasl.jaas.config=software.amazon.msk.auth.iam.IAMLoginModule required;
consumer.sasl.client.callback.handler.class=software.amazon.msk.auth.iam.IAMClientCallbackHandler

For convenience when executing Kafka commands, set the BBROKERS environment variable to the same comma-delimited list of Kafka Bootstrap Brokers, for example:

export BBROKERS="b-1.your-cluster.123abc.c2.kafka.us-east-1.amazonaws.com:9098,b-2.your-cluster.123abc.c2.kafka.us-east-1.amazonaws.com:9098, b-3.your-cluster.123abc.c2.kafka.us-east-1.amazonaws.com:9098"

Confirm Access to Amazon MSK from Kafka Connect

To confirm you have access to Kafka running on Amazon MSK, from the Kafka Connect container running on Amazon EKS, try listing the exiting Kafka topics:

bin/kafka-topics.sh --list \
--bootstrap-server $BBROKERS \
--command-config config/client-iam.properties

You can also try listing the existing Kafka consumer groups:

bin/kafka-consumer-groups.sh --list \
  --bootstrap-server $BBROKERS \
  --command-config config/client-iam.properties

If either of these fails, you will likely have networking or security issues blocking access from Amazon EKS to Amazon MSK. Check your VPC Peering, Route Tables, IAM/IRSA, and Security Group ingress settings. Any one of these items can cause communications issues between the container and Kafka running on Amazon MSK.

Kafka Connect

I recommend starting Kafka Connect as a background process using either method shown below.

bin/connect-distributed.sh \
config/connect-distributed.properties > /dev/null 2>&1 &
# alternately use nohup
nohup bin/connect-distributed.sh \
config/connect-distributed.properties &

To confirm Kafka Connect started properly, immediately tail the connect.log file. The log will capture any startup errors for troubleshooting.

tail -f logs/connect.log
Kafka Connect log showing Kafka Connect starting as a background process

You can also examine the background process with the ps command to confirm Kafka Connect is running. Note the process with PID 4915, below. Use the kill command along with the PID to stop Kafka Connect if necessary.

Kafka Connect running as a background process

If configured properly, Kafka Connect will create three new topics, referred to as Kafka Connect internal topics, the first time it starts up, as defined in the config/connect-distributed.properties file: connect-configs, connect-offsets, and connect-status. According to Confluent, Connect stores connector and task configurations, offsets, and status in these topics. The Internal topics must have a high replication factor, a compaction cleanup policy, and an appropriate number of partitions. These new topics can be confirmed using the following command.

bin/kafka-topics.sh --list \
--bootstrap-server $BBROKERS \
--command-config config/client-iam.properties \
| grep connect-

Kafka Connect Connectors

This post demonstrates three progressively more complex Kafka Connect source and sink connectors. Each will demonstrate different connector capabilities to import/export and transform data between Amazon RDS for PostgreSQL and Amazon S3.

Connector Source #1

Create a new file (or modify the existing file if using my Kafka Connect container) named config/jdbc_source_connector_postgresql_00.json. Modify lines 3–5, as shown below, to reflect your RDS instance’s JDBC connection details.

{
"connector.class": "io.confluent.connect.jdbc.JdbcSourceConnector",
"connection.url": "jdbc:postgresql://your-pagila-database-url.us-east-1.rds.amazonaws.com:5432/pagila",
"connection.user": "your-username",
"connection.password": "your-password",
"topic.prefix": "pagila.public.",
"poll.interval.ms": 5000,
"mode": "timestamp",
"catalog.pattern": "public",
"table.whitelist": "address, city, country",
"timestamp.column.name": "last_update"
}

This first Kafka Connect source connector uses Confluent’s Kafka Connect JDBC Source connector (io.confluent.connect.jdbc.JdbcSourceConnector) to export data from RDS with a JDBC driver and import that data into a series of Kafka topics. We will be exporting data from three tables in Pagila’s public schema: address, city, and country. We will write that data to a series of topics, arbitrarily prefixed with database name and schema, pagila.public.. The source connector will create the three new topics automatically: pagila.public.address , pagila.public.city , and pagila.public.country.

Note the connector’s mode property value is set to timestamp, and the last_update field is referenced in the timestamp.column.name property. Recall we added the database function and triggers to these three tables earlier in the post, which will update the last_update field whenever a record is created or updated in the Pagila database. In addition to an initial export of the entire table, the source connector will poll the database every 5 seconds (poll.interval.ms property), looking for changes that are newer than the most recently exported last_modified date. This is accomplished by the source connector, using a parameterized query, such as:

SELECT *
FROM "public"."address"
WHERE "public"."address"."last_update" > ?
AND "public"."address"."last_update" < ?
ORDER BY "public"."address"."last_update" ASC

Connector Sink #1

Next, create and configure the first Kafka Connect sink connector. Create a new file or modify config/s3_sink_connector_00.json. Modify line 7, as shown below to reflect your Amazon S3 bucket name.

{
"connector.class": "io.confluent.connect.s3.S3SinkConnector",
"tasks.max": 1,
"topics.regex": "pagila.public.(.*)",
"table.name.format": "${topic}",
"s3.region": "us-east-1",
"s3.bucket.name": "your-s3-bucket",
"s3.part.size": 5242880,
"flush.size": 100,
"rotate.schedule.interval.ms": 60000,
"timezone": "UTC",
"storage.class": "io.confluent.connect.s3.storage.S3Storage",
"format.class": "io.confluent.connect.s3.format.json.JsonFormat",
"partitioner.class": "io.confluent.connect.storage.partitioner.DefaultPartitioner",
"schema.compatibility": "NONE"
}

This first Kafka Connect sink connector uses Confluent’s Kafka Connect Amazon S3 Sink connector (io.confluent.connect.s3.S3SinkConnector) to export data from Kafka topics to Amazon S3 objects in JSON format.

Deploy Connectors #1

Deploy the source and sink connectors using the Kafka Connect REST Interface. Many tutorials demonstrate a POST method against the /connectors endpoint. However, this then requires a DELETE and an additional POST to update the connector. Using a PUT against the /config endpoint, you can update the connector without first issuing a DELETE.

curl -s -d @"config/jdbc_source_connector_postgresql_00.json" \
-H "Content-Type: application/json" \
-X PUT http://localhost:8083/connectors/jdbc_source_connector_postgresql_00/config | jq
curl -s -d @"config/s3_sink_connector_00.json" \
-H "Content-Type: application/json" \
-X PUT http://localhost:8083/connectors/s3_sink_connector_00/config | jq

You can confirm the source and sink connectors are deployed and running using the following commands:

curl -s -X GET http://localhost:8083/connectors | \
jq '. | sort_by(.)'
curl -s -H "Content-Type: application/json" \
-X GET http://localhost:8083/connectors/jdbc_source_connector_postgresql_00/status | jq
curl -s -H "Content-Type: application/json" \
-X GET http://localhost:8083/connectors/s3_sink_connector_00/status | jq
Kafka Connect source connector running successfully

Errors preventing the connector from starting correctly will be displayed using the /status endpoint, as shown in the example below. In this case, the Kubernetes Service Account associated with the pod lacked the proper IAM permissions to the Amazon S3 target bucket.

Kafka Connect sink connector failed to run with errors

Confirming Success of Connectors #1

The entire contents of the three tables will be exported from RDS to Kafka by the source connector, then exported from Kafka to S3 by the sink connector. To confirm the source connector worked, verify the existence of three new Kafka topics that should have been created: pagila.public.address, pagila.public.city, and pagila.public.country.

bin/kafka-topics.sh --list \
--bootstrap-server $BBROKERS \
--command-config config/client-iam.properties \
| grep pagila.public.

To confirm the sink connector worked, verify the new S3 objects have been created in the data lake’s S3 bucket. If you use the AWS CLI v2’s s3 API, we can view the contents of our target S3 bucket:

aws s3api list-objects \
--bucket your-s3-bucket \
--query 'Contents[].{Key: Key}' \
--output text

You should see approximately 15 new S3 objects (JSON files) in the S3 bucket, whose keys are organized by their topic names. The sink connector flushes new data to S3 every 100 records, or 60 seconds.

topics/pagila.public.address/partition=0/pagila.public.address+0+0000000000.json
topics/pagila.public.address/partition=0/pagila.public.address+0+0000000100.json
topics/pagila.public.address/partition=0/pagila.public.address+0+0000000200.json
topics/pagila.public.address/partition=0/pagila.public.address+0+0000000300.json
topics/pagila.public.address/partition=0/pagila.public.address+0+0000000400.json
topics/pagila.public.address/partition=0/pagila.public.address+0+0000000500.json
topics/pagila.public.address/partition=0/pagila.public.address+0+0000000600.json
topics/pagila.public.city/partition=0/pagila.public.city+0+0000000000.json
topics/pagila.public.city/partition=0/pagila.public.city+0+0000000100.json
topics/pagila.public.city/partition=0/pagila.public.city+0+0000000200.json
topics/pagila.public.city/partition=0/pagila.public.city+0+0000000300.json
topics/pagila.public.city/partition=0/pagila.public.city+0+0000000400.json
topics/pagila.public.city/partition=0/pagila.public.city+0+0000000500.json
topics/pagila.public.country/partition=0/pagila.public.country+0+0000000000.json
topics/pagila.public.country/partition=0/pagila.public.country+0+0000000100.json

You could also use the AWS Management Console to view the S3 bucket’s contents.

Amazon S3 bucket showing results of Kafka Connect S3 sink connector, organized by topic names

Use the Amazon S3 console’s ‘Query with S3 Select’ to view the data contained in the JSON-format files. Alternately, you can use the s3 API:

export SINK_BUCKET="your-s3-bucket"
export KEY="topics/pagila.public.address/partition=0/pagila.public.address+0+0000000100.json"
aws s3api select-object-content \
--bucket $SINK_BUCKET \
--key $KEY \
--expression "select * from s3object limit 5" \
--expression-type "SQL" \
--input-serialization '{"JSON": {"Type": "DOCUMENT"}, "CompressionType": "NONE"}' \
--output-serialization '{"JSON": {}}' "output.json" \
&& cat output.json | jq \
&& rm output.json

For example, the address table’s data will look similar to the following using the ‘Query with S3 Select’ feature via the console or API:

{
"address_id": 100,
"address": "1308 Arecibo Way",
"address2": "",
"district": "Georgia",
"city_id": 41,
"postal_code": "30695",
"phone": "6171054059",
"last_update": 1487151930000
}
{
"address_id": 101,
"address": "1599 Plock Drive",
"address2": "",
"district": "Tete",
"city_id": 534,
"postal_code": "71986",
"phone": "817248913162",
"last_update": 1487151930000
}
{
"address_id": 102,
"address": "669 Firozabad Loop",
"address2": "",
"district": "Abu Dhabi",
"city_id": 12,
"postal_code": "92265",
"phone": "412903167998",
"last_update": 1487151930000
}

Congratulations, you have successfully imported data from a relational database into your data lake using Kafka Connect!

Connector Source #2

Create a new file or modify config/jdbc_source_connector_postgresql_01.json. Modify lines 3–5, as shown below, to reflect your RDS instance connection details.

{
"connector.class": "io.confluent.connect.jdbc.JdbcSourceConnector",
"connection.url": "jdbc:postgresql://your-pagila-database-url.us-east-1.rds.amazonaws.com:5432/pagila",
"connection.user": "your-username",
"connection.password": "your-password",
"topic.prefix": "pagila.public.alt.",
"poll.interval.ms": 5000,
"mode": "timestamp",
"timestamp.column.name": "last_update",
"catalog.pattern": "public",
"table.whitelist": "address",
"numeric.mapping": "best_fit",
"transforms": "createKey,extractInt,InsertTopic,InsertSourceDetails",
"transforms.createKey.type": "org.apache.kafka.connect.transforms.ValueToKey",
"transforms.createKey.fields": "address_id",
"transforms.extractInt.type": "org.apache.kafka.connect.transforms.ExtractField$Key",
"transforms.extractInt.field": "address_id",
"validate.non.null": "false",
"transforms.InsertTopic.type": "org.apache.kafka.connect.transforms.InsertField$Value",
"transforms.InsertTopic.topic.field": "message_topic",
"transforms.InsertSourceDetails.type": "org.apache.kafka.connect.transforms.InsertField$Value",
"transforms.InsertSourceDetails.static.field": "message_source",
"transforms.InsertSourceDetails.static.value": "pagila"
}

This second Kafka Connect source connector also uses Confluent’s Kafka Connect JDBC Source connector to export data from the just address table with a JDBC driver and import that data into a new Kafka topic, pagila.public.alt.address. The difference with this source connector is transforms, known as Single Message Transformations (SMTs). SMTs are applied to messages as they flow through Connect from RDS to Kafka.

In this connector, there are four transforms, which perform the following common functions:

  1. Extract address_id integer field as the Kafka message key, as detailed in this blog post by Confluence (see ‘Setting the Kafka message key’).
  2. Append Kafka topic name into message as a new static field;
  3. Append database name into message as a new static field;

Connector Sink #2

Create a new file or modify config/s3_sink_connector_01.json. Modify line 6, as shown below, to reflect your Amazon S3 bucket name.

{
"connector.class": "io.confluent.connect.s3.S3SinkConnector",
"tasks.max": 1,
"topics": "pagila.public.alt.address",
"s3.region": "us-east-1",
"s3.bucket.name": "you-s3-bucket",
"s3.part.size": 5242880,
"flush.size": 100,
"rotate.schedule.interval.ms": 60000,
"timezone": "UTC",
"storage.class": "io.confluent.connect.s3.storage.S3Storage",
"format.class": "io.confluent.connect.s3.format.json.JsonFormat",
"partitioner.class": "io.confluent.connect.storage.partitioner.DefaultPartitioner",
"schema.compatibility": "NONE"
}

This second sink connector is nearly identical to the first sink connector, except it only exports data from a single Kafka topic, pagila.public.alt.address, into S3.

Deploy Connectors #2

Deploy the second set of source and sink connectors using the Kafka Connect REST Interface, exactly like the first pair.

curl -s -d @"config/jdbc_source_connector_postgresql_01.json" \
-H "Content-Type: application/json" \
-X PUT http://localhost:8083/connectors/jdbc_source_connector_postgresql_01/config | jq
curl -s -d @"config/s3_sink_connector_01.json" \
-H "Content-Type: application/json" \
-X PUT http://localhost:8083/connectors/s3_sink_connector_01/config | jq

Confirming Success of Connectors #2

Use the same commands as before to confirm the new set of connectors are deployed and running, alongside the first set, for a total of four connectors.

curl -s -X GET http://localhost:8083/connectors | \
jq '. | sort_by(.)'
curl -s -H "Content-Type: application/json" \
-X GET http://localhost:8083/connectors/jdbc_source_connector_postgresql_01/status | jq
curl -s -H "Content-Type: application/json" \
-X GET http://localhost:8083/connectors/s3_sink_connector_01/status | jq
Kafka Connect source and sink connectors running successfully

To view the results of the first transform, extracting the address_id integer field as the Kafka message key, we can use a Kafka command-line consumer:

bin/kafka-console-consumer.sh \
--topic pagila.public.alt.address \
--offset 102 --partition 0 --max-messages 5 \
--property print.key=true --property print.value=true \
--property print.offset=true --property print.partition=true \
--property print.headers=false --property print.timestamp=false \
--bootstrap-server $BBROKERS \
--consumer.config config/client-iam.properties

In the output below, note the beginning of each message, which displays the Kafka message key, identical to the address_id. For example, {"type":"int32","optional":false},"payload":100}.

Output showing messages in the Kafka pagila.public.alt.address topic

Examing the Amazon S3 bucket using the AWS Management Console or the CLI, you should note the fourth set of S3 objects within the /topics/pagila.public.alt.address/ object key prefix.

Amazon S3 bucket showing JSON-format files containing address data

Use the Amazon S3 console’s ‘Query with S3 Select’ to view the data contained in the JSON-format files. Alternately, you can use the s3 API:

export SINK_BUCKET="your-s3-bucket"
export KEY="topics/pagila.public.alt.address/partition=0/pagila.public.address+0+0000000100.json"
aws s3api select-object-content \
--bucket $SINK_BUCKET \
--key $KEY \
--expression "select * from s3object limit 5" \
--expression-type "SQL" \
--input-serialization '{"JSON": {"Type": "DOCUMENT"}, "CompressionType": "NONE"}' \
--output-serialization '{"JSON": {}}' "output.json" \
&& cat output.json | jq \
&& rm output.json

In the sample data below, note the two new fields that have been appended into each record, a result of the Kafka Connector transforms:

{
"address_id": 100,
"address": "1308 Arecibo Way",
"address2": "",
"district": "Georgia",
"city_id": 41,
"postal_code": "30695",
"phone": "6171054059",
"last_update": 1487151930000,
"message_topic": "pagila.public.alt.address",
"message_source": "pagila"
}
{
"address_id": 101,
"address": "1599 Plock Drive",
"address2": "",
"district": "Tete",
"city_id": 534,
"postal_code": "71986",
"phone": "817248913162",
"last_update": 1487151930000,
"message_topic": "pagila.public.alt.address",
"message_source": "pagila"
}
{
"address_id": 102,
"address": "669 Firozabad Loop",
"address2": "",
"district": "Abu Dhabi",
"city_id": 12,
"postal_code": "92265",
"phone": "412903167998",
"last_update": 1487151930000,
"message_topic": "pagila.public.alt.address",
"message_source": "pagila"
}

Congratulations, you have successfully imported more data from a relational database into your data lake, including performing a simple series of transforms using Kafka Connect!

Connector Source #3

Create or modify config/jdbc_source_connector_postgresql_02.json. Modify lines 3–5, as shown below, to reflect your RDS instance connection details.

{
"connector.class": "io.confluent.connect.jdbc.JdbcSourceConnector",
"connection.url": "jdbc:postgresql://your-pagila-database-url.us-east-1.rds.amazonaws.com:5432/pagila",
"connection.user": "your-username",
"connection.password": "your-password",
"topic.prefix": "pagila.query",
"poll.interval.ms": 5000,
"mode": "timestamp",
"timestamp.column.name": "last_update",
"query": "SELECT * FROM (SELECT a.address_id, a.address, a.address2, city.city, a.district, a.postal_code, country.country, a.phone, a.last_update FROM address AS a INNER JOIN city ON a.city_id = city.city_id INNER JOIN country ON country.country_id = city.country_id ORDER BY address_id) AS subquery",
"incrementing.column.name": "address_id",
"transforms": "createKey,extractInt,InsertTopic,InsertSourceDetails",
"transforms.createKey.type": "org.apache.kafka.connect.transforms.ValueToKey",
"transforms.createKey.fields": "address_id",
"transforms.extractInt.type": "org.apache.kafka.connect.transforms.ExtractField$Key",
"transforms.extractInt.field": "address_id",
"validate.non.null": "false",
"transforms.InsertTopic.type": "org.apache.kafka.connect.transforms.InsertField$Value",
"transforms.InsertTopic.topic.field": "message_topic",
"transforms.InsertSourceDetails.type": "org.apache.kafka.connect.transforms.InsertField$Value",
}

Unlike the first two source connectors that export data from tables, this connector uses a SELECT query to export data from the Pagila database’s address , city, and country tables and import the results of that SQL query data into a new Kafka topic, pagila.public.alt.address. The SQL query in the source connector’s configuration is as follows:

SELECT a.address_id,
a.address,
a.address2,
city.city,
a.district,
a.postal_code,
country.country,
a.phone,
a.last_update
FROM address AS a
INNER JOIN city ON a.city_id = city.city_id
INNER JOIN country ON country.country_id = city.country_id
ORDER BY address_id) AS addresses

The final parameterized query, executed by the source connector, which allows it to detect changes based on the last_update field is as follows:

SELECT *
FROM (SELECT a.address_id,
a.address,
a.address2,
city.city,
a.district,
a.postal_code,
country.country,
a.phone,
a.last_update
FROM address AS a
INNER JOIN city ON a.city_id = city.city_id
INNER JOIN country ON country.country_id = city.country_id
ORDER BY address_id) AS addresses
WHERE "last_update" > ?
AND "last_update" < ?
ORDER BY "last_update" ASC

Connector Sink #3

Create or modify config/s3_sink_connector_02.json. Modify line 6, as shown below, to reflect your Amazon S3 bucket name.

{
"connector.class": "io.confluent.connect.s3.S3SinkConnector",
"tasks.max": 1,
"topics": "pagila.query",
"s3.region": "us-east-1",
"s3.bucket.name": "your-s3-bucket",
"s3.part.size": 5242880,
"flush.size": 100,
"rotate.schedule.interval.ms": 60000,
"timezone": "UTC",
"storage.class": "io.confluent.connect.s3.storage.S3Storage",
"format.class": "io.confluent.connect.s3.format.parquet.ParquetFormat",
"parquet.codec": "gzip",
"partitioner.class": "io.confluent.connect.storage.partitioner.FieldPartitioner",
"partition.field.name": "country",
"schema.compatibility": "NONE",
"transforms": "RenameField, insertStaticField1,insertStaticField2,insertStaticField3",
"transforms.RenameField.type": "org.apache.kafka.connect.transforms.ReplaceField$Value",
"transforms.RenameField.renames": "district:state_province",
"transforms.insertStaticField1.type": "org.apache.kafka.connect.transforms.InsertField$Value",
"transforms.insertStaticField1.static.field": "message_source",
"transforms.insertStaticField1.static.value": "pagila",
"transforms.insertStaticField2.type": "org.apache.kafka.connect.transforms.InsertField$Value",
"transforms.insertStaticField2.static.field": "message_source_engine",
"transforms.insertStaticField2.static.value": "postgresql",
"transforms.insertStaticField3.type": "org.apache.kafka.connect.transforms.InsertField$Value",
"transforms.insertStaticField3.static.field": "environment",
"transforms.insertStaticField3.static.value": "development"
}

This sink connector is significantly different than the previous two sink connectors. In addition to leveraging SMTs in the corresponding source connector, we are also using them in this sink connector. The sink connect appends three arbitrary static fields to each record as it is written to Amazon S3 — message_source, message_source_engine, and environment using the InsertField transform. The sink connector also renames the district field to state_province using the ReplaceField transform.

The first two sink connectors wrote uncompressed JSON-format files to Amazon S3. This third sink connector optimizes the data imported into S3 for downstream data analytics. The sink connector writes GZIP-compressed Apache Parquet files to Amazon S3. In addition, the compressed Parquet files are partitioned by the country field. Using a columnar file format, compression, and partitioning, queries against the data should be faster and more efficient.

Deploy Connectors #3

Deploy the final source and sink connectors using the Kafka Connect REST Interface, exactly like the first two pairs.

curl -s -d @"config/jdbc_source_connector_postgresql_02.json" \
-H "Content-Type: application/json" \
-X PUT http://localhost:8083/connectors/jdbc_source_connector_postgresql_02/config | jq
curl -s -d @"config/s3_sink_connector_02.json" \
-H "Content-Type: application/json" \
-X PUT http://localhost:8083/connectors/s3_sink_connector_02/config | jq

Confirming Success of Connectors #3

Use the same commands as before to confirm the new set of connectors are deployed and running, alongside the first two sets, for a total of six connectors.

curl -s -X GET http://localhost:8083/connectors | \
jq '. | sort_by(.)'
curl -s -H "Content-Type: application/json" \
-X GET http://localhost:8083/connectors/jdbc_source_connector_postgresql_02/status | jq
curl -s -H "Content-Type: application/json" \
-X GET http://localhost:8083/connectors/s3_sink_connector_02/status | jq
Kafka Connect source and sink connectors running successfully

Reviewing the messages within the newpagila.query topic, note the message_topic field has been appended to the message by the source connector but not message_source, message_source_engine, and environment fields. The sink connector appends these fields as it writes the messages to S3. Also, note the district field has yet to be renamed by the sink connector to state_province.

Output showing messages in the Kafka pagila.query topic

Examing the Amazon S3 bucket, again, you should note the fifth set of S3 objects within the /topics/pagila.query/ object key prefix. The Parquet-format files within are partitioned by country.

Amazon S3 bucket showing data partitioned by Country

Within each country partition, there are Parquet files whose records contain addresses within those countries.

Amazon S3 bucket showing GZIP-compressed Apache Parquet-format files

Use the Amazon S3 console’s ‘Query with S3 Select’ again to view the data contained in the Parquet-format files. Alternately, you can use the s3 API:

export SINK_BUCKET="your-s3-bucket"
export KEY="topics/pagila.query/country=United States/pagila.query+0+0000000003.gz.parquet"
aws s3api select-object-content \
--bucket $SINK_BUCKET \
--key $KEY \
--expression "select * from s3object limit 5" \
--expression-type "SQL" \
--input-serialization '{"Parquet": {}}' \
--output-serialization '{"JSON": {}}' "output.json" \
&& cat output.json | jq \
&& rm output.json

In the sample data below, note the four new fields that have been appended into each record, a result of the source and sink connector SMTs. Also, note the renamed district field:

{
"address_id": 599,
"address": "1895 Zhezqazghan Drive",
"address2": "",
"city": "Garden Grove",
"state_province": "California",
"postal_code": "36693",
"country": "United States",
"phone": "137809746111",
"last_update": "2017-02-15T09:45:30.000Z",
"message_topic": "pagila.query",
"message_source": "pagila",
"message_source_engine": "postgresql",
"environment": "development"
}
{
"address_id": 6,
"address": "1121 Loja Avenue",
"address2": "",
"city": "San Bernardino",
"state_province": "California",
"postal_code": "17886",
"country": "United States",
"phone": "838635286649",
"last_update": "2017-02-15T09:45:30.000Z",
"message_topic": "pagila.query",
"message_source": "pagila",
"message_source_engine": "postgresql",
"environment": "development"
}
{
"address_id": 18,
"address": "770 Bydgoszcz Avenue",
"address2": "",
"city": "Citrus Heights",
"state_province": "California",
"postal_code": "16266",
"country": "United States",
"phone": "517338314235",
"last_update": "2017-02-15T09:45:30.000Z",
"message_topic": "pagila.query",
"message_source": "pagila",
"message_source_engine": "postgresql",
"environment": "development"
}

Record Updates and Query-based CDC

What happens when we change data within the tables that Kafka Connect is polling every 5 seconds? To answer this question, let’s make a few DML changes:

-- update address field
UPDATE public.address
SET address = '123 CDC Test Lane'
WHERE address_id = 100;
-- update address2 field
UPDATE public.address
SET address2 = 'Apartment #2201'
WHERE address_id = 101;
-- second update to same record
UPDATE public.address
SET address2 = 'Apartment #2202'
WHERE address_id = 101;

-- insert new country
INSERT INTO public.country (country)
values ('Wakanda');
-- should be 110
SELECT country_id FROM country WHERE country='Wakanda';
-- insert new city
INSERT INTO public.city (city, country_id)
VALUES ('Birnin Zana', 110);
-- should be 601
SELECT city_id FROM public.city WHERE country_id=110;
-- update city_id to new city_id
UPDATE public.address
SET phone = city_id = 601
WHERE address_id = 102;
-- second update to same record
UPDATE public.address
SET district = 'Lake Turkana'
WHERE address_id = 102;
-- delete an address record
UPDATE public.customer
SET address_id = 200
WHERE customer_id IN (
SELECT customer_id FROM customer WHERE address_id = 104);
DELETE
FROM public.address
WHERE address_id = 104;

To see how these changes propagate, first, examine the Kafka Connect logs. Below, we see example log events corresponding to some of the database changes shown above. The three Kafka Connect source connectors detect changes, which are exported from PostgreSQL to Kafka. The three sink connectors then write these changes to new JSON and Parquet files to the target S3 bucket.

Kafka Connect log showing changes to Pagila database being exported/imported

Viewing Data in the Data Lake

A convenient way to examine both the existing data and ongoing data changes in our data lake is to crawl and catalog the S3 bucket’s contents with AWS Glue, then query the results with Amazon Athena. AWS Glue’s Data Catalog is an Apache Hive-compatible, fully-managed, persistent metadata store. AWS Glue can store the schema, metadata, and location of our data in S3. Amazon Athena is a serverless Presto-based (PrestoDB) ad-hoc analytics engine, which can query AWS Glue Data Catalog tables and the underlying S3-based data.

AWS Glue Data Catalog showing five new tables, the result of the AWS Glue Crawler

When writing Parquet into partitions, one shortcoming of the Kafka Connect S3 sink connector is duplicate column names in AWS Glue. As a result, any columns used as partitions are duplicated in the Glue Data Catalog’s database table schema. The issue will result in an error similar to HIVE_INVALID_METADATA: Hive metadata for table pagila_query is invalid: Table descriptor contains duplicate columns when performing queries. To remedy this, predefine the table and the table’s schema. Alternately, edit the Glue Data Catalog table’s schema after crawling and remove the duplicate, non-partition column(s). Below, that would mean removing duplicate country column 7.

AWS Glue Data Catalog table schema showing duplicate column

Performing a typical SQL SELECT query in Athena will return all of the original records as well as the changes we made earlier as duplicate records (same address_id primary key).

Amazon Athena showing the SQL query and the result set
SELECT address_id, address, address2, city, state_province,
postal_code, country, last_update
FROM "pagila_kafka_connect"."pagila_query"
WHERE address_id BETWEEN 100 AND 105
ORDER BY address_id;

Note the original records for address_id 100–103 as well as each change we made earlier. The last_update field reflects the date and time the record was created or updated. Also, note the record with address_id 104 in the query results. This is the record we deleted from the Pagila database.

address_id address address2 city state_province postal_code country last_update
100 1308 Arecibo Way Augusta-Richmond County Georgia 30695 United States 2017-02-15 09:45:30.000
100 123 CDC Test Lane Augusta-Richmond County Georgia 30695 United States 2021-08-09 14:10:29.126
101 1599 Plock Drive Tete Tete 71986 Mozambique 2017-02-15 09:45:30.000
101 1599 Plock Drive Apartment #2201 Tete Tete 71986 Mozambique 2021-08-09 14:10:29.467
101 1599 Plock Drive Apartment #2202 Tete Tete 71986 Mozambique 2021-08-09 14:19:03.761
102 669 Firozabad Loop al-Ayn Abu Dhabi 92265 United Arab Emirates 2017-02-15 09:45:30.000
102 669 Firozabad Loop Birnin Zana Abu Dhabi 92265 Wakanda 2021-08-09 14:10:29.789
102 669 Firozabad Loop Birnin Zana Lake Turkana 92265 Wakanda 2021-08-09 15:56:53.323
103 588 Vila Velha Manor Kimchon Kyongsangbuk 51540 South Korea 2017-02-15 09:45:30.000
104 1913 Kamakura Place Jelets Lipetsk 97287 Russian Federation 2017-02-15 09:45:30.000
105 733 Mandaluyong Place Abha Asir 77459 Saudi Arabia 2017-02-15 09:45:30.000

To view only the most current data, we can use Athena’s ROW_NUMBER() function:

SELECT address_id, address, address2, city, state_province,
postal_code, country, last_update
FROM (SELECT *, ROW_NUMBER() OVER (
PARTITION BY address_id
ORDER BY last_UPDATE DESC) AS row_num
FROM "pagila_kafka_connect"."pagila_query") AS x
WHERE x.row_num = 1
AND address_id BETWEEN 100 AND 105
ORDER BY address_id;

Now, we only see the latest records. Unfortunately, the record we deleted with address_id 104 is still present in the query results.

address_id address address2 city state_province postal_code country last_update
100 123 CDC Test Lane Augusta-Richmond County Georgia 30695 United States 2021-08-09 14:10:29.126
101 1599 Plock Drive Apartment #2202 Tete Tete 71986 Mozambique 2021-08-09 14:19:03.761
102 669 Firozabad Loop Birnin Zana Lake Turkana 92265 Wakanda 2021-08-09 15:56:53.323
103 588 Vila Velha Manor Kimchon Kyongsangbuk 51540 South Korea 2017-02-15 09:45:30.000
104 1913 Kamakura Place Jelets Lipetsk 97287 Russian Federation 2017-02-15 09:45:30.000
105 733 Mandaluyong Place Abha Asir 77459 Saudi Arabia 2017-02-15 09:45:30.000

Using log-based CDC with Debezium, as opposed to query-based CDC, we would have received a record in S3 that indicated the delete. The null value message, shown below, is referred to as a tombstone message in Kafka. Note the ‘before’ syntax with the delete record as opposed to the ‘after’ syntax we observed earlier with the update record.

{
"before": {
"address": "",
"address2": null,
"phone": "",
"district": "",
"last_update": "1970-01-01T00:00:00Z",
"address_id": 104,
"postal_code": null,
"city_id": 0
},

"source": {
"schema": "public",
"sequence": "[\"1101256482032\",\"1101256482032\"]",
"xmin": null,
"connector": "postgresql",
"lsn": 1101256483936,
"name": "pagila",
"txId": 17137,
"version": "1.6.1.Final",
"ts_ms": 1628864251512,
"snapshot": "false",
"db": "pagila",
"table": "address"
},
"op": "d",
"ts_ms": 1628864251671
}

An inefficient solution to duplicates and deletes with query-based CDC would be to bulk ingest the entire query result set from the Pagila database each time instead of only the changes based on the last_update field. Performing an unbounded query repeatedly on a huge dataset would negatively impact database performance. Notwithstanding, you would still end up with duplicates in the data lake unless you first purged the data in S3 before re-importing the new query results.

Data Movement

Using Amazon Athena, we can easily write the results of our ROW_NUMBER() query back to the data lake for further enrichment or analysis. Athena’s CREATE TABLE AS SELECT (CTAS) SQL statement creates a new table in Athena (an external table in AWS Glue Data Catalog) from the results of a SELECT statement in the subquery. Athena stores data files created by the CTAS statement in a specified location in Amazon S3 and created a new AWS Glue Data Catalog table to store the result set’s schema and metadata information. CTAS supports several file formats and storage options.

High-level architecture for this post’s demonstration

Wrapping the last query in Athena’s CTAS statement, as shown below, we can write the query results as SNAPPY-compressed Parquet-format files, partitioned by country, to a new location in the Amazon S3 bucket. Using common data lake terminology, I will refer to the resulting filtered and cleaned dataset as refined or silver instead of the raw ingestion or bronze data originating from our data source, PostgreSQL, via Kafka.

CREATE TABLE pagila_kafka_connect.pagila_query_processed
WITH (
format='PARQUET',
parquet_compression='SNAPPY',
partitioned_by=ARRAY['country'],
external_location='s3://your-s3-bucket/processed/pagila_query'
) AS
SELECT address_id, last_update, address, address2, city,
state_province, postal_code, country
FROM (SELECT *, ROW_NUMBER() OVER (
PARTITION BY address_id
ORDER BY last_update DESC) AS row_num
FROM "pagila_kafka_connect"."pagila_query") AS x
WHERE x.row_num = 1 AND address_id BETWEEN 0 and 100
ORDER BY address_id;

Examing the Amazon S3 bucket, on last time, you should new set of S3 objects within the /processed/pagila_query/ key path. The Parquet-format files, partitioned by country, are the result of the CTAS query.

Amazon S3 bucket showing SNAPPY-compressed Parquet-format files containing CTAS query results

We should now see a new table in the same AWS Glue Data Catalog containing metadata, location, and schema information about the data we wrote to S3 using the CTAS query. We can perform additional queries on the processed data.

Amazon Athena showing query results from the processed data table in AWS Glue Data Catalog

ACID Transactions with a Data Lake

To fully take advantage of CDC and maximize the freshness of data in the data lake, we would also need to adopt modern data lake file formats like Apache Hudi, Apache Iceberg, or Delta Lake, along with analytics engines such as Apache Spark with Spark Structured Streaming to process the data changes. Using these technologies, it is possible to perform record-level updates and deletes of data in an object store like Amazon S3. Hudi, Iceberg, and Delta Lake offer features including ACID transactions, schema evolution, upserts, deletes, time travel, and incremental data consumption in a data lake. ELT engines like Spark can read streaming Debezium-generated CDC messages from Kafka and process those changes using Hudi, Iceberg, or Delta Lake.

Conclusion

This post explored how CDC could help us hydrate data from an Amazon RDS database into an Amazon S3-based data lake. We leveraged the capabilities of Amazon EKS, Amazon MSK, and Apache Kafka Connect. We learned about query-based CDC for capturing ongoing changes to the source data. In a subsequent post, we will explore log-based CDC using Debezium and see how data lake file formats like Apache Avro, Apache Hudi, Apache Iceberg, and Delta Lake can help us manage the data in our data lake.


This blog represents my own viewpoints and not of my employer, Amazon Web Services (AWS). All product names, logos, and brands are the property of their respective owners.

, , , , , ,

Leave a comment