Posts Tagged EKS
Hydrating a Data Lake using Query-based CDC with Apache Kafka Connect and Kubernetes on AWS
Posted by Gary A. Stafford in AWS, Cloud, Enterprise Software Development, Kubernetes, Serverless on August 11, 2021
Import data from an Amazon RDS database into an Amazon S3-based data lake using Amazon EKS, Amazon MSK, and Apache Kafka Connect
Introduction
A data lake, according to AWS, is a centralized repository that allows you to store all your structured and unstructured data at any scale. Data is collected from multiple sources and moved into the data lake. Once in the data lake, data is organized, cataloged, transformed, enriched, and converted to common file formats, optimized for analytics and machine learning.
One of an organization’s first challenges when building a data lake is how to continually import data from different data sources, such as relational and non-relational database engines, enterprise ERP, SCM, CRM, and SIEM software, flat-files, messaging platforms, IoT devices, and logging and metrics collection systems. Each data source will have its own unique method of connectivity, security, data storage format, and data export capabilities. There are many closed- and open-source tools available to help extract data from different data sources.
A popular open-source tool is Kafka Connect, part of the Apache Kafka ecosystem. Apache Kafka is an open-source distributed event streaming platform used by thousands of companies for high-performance data pipelines, streaming analytics, data integration, and mission-critical applications. Kafka Connect is a tool for scalably and reliably streaming data between Apache Kafka and other systems. Kafka Connect makes it simple to quickly define connectors that move large collections of data into and out of Kafka.
In the following post, we will learn how to use Kafka Connect to export data from our data source, an Amazon RDS for PostgreSQL relational database, into Kafka. We will then export that data from Kafka into our data sink — a data lake built on Amazon Simple Storage Service (Amazon S3). The data imported into S3 will be converted to Apache Parquet columnar storage file format, compressed, and partitioned for optimal analytics performance, all using Kafka Connect.
Best of all, to maintain data freshness of the data lake, as data is added or updated in PostgreSQL, Kafka Connect will automatically detect those changes and stream those changes into the data lake. This process is commonly referred to as Change Data Capture (CDC).

Change Data Capture
According to Gunnar Morling, Principal Software Engineer at Red Hat who works on the Debezium and Hibernate projects and well-known industry speaker, there are two types of Change Data Capture — Query-based and Log-based CDC. Gunnar detailed the differences between the two types of CDC in his talk at the Joker International Java Conference in February 2021, Change data capture pipelines with Debezium and Kafka Streams.

You can find another good explanation of CDC in the recent post by Lewis Gavin of Rockset, Change Data Capture: What It Is and How to Use It.
Query-based vs. Log-based CDC
To effectively demonstrate the difference between query-based and log-based CDC, examine the results of a SQL UPDATE statement, captured with both methods.
UPDATE public.address
SET address2 = 'Apartment #1234'
WHERE address_id = 105;
Here is how the change is represented as a JSON message payload using the query-based CDC method described in this post.
{
"address_id": 105,
"address": "733 Mandaluyong Place",
"address2": "Apartment #1234",
"district": "Asir",
"city_id": 2,
"postal_code": "77459",
"phone": "196568435814",
"last_update": "2021-08-13T00:43:38.508Z"
}
Here is how the same change is represented as a JSON message payload using log-based CDC with Debezium. Note the metadata-rich structure of the log-based CDC message as compared to the query-based message.
{
"after": {
"address": "733 Mandaluyong Place",
"address2": "Apartment #1234",
"phone": "196568435814",
"district": "Asir",
"last_update": "2021-08-13T00:43:38.508453Z",
"address_id": 105,
"postal_code": "77459",
"city_id": 2
},
"source": {
"schema": "public",
"sequence": "[\"1090317720392\",\"1090317720392\"]",
"xmin": null,
"connector": "postgresql",
"lsn": 1090317720624,
"name": "pagila",
"txId": 16973,
"version": "1.6.1.Final",
"ts_ms": 1628815418508,
"snapshot": "false",
"db": "pagila",
"table": "address"
},
"op": "u",
"ts_ms": 1628815418815
}
In an upcoming post, we will explore Debezium along with Apache Arvo and a schema registry to build a log-based CDC solution using PostgreSQL’s write-ahead log (WAL). In this post, we will examine query-based CDC using the ‘update timestamp’ technique.
Kafka Connect Connectors
In this post, we will use source and sink connectors from Confluent. Confluent is the undisputed leader in providing enterprise-grade managed Kafka through their Confluent Cloud and Confluent Platform products. Confluent offers dozens of source and sink connectors that cover the most popular data sources and sinks. Connectors used in this post will include:
- Confluent’s Kafka Connect JDBC Source connector imports data from any relational database with a JDBC driver into an Apache Kafka topic. The Kafka Connect JDBC Sink connector exports data from Kafka topics to any relational database with a JDBC driver.
- Confluent’s Kafka Connect Amazon S3 Sink connector exports data from Apache Kafka topics to S3 objects in either Avro, Parquet, JSON, or Raw Bytes.
Prerequisites
This post will focus on data movement with Kafka Connect, not how to deploy the required AWS resources. To follow along with the post, you will need the following resources already deployed and configured on AWS:
- Amazon RDS for PostgreSQL instance (data source);
- Amazon S3 bucket (data sink);
- Amazon MSK cluster;
- Amazon EKS cluster;
- Connectivity between the Amazon RDS instance and Amazon MSK cluster;
- Connectivity between the Amazon EKS cluster and Amazon MSK cluster;
- Ensure the Amazon MSK Configuration has
auto.create.topics.enable=true
. This setting isfalse
by default; - IAM Role associated with Kubernetes service account (known as IRSA) that will allow access from EKS to MSK and S3 (see details below);
As shown in the architectural diagram above, I am using three separate VPCs within the same AWS account and AWS Region, us-east-1
, for Amazon RDS, Amazon EKS, and Amazon MSK. The three VPCs are connected using VPC Peering. Ensure you expose the correct ingress ports, and the corresponding CIDR ranges on your Amazon RDS, Amazon EKS, and Amazon MSK Security Groups. For additional security and cost savings, use a VPC endpoint to ensure private communications between Amazon EKS and Amazon S3.
Source Code
All source code for this post, including the Kafka Connect configuration files and the Helm chart, is open-sourced and located on GitHub.
Authentication and Authorization
Amazon MSK provides multiple authentication and authorization methods to interact with the Apache Kafka APIs. For example, you can use IAM to authenticate clients and to allow or deny Apache Kafka actions. Alternatively, you can use TLS or SASL/SCRAM to authenticate clients and Apache Kafka ACLs to allow or deny actions. In my last post, I demonstrated the use of SASL/SCRAM and Kafka ACLs with Amazon MSK, Securely Decoupling Applications on Amazon EKS using Kafka with SASL/SCRAM.
Any MSK authentication and authorization should work with Kafka Connect, assuming you correctly configure Amazon MSK, Amazon EKS, and Kafka Connect. For this post, we are using IAM Access Control. An IAM Role associated with a Kubernetes service account (IRSA) allows EKS to access MSK and S3 using IAM (see more details below).
Sample PostgreSQL Database
There are many sample PostgreSQL databases we could use to explore Kafka Connect. One of my favorite, albeit a bit dated, is PostgreSQL’s Pagila database. The database contains simulated movie rental data. The dataset is fairly small, making it less ideal for ‘big data’ use cases but small enough to quickly install and minimize data storage and analytics costs.

Before continuing, create a new database on the Amazon RDS PostgreSQL instance and populate it with the Pagila sample data. A few people have posted updated versions of this database with easy-to-install SQL scripts. Check out the Pagila scripts provided by Devrim Gündüz on GitHub and also by Robert Treat on GitHub.
Last Updated Trigger
Each table in the Pagila database has a last_update
field. A convenient way to detect changes in the Pagila database, and ensure those changes make it from RDS to S3, is to have Kafka Connect use the last_update
field. This is a common technique to determine if and when changes were made to data using query-based CDC.
As changes are made to records in these tables, an existing database function and a trigger to each table will ensure the last_update
field is automatically updated to the current date and time. You can find further information on how the database function and triggers work with Kafka Connect in this post, kafka connect in action, part 3, by Dominick Lombardo.
CREATE OR REPLACE FUNCTION update_last_update_column()
RETURNS TRIGGER AS
$$
BEGIN
NEW.last_update = now();
RETURN NEW;
END;
$$ language 'plpgsql';
CREATE TRIGGER update_last_update_column_address
BEFORE UPDATE
ON address
FOR EACH ROW
EXECUTE PROCEDURE update_last_update_column();
Kubernetes-based Kafka Connect
There are several options for deploying and managing Kafka Connect and other required Kafka management tools to Kubernetes on Amazon EKS. Popular solutions include Strimzi and Confluent for Kubernetes (CFK) or building your own Docker Image using the official Apache Kafka binaries. For this post, I chose to build my own Kafka Connect Docker Image using the latest Kafka binaries. I then installed Confluent’s connectors and their dependencies into the Kafka installation. Although not as efficient as using an off-the-shelf OSS container, building your own image can really teach you how Kafka and Kafka Connect work, in my opinion.
If you chose to use the same Kafka Connect Image used in this post, a Helm Chart is included in the post’s GitHub repository. The Helm chart will deploy a single Kubernetes pod to the kafka
Namespace on Amazon EKS.
apiVersion: apps/v1
kind: Deployment
metadata:
name: kafka-connect-msk
labels:
app: kafka-connect-msk
component: service
spec:
replicas: 1
strategy:
type: Recreate
selector:
matchLabels:
app: kafka-connect-msk
component: service
template:
metadata:
labels:
app: kafka-connect-msk
component: service
spec:
serviceAccountName: kafka-connect-msk-iam-serviceaccount
containers:
- image: garystafford/kafka-connect-msk:1.0.0
name: kafka-connect-msk
imagePullPolicy: IfNotPresent
Before deploying the chart, update the value.yaml
file with the name of your Kubernetes Service Account associated with the Kafka Connect pod (serviceAccountName
). The IAM Policy attached to the IAM Role associated with the pod’s Service Account should provide sufficient access to Kafka running on the Amazon MSK cluster from EKS. The policy should also provide access to your S3 bucket, as detailed here by Confluent. Below is an example of an (overly broad) IAM Policy that would allow full access to any Kafka clusters running on MSK and to S3 from Kafka Connect running on EKS.
Once the Service Account variable is updated, use the following command to deploy the Helm chart:
helm install kafka-connect-msk ./kafka-connect-msk \
--namespace $NAMESPACE --create-namespace
To get a shell to the running Kafka Connect container, use the following kubectl exec
command:
export KAFKA_CONTAINER=$(
kubectl get pods -n kafka -l app=kafka-connect-msk | \
awk 'FNR == 2 {print $1}')
kubectl exec -it $KAFKA_CONTAINER -n kafka -- bash

Configure Bootstrap Brokers
Before starting Kafka Connect, you will need to modify Kafka Connect’s configuration file. Kafka Connect is capable of running workers in standalone and distributed modes. Since we will use Kafka Connect’s distributed mode, modify the config/connect-distributed.properties
file. A complete sample of the configuration file I used in this post is shown below.
Kafka Connect will run within the pod’s container, while Kafka and Apache ZooKeeper run on Amazon MSK. Update the bootstrap.servers
property to reflect your own comma-delimited list of Amazon MSK Kafka Bootstrap Brokers. To get the list of the Bootstrap Brokers for your Amazon MSK cluster, use the AWS Management Console, or the following AWS CLI commands:
# get the msk cluster's arn
aws kafka list-clusters --query 'ClusterInfoList[*].ClusterArn'
# use msk arn to get the brokers
aws kafka get-bootstrap-brokers --cluster-arn your-msk-cluster-arn
# alternately, if you only have one cluster, then
aws kafka get-bootstrap-brokers --cluster-arn $(
aws kafka list-clusters | jq -r '.ClusterInfoList[0].ClusterArn')
Update the config/connect-distributed.properties
file.
# ***** CHANGE ME! *****
bootstrap.servers=b-1.your-cluster.123abc.c2.kafka.us-east-1.amazonaws.com:9098,b-2.your-cluster.123abc.c2.kafka.us-east-1.amazonaws.com:9098, b-3.your-cluster.123abc.c2.kafka.us-east-1.amazonaws.com:9098
group.id=connect-cluster
key.converter.schemas.enable=true
value.converter.schemas.enable=true
offset.storage.topic=connect-offsets
offset.storage.replication.factor=2
#offset.storage.partitions=25
config.storage.topic=connect-configs
config.storage.replication.factor=2
status.storage.topic=connect-status
status.storage.replication.factor=2
#status.storage.partitions=5
offset.flush.interval.ms=10000
plugin.path=/usr/local/share/kafka/plugins
# kafka connect auth using iam
ssl.truststore.location=/tmp/kafka.client.truststore.jks
security.protocol=SASL_SSL
sasl.mechanism=AWS_MSK_IAM
sasl.jaas.config=software.amazon.msk.auth.iam.IAMLoginModule required;
sasl.client.callback.handler.class=software.amazon.msk.auth.iam.IAMClientCallbackHandler
# kafka connect producer auth using iam
producer.ssl.truststore.location=/tmp/kafka.client.truststore.jks
producer.security.protocol=SASL_SSL
producer.sasl.mechanism=AWS_MSK_IAM
producer.sasl.jaas.config=software.amazon.msk.auth.iam.IAMLoginModule required;
producer.sasl.client.callback.handler.class=software.amazon.msk.auth.iam.IAMClientCallbackHandler
# kafka connect consumer auth using iam
consumer.ssl.truststore.location=/tmp/kafka.client.truststore.jks
consumer.security.protocol=SASL_SSL
consumer.sasl.mechanism=AWS_MSK_IAM
consumer.sasl.jaas.config=software.amazon.msk.auth.iam.IAMLoginModule required;
consumer.sasl.client.callback.handler.class=software.amazon.msk.auth.iam.IAMClientCallbackHandler
For convenience when executing Kafka commands, set the BBROKERS
environment variable to the same comma-delimited list of Kafka Bootstrap Brokers, for example:
export BBROKERS="b-1.your-cluster.123abc.c2.kafka.us-east-1.amazonaws.com:9098,b-2.your-cluster.123abc.c2.kafka.us-east-1.amazonaws.com:9098, b-3.your-cluster.123abc.c2.kafka.us-east-1.amazonaws.com:9098"
Confirm Access to Amazon MSK from Kafka Connect
To confirm you have access to Kafka running on Amazon MSK, from the Kafka Connect container running on Amazon EKS, try listing the exiting Kafka topics:
bin/kafka-topics.sh --list \
--bootstrap-server $BBROKERS \
--command-config config/client-iam.properties
You can also try listing the existing Kafka consumer groups:
bin/kafka-consumer-groups.sh --list \ --bootstrap-server $BBROKERS \ --command-config config/client-iam.properties
If either of these fails, you will likely have networking or security issues blocking access from Amazon EKS to Amazon MSK. Check your VPC Peering, Route Tables, IAM/IRSA, and Security Group ingress settings. Any one of these items can cause communications issues between the container and Kafka running on Amazon MSK.
Kafka Connect
I recommend starting Kafka Connect as a background process using either method shown below.
bin/connect-distributed.sh \
config/connect-distributed.properties > /dev/null 2>&1 &
# alternately use nohup
nohup bin/connect-distributed.sh \
config/connect-distributed.properties &
To confirm Kafka Connect started properly, immediately tail the connect.log
file. The log will capture any startup errors for troubleshooting.
tail -f logs/connect.log

You can also examine the background process with the ps
command to confirm Kafka Connect is running. Note the process with PID 4915, below. Use the kill
command along with the PID to stop Kafka Connect if necessary.

If configured properly, Kafka Connect will create three new topics, referred to as Kafka Connect internal topics, the first time it starts up, as defined in the config/connect-distributed.properties
file: connect-configs
, connect-offsets
, and connect-status
. According to Confluent, Connect stores connector and task configurations, offsets, and status in these topics. The Internal topics must have a high replication factor, a compaction cleanup policy, and an appropriate number of partitions. These new topics can be confirmed using the following command.
bin/kafka-topics.sh --list \
--bootstrap-server $BBROKERS \
--command-config config/client-iam.properties \
| grep connect-
Kafka Connect Connectors
This post demonstrates three progressively more complex Kafka Connect source and sink connectors. Each will demonstrate different connector capabilities to import/export and transform data between Amazon RDS for PostgreSQL and Amazon S3.
Connector Source #1
Create a new file (or modify the existing file if using my Kafka Connect container) named config/jdbc_source_connector_postgresql_00.json
. Modify lines 3–5, as shown below, to reflect your RDS instance’s JDBC connection details.
This first Kafka Connect source connector uses Confluent’s Kafka Connect JDBC Source connector (io.confluent.connect.jdbc.JdbcSourceConnector
) to export data from RDS with a JDBC driver and import that data into a series of Kafka topics. We will be exporting data from three tables in Pagila’s public
schema: address
, city
, and country
. We will write that data to a series of topics, arbitrarily prefixed with database name and schema, pagila.public.
. The source connector will create the three new topics automatically: pagila.public.address
, pagila.public.city
, and pagila.public.country
.
Note the connector’s mode
property value is set to timestamp
, and the last_update
field is referenced in the timestamp.column.name
property. Recall we added the database function and triggers to these three tables earlier in the post, which will update the last_update
field whenever a record is created or updated in the Pagila database. In addition to an initial export of the entire table, the source connector will poll the database every 5 seconds (poll.interval.ms
property), looking for changes that are newer than the most recently exported last_modified
date. This is accomplished by the source connector, using a parameterized query, such as:
SELECT *
FROM "public"."address"
WHERE "public"."address"."last_update" > ?
AND "public"."address"."last_update" < ?
ORDER BY "public"."address"."last_update" ASC
Connector Sink #1
Next, create and configure the first Kafka Connect sink connector. Create a new file or modify config/s3_sink_connector_00.json
. Modify line 7, as shown below to reflect your Amazon S3 bucket name.
This first Kafka Connect sink connector uses Confluent’s Kafka Connect Amazon S3 Sink connector (io.confluent.connect.s3.S3SinkConnector
) to export data from Kafka topics to Amazon S3 objects in JSON format.
Deploy Connectors #1
Deploy the source and sink connectors using the Kafka Connect REST Interface. Many tutorials demonstrate a POST
method against the /connectors
endpoint. However, this then requires a DELETE
and an additional POST
to update the connector. Using a PUT
against the /config
endpoint, you can update the connector without first issuing a DELETE
.
curl -s -d @"config/jdbc_source_connector_postgresql_00.json" \
-H "Content-Type: application/json" \
-X PUT http://localhost:8083/connectors/jdbc_source_connector_postgresql_00/config | jq
curl -s -d @"config/s3_sink_connector_00.json" \
-H "Content-Type: application/json" \
-X PUT http://localhost:8083/connectors/s3_sink_connector_00/config | jq

You can confirm the source and sink connectors are deployed and running using the following commands:
curl -s -X GET http://localhost:8083/connectors | \
jq '. | sort_by(.)'
curl -s -H "Content-Type: application/json" \
-X GET http://localhost:8083/connectors/jdbc_source_connector_postgresql_00/status | jq
curl -s -H "Content-Type: application/json" \
-X GET http://localhost:8083/connectors/s3_sink_connector_00/status | jq

Errors preventing the connector from starting correctly will be displayed using the /status
endpoint, as shown in the example below. In this case, the Kubernetes Service Account associated with the pod lacked the proper IAM permissions to the Amazon S3 target bucket.

Confirming Success of Connectors #1
The entire contents of the three tables will be exported from RDS to Kafka by the source connector, then exported from Kafka to S3 by the sink connector. To confirm the source connector worked, verify the existence of three new Kafka topics that should have been created: pagila.public.address
, pagila.public.city
, and pagila.public.country
.
bin/kafka-topics.sh --list \
--bootstrap-server $BBROKERS \
--command-config config/client-iam.properties \
| grep pagila.public.
To confirm the sink connector worked, verify the new S3 objects have been created in the data lake’s S3 bucket. If you use the AWS CLI v2’s s3
API, we can view the contents of our target S3 bucket:
aws s3api list-objects \
--bucket your-s3-bucket \
--query 'Contents[].{Key: Key}' \
--output text
You should see approximately 15 new S3 objects (JSON files) in the S3 bucket, whose keys are organized by their topic names. The sink connector flushes new data to S3 every 100 records, or 60 seconds.
You could also use the AWS Management Console to view the S3 bucket’s contents.

Use the Amazon S3 console’s ‘Query with S3 Select’ to view the data contained in the JSON-format files. Alternately, you can use the s3 API:
export SINK_BUCKET="your-s3-bucket"
export KEY="topics/pagila.public.address/partition=0/pagila.public.address+0+0000000100.json"
aws s3api select-object-content \
--bucket $SINK_BUCKET \
--key $KEY \
--expression "select * from s3object limit 5" \
--expression-type "SQL" \
--input-serialization '{"JSON": {"Type": "DOCUMENT"}, "CompressionType": "NONE"}' \
--output-serialization '{"JSON": {}}' "output.json" \
&& cat output.json | jq \
&& rm output.json
For example, the address
table’s data will look similar to the following using the ‘Query with S3 Select’ feature via the console or API:
{
"address_id": 100,
"address": "1308 Arecibo Way",
"address2": "",
"district": "Georgia",
"city_id": 41,
"postal_code": "30695",
"phone": "6171054059",
"last_update": 1487151930000
}
{
"address_id": 101,
"address": "1599 Plock Drive",
"address2": "",
"district": "Tete",
"city_id": 534,
"postal_code": "71986",
"phone": "817248913162",
"last_update": 1487151930000
}
{
"address_id": 102,
"address": "669 Firozabad Loop",
"address2": "",
"district": "Abu Dhabi",
"city_id": 12,
"postal_code": "92265",
"phone": "412903167998",
"last_update": 1487151930000
}
Congratulations, you have successfully imported data from a relational database into your data lake using Kafka Connect!
Connector Source #2
Create a new file or modify config/jdbc_source_connector_postgresql_01.json
. Modify lines 3–5, as shown below, to reflect your RDS instance connection details.
This second Kafka Connect source connector also uses Confluent’s Kafka Connect JDBC Source connector to export data from the just address
table with a JDBC driver and import that data into a new Kafka topic, pagila.public.alt.address
. The difference with this source connector is transforms, known as Single Message Transformations (SMTs). SMTs are applied to messages as they flow through Connect from RDS to Kafka.
In this connector, there are four transforms, which perform the following common functions:
- Extract
address_id
integer field as the Kafka message key, as detailed in this blog post by Confluence (see ‘Setting the Kafka message key’). - Append Kafka topic name into message as a new static field;
- Append database name into message as a new static field;
Connector Sink #2
Create a new file or modify config/s3_sink_connector_01.json
. Modify line 6, as shown below, to reflect your Amazon S3 bucket name.
This second sink connector is nearly identical to the first sink connector, except it only exports data from a single Kafka topic, pagila.public.alt.address
, into S3.
Deploy Connectors #2
Deploy the second set of source and sink connectors using the Kafka Connect REST Interface, exactly like the first pair.
curl -s -d @"config/jdbc_source_connector_postgresql_01.json" \
-H "Content-Type: application/json" \
-X PUT http://localhost:8083/connectors/jdbc_source_connector_postgresql_01/config | jq
curl -s -d @"config/s3_sink_connector_01.json" \
-H "Content-Type: application/json" \
-X PUT http://localhost:8083/connectors/s3_sink_connector_01/config | jq
Confirming Success of Connectors #2
Use the same commands as before to confirm the new set of connectors are deployed and running, alongside the first set, for a total of four connectors.
curl -s -X GET http://localhost:8083/connectors | \
jq '. | sort_by(.)'
curl -s -H "Content-Type: application/json" \
-X GET http://localhost:8083/connectors/jdbc_source_connector_postgresql_01/status | jq
curl -s -H "Content-Type: application/json" \
-X GET http://localhost:8083/connectors/s3_sink_connector_01/status | jq

To view the results of the first transform, extracting the address_id
integer field as the Kafka message key, we can use a Kafka command-line consumer:
bin/kafka-console-consumer.sh \
--topic pagila.public.alt.address \
--offset 102 --partition 0 --max-messages 5 \
--property print.key=true --property print.value=true \
--property print.offset=true --property print.partition=true \
--property print.headers=false --property print.timestamp=false \
--bootstrap-server $BBROKERS \
--consumer.config config/client-iam.properties
In the output below, note the beginning of each message, which displays the Kafka message key, identical to the address_id
. For example, {"type":"int32","optional":false},"payload":100}
.

topicExaming the Amazon S3 bucket using the AWS Management Console or the CLI, you should note the fourth set of S3 objects within the /topics/pagila.public.alt.address/
object key prefix.

Use the Amazon S3 console’s ‘Query with S3 Select’ to view the data contained in the JSON-format files. Alternately, you can use the s3 API:
export SINK_BUCKET="your-s3-bucket"
export KEY="topics/pagila.public.alt.address/partition=0/pagila.public.address+0+0000000100.json"
aws s3api select-object-content \
--bucket $SINK_BUCKET \
--key $KEY \
--expression "select * from s3object limit 5" \
--expression-type "SQL" \
--input-serialization '{"JSON": {"Type": "DOCUMENT"}, "CompressionType": "NONE"}' \
--output-serialization '{"JSON": {}}' "output.json" \
&& cat output.json | jq \
&& rm output.json
In the sample data below, note the two new fields that have been appended into each record, a result of the Kafka Connector transforms:
{
"address_id": 100,
"address": "1308 Arecibo Way",
"address2": "",
"district": "Georgia",
"city_id": 41,
"postal_code": "30695",
"phone": "6171054059",
"last_update": 1487151930000,
"message_topic": "pagila.public.alt.address",
"message_source": "pagila"
}
{
"address_id": 101,
"address": "1599 Plock Drive",
"address2": "",
"district": "Tete",
"city_id": 534,
"postal_code": "71986",
"phone": "817248913162",
"last_update": 1487151930000,
"message_topic": "pagila.public.alt.address",
"message_source": "pagila"
}
{
"address_id": 102,
"address": "669 Firozabad Loop",
"address2": "",
"district": "Abu Dhabi",
"city_id": 12,
"postal_code": "92265",
"phone": "412903167998",
"last_update": 1487151930000,
"message_topic": "pagila.public.alt.address",
"message_source": "pagila"
}
Congratulations, you have successfully imported more data from a relational database into your data lake, including performing a simple series of transforms using Kafka Connect!
Connector Source #3
Create or modify config/jdbc_source_connector_postgresql_02.json
. Modify lines 3–5, as shown below, to reflect your RDS instance connection details.
Unlike the first two source connectors that export data from tables, this connector uses a SELECT query to export data from the Pagila database’s address
, city
, and country
tables and import the results of that SQL query data into a new Kafka topic, pagila.public.alt.address
. The SQL query in the source connector’s configuration is as follows:
SELECT a.address_id,
a.address,
a.address2,
city.city,
a.district,
a.postal_code,
country.country,
a.phone,
a.last_update
FROM address AS a
INNER JOIN city ON a.city_id = city.city_id
INNER JOIN country ON country.country_id = city.country_id
ORDER BY address_id) AS addresses
The final parameterized query, executed by the source connector, which allows it to detect changes based on the last_update
field is as follows:
SELECT *
FROM (SELECT a.address_id,
a.address,
a.address2,
city.city,
a.district,
a.postal_code,
country.country,
a.phone,
a.last_update
FROM address AS a
INNER JOIN city ON a.city_id = city.city_id
INNER JOIN country ON country.country_id = city.country_id
ORDER BY address_id) AS addresses
WHERE "last_update" > ?
AND "last_update" < ?
ORDER BY "last_update" ASC
Connector Sink #3
Create or modify config/s3_sink_connector_02.json
. Modify line 6, as shown below, to reflect your Amazon S3 bucket name.
This sink connector is significantly different than the previous two sink connectors. In addition to leveraging SMTs in the corresponding source connector, we are also using them in this sink connector. The sink connect appends three arbitrary static fields to each record as it is written to Amazon S3 — message_source
, message_source_engine
, and environment
using the InsertField transform. The sink connector also renames the district
field to state_province
using the ReplaceField transform.
The first two sink connectors wrote uncompressed JSON-format files to Amazon S3. This third sink connector optimizes the data imported into S3 for downstream data analytics. The sink connector writes GZIP-compressed Apache Parquet files to Amazon S3. In addition, the compressed Parquet files are partitioned by the country
field. Using a columnar file format, compression, and partitioning, queries against the data should be faster and more efficient.
Deploy Connectors #3
Deploy the final source and sink connectors using the Kafka Connect REST Interface, exactly like the first two pairs.
curl -s -d @"config/jdbc_source_connector_postgresql_02.json" \
-H "Content-Type: application/json" \
-X PUT http://localhost:8083/connectors/jdbc_source_connector_postgresql_02/config | jq
curl -s -d @"config/s3_sink_connector_02.json" \
-H "Content-Type: application/json" \
-X PUT http://localhost:8083/connectors/s3_sink_connector_02/config | jq
Confirming Success of Connectors #3
Use the same commands as before to confirm the new set of connectors are deployed and running, alongside the first two sets, for a total of six connectors.
curl -s -X GET http://localhost:8083/connectors | \
jq '. | sort_by(.)'
curl -s -H "Content-Type: application/json" \
-X GET http://localhost:8083/connectors/jdbc_source_connector_postgresql_02/status | jq
curl -s -H "Content-Type: application/json" \
-X GET http://localhost:8083/connectors/s3_sink_connector_02/status | jq

Reviewing the messages within the newpagila.query
topic, note the message_topic
field has been appended to the message by the source connector but not message_source
, message_source_engine
, and environment
fields. The sink connector appends these fields as it writes the messages to S3. Also, note the district
field has yet to be renamed by the sink connector to state_province
.

pagila.query
topicExaming the Amazon S3 bucket, again, you should note the fifth set of S3 objects within the /topics/pagila.query/
object key prefix. The Parquet-format files within are partitioned by country
.

Within each country
partition, there are Parquet files whose records contain addresses within those countries.

Use the Amazon S3 console’s ‘Query with S3 Select’ again to view the data contained in the Parquet-format files. Alternately, you can use the s3
API:
export SINK_BUCKET="your-s3-bucket"
export KEY="topics/pagila.query/country=United States/pagila.query+0+0000000003.gz.parquet"
aws s3api select-object-content \
--bucket $SINK_BUCKET \
--key $KEY \
--expression "select * from s3object limit 5" \
--expression-type "SQL" \
--input-serialization '{"Parquet": {}}' \
--output-serialization '{"JSON": {}}' "output.json" \
&& cat output.json | jq \
&& rm output.json
In the sample data below, note the four new fields that have been appended into each record, a result of the source and sink connector SMTs. Also, note the renamed district
field:
{
"address_id": 599,
"address": "1895 Zhezqazghan Drive",
"address2": "",
"city": "Garden Grove",
"state_province": "California",
"postal_code": "36693",
"country": "United States",
"phone": "137809746111",
"last_update": "2017-02-15T09:45:30.000Z",
"message_topic": "pagila.query",
"message_source": "pagila",
"message_source_engine": "postgresql",
"environment": "development"
}
{
"address_id": 6,
"address": "1121 Loja Avenue",
"address2": "",
"city": "San Bernardino",
"state_province": "California",
"postal_code": "17886",
"country": "United States",
"phone": "838635286649",
"last_update": "2017-02-15T09:45:30.000Z",
"message_topic": "pagila.query",
"message_source": "pagila",
"message_source_engine": "postgresql",
"environment": "development"
}
{
"address_id": 18,
"address": "770 Bydgoszcz Avenue",
"address2": "",
"city": "Citrus Heights",
"state_province": "California",
"postal_code": "16266",
"country": "United States",
"phone": "517338314235",
"last_update": "2017-02-15T09:45:30.000Z",
"message_topic": "pagila.query",
"message_source": "pagila",
"message_source_engine": "postgresql",
"environment": "development"
}
Record Updates and Query-based CDC
What happens when we change data within the tables that Kafka Connect is polling every 5 seconds? To answer this question, let’s make a few DML changes:
-- update address field
UPDATE public.address
SET address = '123 CDC Test Lane'
WHERE address_id = 100;
-- update address2 field
UPDATE public.address
SET address2 = 'Apartment #2201'
WHERE address_id = 101;
-- second update to same record
UPDATE public.address
SET address2 = 'Apartment #2202'
WHERE address_id = 101;
-- insert new country
INSERT INTO public.country (country)
values ('Wakanda');
-- should be 110
SELECT country_id FROM country WHERE country='Wakanda';
-- insert new city
INSERT INTO public.city (city, country_id)
VALUES ('Birnin Zana', 110);
-- should be 601
SELECT city_id FROM public.city WHERE country_id=110;
-- update city_id to new city_id
UPDATE public.address
SET phone = city_id = 601
WHERE address_id = 102;
-- second update to same record
UPDATE public.address
SET district = 'Lake Turkana'
WHERE address_id = 102;
-- delete an address record
UPDATE public.customer
SET address_id = 200
WHERE customer_id IN (
SELECT customer_id FROM customer WHERE address_id = 104);
DELETE
FROM public.address
WHERE address_id = 104;
To see how these changes propagate, first, examine the Kafka Connect logs. Below, we see example log events corresponding to some of the database changes shown above. The three Kafka Connect source connectors detect changes, which are exported from PostgreSQL to Kafka. The three sink connectors then write these changes to new JSON and Parquet files to the target S3 bucket.

Viewing Data in the Data Lake
A convenient way to examine both the existing data and ongoing data changes in our data lake is to crawl and catalog the S3 bucket’s contents with AWS Glue, then query the results with Amazon Athena. AWS Glue’s Data Catalog is an Apache Hive-compatible, fully-managed, persistent metadata store. AWS Glue can store the schema, metadata, and location of our data in S3. Amazon Athena is a serverless Presto-based (PrestoDB) ad-hoc analytics engine, which can query AWS Glue Data Catalog tables and the underlying S3-based data.

When writing Parquet into partitions, one shortcoming of the Kafka Connect S3 sink connector is duplicate column names in AWS Glue. As a result, any columns used as partitions are duplicated in the Glue Data Catalog’s database table schema. The issue will result in an error similar to HIVE_INVALID_METADATA: Hive metadata for table pagila_query is invalid: Table descriptor contains duplicate columns
when performing queries. To remedy this, predefine the table and the table’s schema. Alternately, edit the Glue Data Catalog table’s schema after crawling and remove the duplicate, non-partition column(s). Below, that would mean removing duplicate country
column 7.

Performing a typical SQL SELECT query in Athena will return all of the original records as well as the changes we made earlier as duplicate records (same address_id
primary key).

SELECT address_id, address, address2, city, state_province,
postal_code, country, last_update
FROM "pagila_kafka_connect"."pagila_query"
WHERE address_id BETWEEN 100 AND 105
ORDER BY address_id;
Note the original records for address_id
100–103 as well as each change we made earlier. The last_update
field reflects the date and time the record was created or updated. Also, note the record with address_id
104 in the query results. This is the record we deleted from the Pagila database.
To view only the most current data, we can use Athena’s ROW_NUMBER()
function:
SELECT address_id, address, address2, city, state_province,
postal_code, country, last_update
FROM (SELECT *, ROW_NUMBER() OVER (
PARTITION BY address_id
ORDER BY last_UPDATE DESC) AS row_num
FROM "pagila_kafka_connect"."pagila_query") AS x
WHERE x.row_num = 1
AND address_id BETWEEN 100 AND 105
ORDER BY address_id;
Now, we only see the latest records. Unfortunately, the record we deleted with address_id
104 is still present in the query results.
Using log-based CDC with Debezium, as opposed to query-based CDC, we would have received a record in S3 that indicated the delete. The null value message, shown below, is referred to as a tombstone message in Kafka. Note the ‘before’ syntax with the delete record as opposed to the ‘after’ syntax we observed earlier with the update record.
{
"before": {
"address": "",
"address2": null,
"phone": "",
"district": "",
"last_update": "1970-01-01T00:00:00Z",
"address_id": 104,
"postal_code": null,
"city_id": 0
},
"source": {
"schema": "public",
"sequence": "[\"1101256482032\",\"1101256482032\"]",
"xmin": null,
"connector": "postgresql",
"lsn": 1101256483936,
"name": "pagila",
"txId": 17137,
"version": "1.6.1.Final",
"ts_ms": 1628864251512,
"snapshot": "false",
"db": "pagila",
"table": "address"
},
"op": "d",
"ts_ms": 1628864251671
}
An inefficient solution to duplicates and deletes with query-based CDC would be to bulk ingest the entire query result set from the Pagila database each time instead of only the changes based on the last_update
field. Performing an unbounded query repeatedly on a huge dataset would negatively impact database performance. Notwithstanding, you would still end up with duplicates in the data lake unless you first purged the data in S3 before re-importing the new query results.
Data Movement
Using Amazon Athena, we can easily write the results of our ROW_NUMBER()
query back to the data lake for further enrichment or analysis. Athena’s CREATE TABLE AS SELECT
(CTAS) SQL statement creates a new table in Athena (an external table in AWS Glue Data Catalog) from the results of a SELECT
statement in the subquery. Athena stores data files created by the CTAS statement in a specified location in Amazon S3 and created a new AWS Glue Data Catalog table to store the result set’s schema and metadata information. CTAS supports several file formats and storage options.

Wrapping the last query in Athena’s CTAS statement, as shown below, we can write the query results as SNAPPY-compressed Parquet-format files, partitioned by country
, to a new location in the Amazon S3 bucket. Using common data lake terminology, I will refer to the resulting filtered and cleaned dataset as refined or silver instead of the raw ingestion or bronze data originating from our data source, PostgreSQL, via Kafka.
CREATE TABLE pagila_kafka_connect.pagila_query_processed
WITH (
format='PARQUET',
parquet_compression='SNAPPY',
partitioned_by=ARRAY['country'],
external_location='s3://your-s3-bucket/processed/pagila_query'
) AS
SELECT address_id, last_update, address, address2, city,
state_province, postal_code, country
FROM (SELECT *, ROW_NUMBER() OVER (
PARTITION BY address_id
ORDER BY last_update DESC) AS row_num
FROM "pagila_kafka_connect"."pagila_query") AS x
WHERE x.row_num = 1 AND address_id BETWEEN 0 and 100
ORDER BY address_id;
Examing the Amazon S3 bucket, on last time, you should new set of S3 objects within the /processed/pagila_query/
key path. The Parquet-format files, partitioned by country, are the result of the CTAS query.

We should now see a new table in the same AWS Glue Data Catalog containing metadata, location, and schema information about the data we wrote to S3 using the CTAS query. We can perform additional queries on the processed data.

ACID Transactions with a Data Lake
To fully take advantage of CDC and maximize the freshness of data in the data lake, we would also need to adopt modern data lake file formats like Apache Hudi, Apache Iceberg, or Delta Lake, along with analytics engines such as Apache Spark with Spark Structured Streaming to process the data changes. Using these technologies, it is possible to perform record-level updates and deletes of data in an object store like Amazon S3. Hudi, Iceberg, and Delta Lake offer features including ACID transactions, schema evolution, upserts, deletes, time travel, and incremental data consumption in a data lake. ELT engines like Spark can read streaming Debezium-generated CDC messages from Kafka and process those changes using Hudi, Iceberg, or Delta Lake.
Conclusion
This post explored how CDC could help us hydrate data from an Amazon RDS database into an Amazon S3-based data lake. We leveraged the capabilities of Amazon EKS, Amazon MSK, and Apache Kafka Connect. We learned about query-based CDC for capturing ongoing changes to the source data. In a subsequent post, we will explore log-based CDC using Debezium and see how data lake file formats like Apache Avro, Apache Hudi, Apache Iceberg, and Delta Lake can help us manage the data in our data lake.
This blog represents my own viewpoints and not of my employer, Amazon Web Services (AWS). All product names, logos, and brands are the property of their respective owners.
Observing gRPC-based Microservices on Amazon EKS running Istio
Posted by Gary A. Stafford in AWS, Build Automation, Cloud, Continuous Delivery, DevOps, Go, JavaScript, Kubernetes, Software Development on July 8, 2021
Observing a gRPC-based Kubernetes application using Jaeger, Zipkin, Prometheus, Grafana, and Kiali on Amazon EKS running Istio service mesh
Introduction
In the previous two-part post, Kubernetes-based Microservice Observability with Istio Service Mesh, we explored a set of popular open source observability tools easily integrated with the Istio service mesh. Tools included Jaeger and Zipkin for distributed transaction monitoring, Prometheus for metrics collection and alerting, Grafana for metrics querying, visualization, and alerting, and Kiali for overall observability and management of Istio. We rounded out the toolset with the addition of Fluent Bit for log processing and aggregation to Amazon CloudWatch Container Insights. We used these tools to observe a distributed, microservices-based, RESTful application deployed to an Amazon Elastic Kubernetes Service (Amazon EKS) cluster. The application platform, running on EKS, used Amazon DocumentDB as a persistent data store and Amazon MQ to exchange messages.
In this post, we will examine those same observability tools to monitor an alternate set of Go-based microservices that use Protocol Buffers (aka Protobuf) over gRPC (gRPC Remote Procedure Calls) and HTTP/2 for client-server communications as opposed to the more common RESTful JSON over HTTP. We will learn how Kubernetes, Istio, and the observability tools work seamlessly with gRPC, just as they do with JSON over HTTP on Amazon EKS.

Technologies
gRPC
According to the gRPC project, gRPC is a modern open source high-performance Remote Procedure Call (RPC) framework that can run in any environment. It can efficiently connect services in and across data centers with pluggable support for load balancing, tracing, health checking, and authentication. gRPC is also applicable in the last mile of distributed computing to connect devices, mobile applications, and browsers to backend services.
gRPC was initially created by Google, which has used a single general-purpose RPC infrastructure called Stubby to connect the large number of microservices running within and across its data centers for over a decade. In March 2015, Google decided to build the next version of Stubby and make it open source. gRPC is now used in many organizations outside of Google, including Square, Netflix, CoreOS, Docker, CockroachDB, Cisco, and Juniper Networks. gRPC currently supports over ten languages, including C#, C++, Dart, Go, Java, Kotlin, Node, Objective-C, PHP, Python, and Ruby.
According to widely-cited 2019 tests published by Ruwan Fernando, “gRPC is roughly 7 times faster than REST when receiving data & roughly 10 times faster than REST when sending data for this specific payload. This is mainly due to the tight packing of the Protocol Buffers and the use of HTTP/2 by gRPC.”
Protocol Buffers
With gRPC, you define your service using Protocol Buffers (aka Protobuf), a powerful binary serialization toolset and language. According to Google, Protocol buffers are Google’s language-neutral, platform-neutral, extensible mechanism for serializing structured data — think XML, but smaller, faster, and simpler. Google’s previous documentation claimed protocol buffers were “3 to 10 times smaller and 20 to 100 times faster than XML.”
Once you have defined your messages, you run the protocol buffer compiler for your application’s language on your .proto
file to generate data access classes. With the proto3
language version, protocol buffers currently support generated code in Java, Python, Objective-C, C++, Dart, Go, Ruby, and C#, with more languages to come. For this post, we have compiled our protobufs for Go. You can read more about the binary wire format of Protobuf on Google’s Developers Portal.
Reference Application Platform
To demonstrate the use of the observability tools, we will deploy a reference application platform to Amazon EKS on AWS. The application platform was developed to demonstrate different Kubernetes platforms, such as EKS, GKE, AKS, and concepts such as service meshes, API management, observability, CI/CD, DevOps, and Chaos Engineering. The platform comprises a backend of eight Go-based microservices labeled generically as Service A — Service H, one Angular 12 TypeScript-based frontend UI, one Go-based gRPC Gateway reverse proxy, four MongoDB databases, and one RabbitMQ message queue.

The reference application platform is designed to generate gRPC-based, synchronous service-to-service IPC (inter-process communication), asynchronous TCP-based service-to-queue-to-service communications, and TCP-based service-to-database communications. For example, Service A calls Service B and Service C; Service B calls Service D and Service E; Service D produces a message to a RabbitMQ queue, which Service F consumes and writes to MongoDB, and so on. The platform’s distributed service communications can be observed using the observability tools when the application is deployed to a Kubernetes cluster running the Istio service mesh.

Converting to gRPC and Protocol Buffers
For this post, the eight Go microservices have been modified to use gRPC with protocol buffers over HTTP/2 instead of JSON over HTTP. Specifically, the services use version 3 (aka proto3) of protocol buffers. With gRPC, a gRPC client calls a gRPC server. Some of the platform’s services are gRPC servers, others are gRPC clients, while some act as both client and server.
gRPC Gateway
In the revised platform architecture diagram above, note the addition of the gRPC Gateway reverse proxy that replaces Service A at the edge of the API. The proxy, which translates a RESTful HTTP API into gRPC, sits between the Angular-based Web UI and Service A. Assuming for the sake of this demonstration that most consumers of an API require a RESTful JSON over HTTP API, we have added a gRPC Gateway reverse proxy to the platform. The gRPC Gateway proxies communications between the JSON over HTTP-based clients and the gRPC-based microservices. The gRPC Gateway helps to provide APIs with both gRPC and RESTful styles at the same time.
A diagram from the grpc-gateway GitHub project site demonstrates how the reverse proxy works.

Alternatives to gRPC Gateway
As an alternative to the gRPC Gateway reverse proxy, we could convert the TypeScript-based Angular UI client to communicate via gRPC and protobufs and communicate directly with Service A. One option to achieve this is gRPC Web, a JavaScript implementation of gRPC for browser clients. gRPC Web clients connect to gRPC services via a special proxy, which by default is Envoy. The project’s roadmap includes plans for gRPC Web to be supported in language-specific web frameworks for languages such as Python, Java, and Node.
Demonstration
To follow along with this post’s demonstration, review the installation instructions detailed in part one of the previous post, Kubernetes-based Microservice Observability with Istio Service Mesh, to deploy and configure the Amazon EKS cluster, Istio, Amazon MQ, and DocumentDB. To expedite the deployment of the revised gRPC-based platform to the dev
namespace, I have included a Helm chart, ref-app-grpc
, in the project. Using the chart, you can ignore any instructions in the previous post that refer to deploying resources to the dev
namespace. See the chart’s README file for further instructions.

Source Code
The gRPC-based microservices source code, Kubernetes resources, and Helm chart are located in the k8s-istio-observe-backend project repository in the 2021-istio
branch. This project repository is the only source code you will need for this demonstration.
git clone --branch 2021-istio --single-branch \
https://github.com/garystafford/k8s-istio-observe-backend.git
Optionally, the Angular-based web client source code is located in the k8s-istio-observe-frontend repository on the new 2021-grpc
branch. The source protobuf .proto
file and the Buf-compiled protobuf files are located in the pb-greeting and protobuf project repositories. You do not need to clone any of these projects for this post’s demonstration.
All Docker images for the services, UI, and the reverse proxy are pulled from Docker Hub.

Code Changes
Although this post is not specifically about writing Go for gRPC and protobuf, to better understand the observability requirements and capabilities of these technologies compared to the previous JSON over HTTP-based services, it is helpful to review the code changes.
Microservices
First, compare the revised source code for Service A, shown below to the original code in the previous post. The service’s code is almost completely rewritten. For example, note the following code changes to Service A, which are synonymous with the other backend services:
- Import of the v3 greeting protobuf package;
- Local Greeting struct replaced with
pb.Greeting
struct; - All services are now hosted on port
50051
; - The HTTP server and all API resource handler functions are removed;
- Headers used for distributed tracing have moved from HTTP request object to metadata passed in a gRPC
Context
type; - Service A is both a gRPC client and a server, which is called by the gRPC Gateway reverse proxy;
- The primary
GreetingHandler
function is replaced by the protobuf package’sGreeting
function; - gRPC clients, such as Service A, call gRPC servers using the
CallGrpcService
function; - CORS handling is offloaded from the services to Istio;
- Logging methods are largely unchanged;
Source code for revised gRPC-based Service A:
Greeting Protocol Buffers
Shown below is the greeting v3 protocol buffers .proto
file. The fields within the Greeting
, originally defined in the RESTful JSON-based services as a struct, remains largely unchanged, however, we now have a message— an aggregate containing a set of typed fields. The GreetingRequest
is composed of a single Greeting
message, while the GreetingResponse
message is composed of multiple (repeated
) Greeting
messages. Services pass a Greeting
message in their request and receive an array of one or more messages in response.
The protobuf is compiled with Buf, the popular Go-based protocol compiler tool. Using Buf, four files are generated: Go, Go gRPC, gRPC Gateway, and Swagger (OpenAPI v2).
.
├── greeting.pb.go
├── greeting.pb.gw.go
├── greeting.swagger.json
└── greeting_grpc.pb.go
Buf is configured using two files, buf.yaml
:
version: v1beta1
name: buf.build/garystafford/pb-greeting
deps:
- buf.build/beta/googleapis
- buf.build/grpc-ecosystem/grpc-gateway
build:
roots:
- proto
lint:
use:
- DEFAULT
breaking:
use:
- FILE
And, and buf.gen.yaml
:
version: v1beta1
plugins:
- name: go
out: ../protobuf
opt:
- paths=source_relative
- name: go-grpc
out: ../protobuf
opt:
- paths=source_relative
- name: grpc-gateway
out: ../protobuf
opt:
- paths=source_relative
- generate_unbound_methods=true
- name: openapiv2
out: ../protobuf
opt:
- logtostderr=true
The compiled protobuf code is included in the protobuf project on GitHub, and the v3 version is imported into each microservice and the reverse proxy. Below is a snippet of the greeting.pb.go
compiled Go file.
Using Swagger, we can view the greeting protocol buffers’ single RESTful API resource, exposed with an HTTP GET method. You can use the Docker-based version of Swagger UI for viewing protoc
generated swagger definitions.
docker run -p 8080:8080 -d --name swagger-ui \
-e SWAGGER_JSON=/tmp/greeting/v3/greeting.swagger.json \
-v ${GOAPTH}/src/protobuf:/tmp swaggerapi/swagger-ui
The Angular UI makes an HTTP GET request to the /api/greeting
resource, which is transformed to gRPC and proxied to Service A, where it is handled by the Greeting
function.

gRPC Gateway Reverse Proxy
As explained earlier, the gRPC Gateway reverse proxy, which translates the RESTful HTTP API into gRPC, is new. In the code sample below, note the following code features:
- Import of the v3 greeting protobuf package;
ServeMux
, a request multiplexer, matcheshttp
requests to patterns and invokes the corresponding handler;RegisterGreetingServiceHandlerFromEndpoint
registers thehttp
handlers for serviceGreetingService
tomux
. The handlers forward requests to the gRPC endpoint;x-b3
request headers, used for distributed tracing, are collected from the incoming HTTP request and propagated to the upstream services in the gRPCContext
type;
Istio VirtualService and CORS
With the RESTful services in the previous post, CORS was handled by Service A. Service A allowed the UI to make cross-origin requests to the backend API’s domain. Since the gRPC Gateway does not directly support Cross-Origin Resource Sharing (CORS) policy, we have offloaded the CORS responsibility to Istio using the reverse proxy’s VirtualService
resource’s CorsPolicy
configuration. Moving this responsibility makes CORS much easier to manage as YAML-based configuration and part of the Helm chart. See lines 20–28 below.
Pillar One: Logs
To paraphrase Jay Kreps on the LinkedIn Engineering Blog, a log is an append-only, totally ordered sequence of records ordered by time. The ordering of records defines a notion of “time” since entries to the left are defined to be older than entries to the right. Logs are a historical record of events that happened in the past. Logs have been around almost as long as computers and are at the heart of many distributed data systems and real-time application architectures.
Go-based Microservice Logging
An effective logging strategy starts with what you log, when you log, and how you log. As part of the platform’s logging strategy, the eight Go-based microservices use Logrus, a popular structured logger for Go, first released in 2014. The platform’s services also implement Banzai Cloud’s logrus-runtime-formatter. These two logging packages give us greater control over what you log, when you log, and how you log information about the services. The recommended configuration of the packages is minimal. Logrus’ JSONFormatter
provides for easy parsing by third-party systems and injects additional contextual data fields into the log entries.
Logrus provides several advantages over Go’s simple logging package, log. For example, log entries are not only for Fatal errors, nor should all verbose log entries be output in a Production environment. Logrus has the capability to log at seven levels: Trace, Debug, Info, Warning, Error, Fatal, and Panic. The log level of the platform’s microservices can be changed at runtime using an environment variable.
Banzai Cloud’s logrus-runtime-formatter automatically tags log messages with runtime and stack information, including function name and line number — extremely helpful when troubleshooting. There is an excellent post on the Banzai Cloud (now part of Cisco) formatter, Golang runtime Logrus Formatter.

In 2020, Logus entered maintenance mode. The author, Simon Eskildsen (Principal Engineer at Shopify), stated they would not be introducing new features. This does not mean Logrus is dead. With over 18,000 GitHub Stars, Logrus will continue to be maintained for security, bug fixes, and performance. The author states that many fantastic alternatives to Logus now exist, such as Zerolog, Zap, and Apex.
Client-side Angular UI Logging
Likewise, I have enhanced the logging of the Angular UI using NGX Logger. NGX Logger is a simple logging module for angular (currently supports Angular 6+). It allows “pretty print” to the console and allows log messages to be POSTed to a URL for server-side logging. For this demo, the UI will only log to the web browser’s console. Similar to Logrus, NGX Logger supports multiple log levels: Trace, Debug, Info, Warning, Error, Fatal, and Off. However, instead of just outputting messages, NGX Logger allows us to output properly formatted log entries to the browser’s console.
The level of logs output is configured to be dependent on the environment, Production or not Production. Below is an example of the log output from the Angular UI in Chrome. Since the UI’s Docker Image was built with the Production configuration, the log level is set to INFO
. You would not want to expose potentially sensitive information in verbose log output to our end-users in Production.

Controlling logging levels is accomplished by adding the following ternary operator to the app.module.ts
file.
Platform Logs
Based on the platform built, configured, and deployed in part one, you now have access logs from multiple sources.
- Amazon DocumentDB: Amazon CloudWatch Audit and Profiler logs;
- Amazon MQ: Amazon CloudWatch logs;
- Amazon EKS: API server, Audit, Authenticator, Controller manager, and Scheduler CloudWatch logs;
- Kubernetes Dashboard: Individual EKS Pod and Replica Set logs;
- Kiali: Individual EKS Pod and Container logs;
- Fluent Bit: EKS performance, host, dataplane, and application CloudWatch logs;
Fluent Bit
According to a recent AWS Blog post, Fluent Bit Integration in CloudWatch Container Insights for EKS, Fluent Bit is an open source, multi-platform log processor and forwarder that allows you to collect data and logs from different sources and unify and send them to different destinations, including CloudWatch Logs. Fluent Bit is also fully compatible with Docker and Kubernetes environments. Using the newly launched Fluent Bit DaemonSet
, you can send container logs from your EKS clusters to CloudWatch logs for logs storage and analytics.
Running Fluent Bit, the EKS cluster’s performance, host, dataplane, and application logs will also be available in Amazon CloudWatch.

Within the application log groups, you can access the individual log streams for each reference application’s components.

Within each CloudWatch log stream, you can view individual log entries.

CloudWatch Logs Insights enables you to interactively search and analyze your log data in Amazon CloudWatch Logs. You can perform queries to help you more efficiently and effectively respond to operational issues. If an issue occurs, you can use CloudWatch Logs Insights to identify potential causes and validate deployed fixes.

CloudWatch Logs Insights supports CloudWatch Logs Insights query syntax, a query language you can use to perform queries on your log groups. Each query can include one or more query commands separated by Unix-style pipe characters (|). For example:
fields @timestamp, @message
| filter kubernetes.container_name = "service-f"
and @message like "error"
| sort @timestamp desc
| limit 20
Pillar Two: Metrics
For metrics, we will examine CloudWatch Container Insights, Prometheus, and Grafana. Prometheus and Grafana are industry-leading tools you installed as part of the Istio deployment.
Prometheus
Prometheus is an open source system monitoring and alerting toolkit originally built at SoundCloud circa 2012. Prometheus joined the Cloud Native Computing Foundation (CNCF) in 2016 as the second project hosted after Kubernetes.

According to Istio, the Prometheus addon is a Prometheus server that comes preconfigured to scrape Istio endpoints to collect metrics. You can use Prometheus with Istio to record metrics that track the health of Istio and applications within the service mesh. You can visualize metrics using tools like Grafana and Kiali. The Istio Prometheus addon is intended for demonstration only and is not tuned for performance or security.
The istioctl dashboard
command provides access to all of the Istio web UIs. With the EKS cluster running, Istio installed, and the reference application platform deployed, access Prometheus using the istioctl dashboard prometheus
command from your terminal. You must be logged into AWS from your terminal to connect to Prometheus successfully. If you are not logged in to AWS, you will often see the following error: Error: not able to locate <tool_name> pod: Unauthorized
. Since we used the non-production demonstration versions of the Istio Addons, there is no authentication and authorization required to access Prometheus.
According to Prometheus, users select and aggregate time-series data in real-time using a functional query language called PromQL (Prometheus Query Language). The result of an expression can either be shown as a graph, viewed as tabular data in Prometheus’s expression browser, or consumed by external systems through Prometheus’ HTTP API. The expression browser includes a drop-down menu with all available metrics as a starting point for building queries. Shown below are a few PromQL examples that were developed as part of writing this post.
istio_agent_go_info{kubernetes_namespace="dev"}
istio_build{kubernetes_namespace="dev"}
up{alpha_eksctl_io_cluster_name="istio-observe-demo", job="kubernetes-nodes"}
sum by (pod) (rate(container_network_transmit_packets_total{stack="reference-app",namespace="dev",pod=~"service-.*"}[5m]))
sum by (instance) (istio_requests_total{source_app="istio-ingressgateway",connection_security_policy="mutual_tls",response_code="200"})
sum by (response_code) (istio_requests_total{source_app="istio-ingressgateway",connection_security_policy="mutual_tls",response_code!~"200|0"})
Prometheus APIs
Prometheus has both an HTTP API and a Management API. There are many useful endpoints in addition to the Prometheus UI, available at http://localhost:9090/graph
. For example, the Prometheus HTTP API endpoint that lists all the command-line configuration flags is available at http://localhost:9090/api/v1/status/flags
. The endpoint that lists all the available Prometheus metrics is available at http://localhost:9090/api/v1/label/__name__/values
; over 951 metrics in this demonstration.

The Prometheus endpoint that lists many available metrics with HELP
and TYPE
to explain their function can be found at http://localhost:9090/metrics
.

Understanding Metrics
In addition to these endpoints, the standard service level metrics exported by Istio and available via Prometheus can be found in the Istio Standard Metrics documentation. An explanation of many of the metrics available in Prometheus is also found in the cAdvisor README on their GitHub site. As mentioned in this AWS Blog Post, the cAdvisor metrics are also available from the command line using the following commands:
export NODE=$(kubectl get nodes | sed -n '2 p' | awk {'print $1'})
kubectl get --raw "/api/v1/nodes/${NODE}/proxy/metrics/cadvisor"
Observing Metrics
Below is an example graph of the backend microservice containers deployed to EKS. The graph PromQL expression returns the amount of working set memory, including recently accessed memory, dirty memory, and kernel memory (container_memory_working_set_bytes
), summed by pod, in megabytes (MB). There was no load on the services during the period displayed.
sum by (pod) (container_memory_working_set_bytes{namespace="dev", container=~"service-.*|rev-proxy|angular-ui"}) / (1024^2)

The container_memory_working_set_bytes
metric is the same metric used by the kubectl top
command (not container_memory_usage_bytes
). Omitting the --containers=true
flag will output pod stats versus containers.
> kubectl top pod -n dev --containers=true | \
grep -v istio-proxy | sort -k 4 -r
POD NAME CPU(cores) MEMORY(bytes)
service-d-69d7469cbf-ts4t7 service-d 135m 13Mi
service-d-69d7469cbf-6thmz service-d 156m 13Mi
service-d-69d7469cbf-nl7th service-d 118m 12Mi
service-d-69d7469cbf-fz5bh service-d 118m 12Mi
service-d-69d7469cbf-89995 service-d 136m 11Mi
service-d-69d7469cbf-g4pfm service-d 106m 10Mi
service-h-69576c4c8c-x9ccl service-h 33m 9Mi
service-h-69576c4c8c-gtjc9 service-h 33m 9Mi
service-h-69576c4c8c-bjgfm service-h 45m 9Mi
service-h-69576c4c8c-8fk6z service-h 38m 9Mi
service-h-69576c4c8c-55rld service-h 36m 9Mi
service-h-69576c4c8c-4xpb5 service-h 41m 9Mi
...
In another Prometheus example, the PromQL query expression returns the per-second rate of CPU resources measured in CPU units (1 CPU = 1 AWS vCPU), as measured over the last 5 minutes, per time series in the range vector, summed by the pod. During this period, the backend services were under a consistent, simulated load of 15 concurrent users using hey
. Four instances of Service D pods were consuming the most CPU units during this time period.
sum by (pod) (rate(container_cpu_usage_seconds_total{namespace="dev", container=~"service-.*|rev-proxy|angular-ui"}[5m])) * 1000

The container_cpu_usage_seconds_total
metric is the same metric used by the kubectl top
command. The above PromQL expression multiplies the query results by 1,000 to match the results from kubectl top
, shown below.
> kubectl top pod -n dev --sort-by=cpu
NAME CPU(cores) MEMORY(bytes)
service-d-69d7469cbf-6thmz 159m 60Mi
service-d-69d7469cbf-89995 143m 61Mi
service-d-69d7469cbf-ts4t7 140m 59Mi
service-d-69d7469cbf-fz5bh 135m 58Mi
service-d-69d7469cbf-nl7th 132m 61Mi
service-d-69d7469cbf-g4pfm 119m 62Mi
service-g-c7d68fd94-w5t66 59m 58Mi
service-f-7dc8f64799-qj8qv 56m 55Mi
service-c-69fbc964db-knggt 56m 58Mi
service-h-69576c4c8c-8fk6z 55m 58Mi
service-h-69576c4c8c-4xpb5 55m 58Mi
service-g-c7d68fd94-5cdc2 54m 58Mi
...
Limits
Prometheus also exposes container resource limits. For example, the memory limits set on the reference platform’s backend services, displayed in megabytes (MB), using the container_spec_memory_limit_bytes
metric. When viewed alongside the real-time resources consumed by the services, these metrics are useful to properly configure and monitor Kubernetes management features such as the Horizontal Pod Autoscaler.
sum by (container) (container_spec_memory_limit_bytes{namespace="dev", container=~"service-.*|rev-proxy|angular-ui"}) / (1024^2) / count by (container) (container_spec_memory_limit_bytes{namespace="dev", container=~"service-.*|rev-proxy|angular-ui"})
Or, memory limits by Pod:
sum by (pod) (container_spec_memory_limit_bytes{namespace="dev"}) / (1024^2)

Cluster Metrics
Prometheus also contains metrics about Istio components, Kubernetes components, and the EKS cluster. For example, the total available memory in gigabytes (GB) of each of the five m5.large
EC2 worker nodes in the istio-observe-demo
EKS cluster’s managed-ng-1
Managed Node Group.
machine_memory_bytes{alpha_eksctl_io_cluster_name="istio-observe-demo", alpha_eksctl_io_nodegroup_name="managed-ng-1"} / (1024^3)

For total physical cores, use the machine_cpu_physical_core
metric, and for vCPU cores use the machine_cpu_cores
metric.
Grafana
Grafana describes itself as the leading open source software for time-series analytics. According to Grafana Labs, Grafana allows you to query, visualize, alert on, and understand your metrics no matter where they are stored. You can easily create, explore, and share visually rich, data-driven dashboards. Grafana also allows users to define alert rules for their most important metrics visually. Grafana will continuously evaluate rules and can send notifications.
If you deployed Grafana using the Istio addons process demonstrated in part one of the previous post, access Grafana similar to the other tools:
istioctl dashboard grafana

According to Istio, Grafana is an open source monitoring solution used to configure dashboards for Istio. You can use Grafana to monitor the health of Istio and applications within the service mesh. While you can build your own dashboards, Istio offers a set of preconfigured dashboards for all of the most important metrics for the mesh and the control plane. The preconfigured dashboards use Prometheus as the data source.
- Mesh Dashboard provides an overview of all services in the mesh.
- Service Dashboard provides a detailed breakdown of metrics for a service.
- Workload Dashboard provides a detailed breakdown of metrics for a workload.
- Performance Dashboard monitors the resource usage of the mesh.
- Control Plane Dashboard monitors the health and performance of the control plane.
Below is an example of the Istio Mesh Dashboard, filtered to show the eight backend service workloads running in the dev
namespace. During this period, the backend services were under a consistent simulated load of approximately 20 concurrent users using hey
. You can observe the p50, p90, and p99 latency of requests to these workloads.

Dashboards are built from Panels, the basic visualization building blocks in Grafana. Each panel has a query editor specific to the data source (Prometheus in this case) selected. The query editor allows you to write your (PromQL) query. For example, below is the PromQL expression query responsible for the p50 latency Panel displayed in the Istio Mesh Dashboard.
label_join((histogram_quantile(0.50, sum(rate(istio_request_duration_milliseconds_bucket{reporter="source"}[1m])) by (le, destination_workload, destination_workload_namespace)) / 1000) or histogram_quantile(0.50, sum(rate(istio_request_duration_seconds_bucket{reporter="source"}[1m])) by (le, destination_workload, destination_workload_namespace)), "destination_workload_var", ".", "destination_workload", "destination_workload_namespace")
Below is an example of the Istio Workload Dashboard. The dashboard contains three sections: General, Inbound Workloads, and Outbound Workloads. We have filtered outbound traffic from the reference platform’s backend services in the dev
namespace.

Below is a different view of the Istio Workload Dashboard, the dashboard’s Inbound Workloads section filtered to a single workload, the gRPC Gateway. The gRPC Gateway accepts incoming traffic from the Istio Ingress Gateway, as shown in the dashboard’s panels.

Grafana provides the ability to Explore a Panel. Explore strips away the dashboard and panel options so that you can focus on the query. Below is an example of the Panel showing a steady stream of TCP-based egress traffic for Service F, based on the istio_tcp_sent_bytes_total
metric. Service F consumes messages off on the RabbitMQ queue (Amazon MQ) and writes messages to MongoDB (DocumentDB).

Istio Performance
You can monitor the resource usage of Istio with the Istio Performance Dashboard.

Additional Dashboards
Grafana provides a site containing official and community-built dashboards, including the above-mentioned Istio dashboards. Importing dashboards into your Grafana instance is as simple as copying the dashboard URL or the ID provided from the Grafana dashboard site and pasting it into the dashboard import option of your Grafana instance. However, be aware that not every Kubernetes dashboard in Grafan’s site is compatible with your specific version of Kubernetes, Istio, or EKS, nor relies on Prometheus as a data source. As a result, you might have to test and tweak imported dashboards to get them working.

Below is an example of an imported community dashboard, Kubernetes cluster monitoring (via Prometheus) by Instrumentisto Team (dashboard ID 315).

Alerting
An effective observability strategy must include more than just the ability to visualize results. An effective strategy must also detect anomalies and notify (alert) the appropriate resources or directly resolve incidents. Grafana, like Prometheus, is capable of alerting and notification. You visually define alert rules for your critical metrics. Then, Grafana will continuously evaluate metrics against the rules and send notifications when pre-defined thresholds are breached.
Prometheus supports multiple popular notification channels, including PagerDuty, HipChat, Email, Kafka, and Slack. Below is an example of a Prometheus notification channel that sends alert notifications to a Slack support channel.

Below is an example of an alert based on an arbitrarily high CPU usage of 300 millicpu or millicores (m). When the CPU usage of a single pod goes above that value for more than 3 minutes, an alert is sent. The high CPU usage could be caused by the Horizontal Pod Autoscaler not functioning, or the HPA has reached its maxReplicas
limit, or there are not enough resources available within the cluster’s existing worker nodes to schedule additional pods.

Triggered by the alert, Prometheus sends detailed notifications to the designated Slack channel.

Amazon CloudWatch Container Insights
Lastly, in the category of Metrics, Amazon CloudWatch Container Insights collects, aggregates, summarizes, and visualizes metrics and logs from your containerized applications and microservices. CloudWatch alarms can be set on metrics that Container Insights collects. Container Insights is available for Amazon Elastic Container Service (Amazon ECS), including Fargate, Amazon EKS, and Kubernetes platforms on Amazon EC2.

In Amazon EKS, Container Insights uses a containerized version of the CloudWatch agent to discover all running containers in a cluster. It then collects performance data at every layer of the performance stack. Container Insights collects data as performance log events using the embedded metric format. These performance log events are entries that use a structured JSON schema that enables high-cardinality data to be ingested and stored at scale.
In the previous post, we also installed CloudWatch Container Insights monitoring for Prometheus, which automates the discovery of Prometheus metrics from containerized systems and workloads.

Below is an example of a basic Performance Monitoring CloudWatch Container Insights Dashboard. The dashboard is filtered to the dev
namespace of the EKS cluster, where the reference application platform is running. During this period, the backend services were put under a simulated load using hey
. As the load on the application increased, the ‘Number of Pods’ increased from 20 pods to 56 pods based on the container’s requested resources and HPA configurations. There is also a CloudWatch Alarm, shown on the right of the screen. An alarm was triggered for an arbitrarily high level of network transmission activity.

Next is an example of Container Insights’ Container Map view in CPU mode. You see a visual representation of the dev
namespace, with each of the backend service’s Service
and Deployment
resources shown.

Below, there is a warning icon indicating an Alarm on the cluster was triggered.

Lastly, CloudWatch Insights allows you to jump from the CloudWatch Insights to the CloudWatch Log Insights console. CloudWatch Insights will also write the CloudWatch Insights query for you. Below, we went from the Service D container metrics view in the CloudWatch Insights Performance Monitoring console directly to the CloudWatch Log Insights console with a query, ready to run.

Pillar 3: Traces
According to the Open Tracing website, distributed tracing, also called distributed request tracing, is used to profile and monitor applications, especially those built using a microservices architecture. Distributed tracing helps pinpoint where failures occur and what causes poor performance.
Header Propagation
According to Istio, header propagation may be accomplished through client libraries, such as Zipkin or Jaeger. Header propagation may also be accomplished manually, referred to as trace context propagation, documented in the Distributed Tracing Task. Alternately, Istio proxies can automatically send spans. Applications need to propagate the appropriate HTTP headers so that when the proxies send span information, the spans can be correlated correctly into a single trace. To accomplish this, an application needs to collect and propagate the following headers from the incoming request to any outgoing requests.
x-request-id
x-b3-traceid
x-b3-spanid
x-b3-parentspanid
x-b3-sampled
x-b3-flags
x-ot-span-context
The x-b3
headers originated as part of the Zipkin project. The B3 portion of the header is named for the original name of Zipkin, BigBrotherBird. Passing these headers across service calls is known as B3 propagation. According to Zipkin, these attributes are propagated in-process and eventually downstream (often via HTTP headers) to ensure all activity originating from the same root are collected together.
To demonstrate distributed tracing with Jaeger and Zipkin, the gRPC Gateway passes the b3 headers. While the RESTful JSON-based services passed these headers in the HTTP request object, with gRPC, the heders are passed in the gRPC Context
object. The following code has been added to the gRPC Gateway. The Istio sidecar proxy (Envoy) generates the initial headers, which are then propagated throughout the service call chain. It is critical only to propagate the headers present in the downstream request with values, as the code below does.
Below, in the CloudWatch logs, we see an example of the HTTP request headers recorded in a log message for Service A. The b3
headers are propagated from the gRPC Gateway reverse proxy to gRPC-based Go services. Header propagation ensures a complete distributed trace across the entire service call chain.

Headers propagated from Service A are shown below. Note the b3
headers propagated from the gRPC Gateway reverse proxy.
Jaeger
According to their website, Jaeger, inspired by Dapper and OpenZipkin, is a distributed tracing system released as open source by Uber Technologies. Jaeger is used for monitoring and troubleshooting microservices-based distributed systems, including distributed context propagation, distributed transaction monitoring, root cause analysis, service dependency analysis, and performance and latency optimization. The Jaeger website contains a helpful overview of Jaeger’s architecture and general tracing-related terminology.
If you deployed Jaeger using the Istio addons process demonstrated in part one of the previous post, access Jaeger similar to the other tools:
istioctl dashboard jaeger
Below are examples of the Jaeger UI’s Search view, displaying the results of a search for the Angular UI and the Istio Ingress Gateway services over a period of time. We see a timeline of traces across the top with a list of trace results below. As discussed on the Jaeger website, a trace is composed of spans. A span represents a logical unit of work in Jaeger that has an operation name. A trace is an execution path through the system and can be thought of as a directed acyclic graph (DAG) of spans. If you have worked with systems like Apache Spark, you are probably already familiar with the concept of DAGs.


Below is a detailed view of a single trace in Jaeger’s Trace Timeline mode. The 16 spans encompass nine of the reference platform’s components: seven backend services, gRPC Gateway, and Istio Ingress Gateway. The spans each have individual timings, with an overall trace time of 195.49 ms. The root span in the trace is the Istio Ingress Gateway. The Angular UI, loaded in the end user’s web browser, calls gRPC Gateway via the Istio Ingress Gateway. From there, we see the expected flow of our service-to-service IPC. Service A calls Services B and Service C. Service B calls Service E, which calls Service G and Service H.
In this demonstration, traces are not instrumented to span the RabbitMQ message queue nor MongoDB. You will not see a trace that includes a call from Service D to Service F via the RabbitMQ.

The visualization of the trace’s timeline demonstrates the synchronous nature of the reference platform’s service-to-service IPC instead of the asynchronous nature of the decoupled communications using the RabbitMQ messaging queue. Service A waits for each service in its call chain to respond before returning its response to the requester.
Within Jaeger’s Trace Timeline view, you have the ability to drill into a single span, which contains additional metadata. The span’s metadata includes the API endpoint URL being called, HTTP method, response status, and several other headers.

A Trace Statistics view is also available.

Additionally, Jaeger has an experimental Trace Graph mode that displays a graph view of the same trace.

Jaeger also includes a Compare Trace feature and two dependency views: Force-Directed Graph and DAG. I find both views rather primitive compared to Kiali. Lacking access to Kiali, the views are marginally useful as a dependency graph.

Zipkin
Zipkin is a distributed tracing system, which helps gather timing data needed to troubleshoot latency problems in service architectures. According to a 2012 post on Twitter’s Engineering Blog, Zipkin started as a project during Twitter’s first Hack Week. During that week, they implemented a basic version of the Google Dapper paper for Thrift.

Zipkin and Jaeger are very similar in terms of capabilities. I have chosen to focus on Jaeger in this post as I prefer it over Zipkin. If you want to try Zipkin instead of Jaeger, you can use the following commands to remove Jaeger and install Zipkin from the Istio addons extras directory. In part one of the post, we did not install Zipkin by default when we deployed the Istio addons. Be aware that running both tools simultaneously in the same Kubernetes cluster will cause unpredictable tracing results.
kubectl delete -f https://raw.githubusercontent.com/istio/istio/release-1.10/samples/addons/jaeger.yaml
kubectl apply -f https://raw.githubusercontent.com/istio/istio/release-1.10/samples/addons/extras/zipkin.yaml
Access Zipkin similar to the other observability tools:
istioctl dashboard zipkin
Below is an example of a distributed trace visualized in Zipkin’s UI, containing 16 spans, similar to the trace visualized in Jaeger, shown above. The spans encompass eight of the reference platform’s components: seven of the eight backend services and the Istio Ingress Gateway. The spans each have individual timings, with an overall trace time of ~221 ms.

Zipkin can also visualize a dependency graph based on the distributed trace. Below is an example of a traffic simulation over a 24-hour period, showing network traffic flowing between the reference platform’s components, illustrated as a dependency graph.

Kiali: Microservice Observability
According to their website, Kiali is a management console for an Istio-based service mesh. It provides dashboards and observability, and lets you operate your mesh with robust configuration and validation capabilities. It shows the structure of a service mesh by inferring traffic topology and displaying the mesh’s health. Kiali provides detailed metrics, powerful validation, Grafana access, and strong integration for distributed tracing with Jaeger.
If you deployed Kaili using the Istio addons process demonstrated in part one of the previous post, access Kiali similar to the other tools:
istioctl dashboard kaili
For improved security, install the latest version of Kaili using the customizable install mentioned in Istio’s documentation. Using Kiali’s Install via Kiali Server Helm Chart option adds token-based authentication, similar to the Kubernetes Dashboard.

Kiali’s Overview tab provides a global view of all namespaces within the Istio service mesh and the number of applications within each namespace.

The Graph tab in the Kiali UI represents the components running in the Istio service mesh. Below, filtering on the cluster’s dev
Namespace, we can observe that Kiali has mapped 11 applications (workloads), 11 services, and 24 edges (a graph term). Specifically, we see the Istio Ingres Proxy at the edge of the service mesh, gRPC Gateway, Angular UI, and eight backend services, all with their respective Envoy proxy sidecars that are taking traffic (Service F did not take any direct traffic from another service in this example), the external DocumentDB egress point, and the external Amazon MQ egress point. Note how service-to-service traffic flows with Istio, from the service to its sidecar proxy, to the other service’s sidecar proxy, and finally to the service.

Kiali allows you to zoom in and focus on a single component in the graph and its individual metrics.

Kiali can also display average request times and other metrics for each edge in the graph (communication between two components). Kaili can even show those metrics over a given period of time, using Kiali’s Replay feature, shown below.

The Applications tab lists all the applications, their namespace, and labels.

You can drill into an individual component on both the Applications and Workloads tabs and view additional details. Details include the overall health, Pods, and Istio Config status. Below is an overview of the Service A workload in the dev
Namespace.

The Workloads detailed view also includes inbound and outbound network metrics. Below is an example of the outbound for Service A in the dev
Namespace.

Kiali also gives you access to the individual pod’s container logs. Although log access is not as user-friendly as other log sources discussed previously, having logs available alongside metrics (integration with Grafana), traces (integration with Jaeger), and mesh visualization, all in Kiali, can act as a very effective single pane of glass for observability.

Kiali also has an Istio Config tab. The Istio Config tab displays a list of all of the available Istio configuration objects that exist in the user’s environment.

You can use Kiali to configure and manage the Istio service mesh and its installed resources. Using Kiali, you can actually modify the deployed resources, similar to using the kubectl edit
command.

Oftentimes, I find Kiali to be my first stop when troubleshooting platform issues. Once I identify the specific components or communication paths having issues, I then review the specific application logs and Prometheus metrics through the Grafana dashboard.
Tear Down
To tear down the EKS cluster, DocumentDB cluster, and Amazon MQ broker, use the following commands:
# EKS cluster
eksctl delete cluster --name $CLUSTER_NAME
# Amazon MQ
aws mq list-brokers | jq -r '.BrokerSummaries[] | .BrokerId'aws mq delete-broker --broker-id {{ your_broker_id }}
# DocumentDB
aws docdb describe-db-clusters \
| jq -r '.DBClusters[] | .DbClusterResourceId'aws docdb delete-
db-cluster \
--db-cluster-identifier {{ your_cluster_id }}
Conclusion
In this post, we explored a set of popular open source observability tools, easily integrated with the Istio service mesh. These tools included Jaeger and Zipkin for distributed transaction monitoring, Prometheus for metrics collection and alerting, Grafana for metrics querying, visualization, and alerting, and Kiali for overall observability and management of Istio. We rounded out the toolset using Fluent Bit for log processing and forwarding to Amazon CloudWatch Container Insights. Using these tools, we successfully observed a gRPC-based, distributed reference application platform deployed to Amazon EKS.
This blog represents my own viewpoints and not of my employer, Amazon Web Services (AWS). All product names, logos, and brands are the property of their respective owners.
Kubernetes-based Microservice Observability with Istio Service Mesh: Part 2 of 2
Posted by Gary A. Stafford in AWS, Build Automation, Go, Kubernetes on June 13, 2021
In part two of this two-part post, we will continue to explore the set of popular open-source observability tools that are easily integrated with the Istio service mesh. While these tools are not a part of Istio, they are essential to making the most of Istio’s observability features. The tools include Jaeger and Zipkin for distributed transaction monitoring, Prometheus for metrics collection and alerting, Grafana for metrics querying, visualization, and alerting, and Kiali for overall observability and management of Istio. We will round out the toolset with the addition of Fluent Bit for log processing and aggregation. We will observe a distributed, microservices-based reference application platform deployed to an Amazon Elastic Kubernetes Service (Amazon EKS) cluster using these tools. The platform, running on EKS, will use Amazon DocumentDB as a persistent data store and Amazon MQ to exchange messages.

Observability
The O’Reilly book, Distributed Systems Observability, by Cindy Sridharan, describes The Three Pillars of Observability in Chapter 4: “Logs, metrics, and traces are often known as the three pillars of observability. While plainly having access to logs, metrics, and traces doesn’t necessarily make systems more observable, these are powerful tools that, if understood well, can unlock the ability to build better systems.”
Reference Application Platform
To demonstrate Istio’s observability tools, we deployed a reference application platform to EKS on AWS. I have developed the application platform to demonstrate different Kubernetes platforms, such as EKS, GKE, AKS, and concepts such as service mesh, API management, observability, DevOps, and Chaos Engineering. The platform comprises a backend containing eight Go-based microservices, labeled generically as Service A — Service H, one Angular 12 TypeScript-based frontend UI, four MongoDB databases, and one RabbitMQ message queue. The platform and all its source code are open-sourced on GitHub.

The reference application platform is designed to generate HTTP-based service-to-service, TCP-based service-to-database, and TCP-based service-to-queue-to-service IPC (inter-process communication). For example, Service A calls Service B and Service C; Service B calls Service D and Service E; Service D produces a message to a RabbitMQ queue, which Service F consumes message off on the RabbitMQ queue, and writes to MongoDB, and so on. The platform’s distributed service communications can be observed using Istio’s observability tools when the system is deployed to a Kubernetes cluster running the Istio service mesh.

Part Two
In part one of the post, we configured and deployed the reference application platform to an Amazon EKS development-grade cluster on AWS. The reference application, running on EKS, communicates with two external systems, Amazon DocumentDB (with MongoDB compatibility) and Amazon MQ.

In part two of the post, we will explore each of the observability tools we installed in greater detail. We will understand how each tool contributes to the three pillars of observability: logs, metrics, and traces.
Logs, metrics, and traces are often known as the three pillars of observability.
— Cindy Sridharan
Pillar One: Logs
To paraphrase Jay Kreps on the LinkedIn Engineering Blog, a log is an append-only, totally-ordered sequence of records ordered by time. The ordering of records defines a notion of “time” since entries to the left are defined to be older than entries to the right. Logs are a historical record of events that happened in the past. Logs have been around almost as long as computers and are at the heart of many distributed data systems and real-time application architectures.
Go-based Microservice Logging
An effective logging strategy starts with what you log, when you log, and how you log. As part of our logging strategy, the eight Go-based microservices use Logrus, a popular structured logger for Go first released in 2014. The microservices also implement Banzai Cloud’s logrus-runtime-formatter. There is an excellent article on the formatter, Golang runtime Logrus Formatter. These two logging packages give us greater control over what you log, when you log, and how you log information about our microservices. The recommended configuration of the packages is minimal.
func init() {
formatter := runtime.Formatter{ChildFormatter: &log.JSONFormatter{}}
formatter.Line = true
log.SetFormatter(&formatter)
log.SetOutput(os.Stdout)
level, err := log.ParseLevel(logLevel)
if err != nil {
log.Error(err)
}
log.SetLevel(level)
}
Logrus provides several advantages over Go’s simple logging package, log. For example, log entries are not only for Fatal errors, nor should all verbose log entries be output in a Production environment. The post’s microservices are taking advantage of Logrus’ ability to log at seven levels: Trace, Debug, Info, Warning, Error, Fatal, and Panic. I have also variabilized the log level, allowing it to be easily changed in the Kubernetes Deployment resource at deploy-time.
The microservices also take advantage of Banzai Cloud’s logrus-runtime-formatter. The Banzai formatter automatically tags log messages with runtime and stack information, including function name and line number; extremely helpful when troubleshooting. I am also using Logrus’ JSON formatter.

In 2020, Logus entered maintenance mode. The author, Simon Eskildsen (Principal Engineer at Shopify), stated they will not be introducing new features. This does not mean Logrus is dead. With over 18,000 GitHub Stars, Logrus will continue to be maintained for security, bug fixes, and performance. The author states that many fantastic alternatives to Logus now exist, such as Zerolog, Zap, and Apex.
Client-side Angular UI Logging
Likewise, I have enhanced the logging of the Angular UI using NGX Logger. NGX Logger is a simple logging module for angular (currently supports Angular 6+). It allows “pretty print” to the console and allows log messages to be POSTed to a URL for server-side logging. For this demo, the UI will only log to the web browser’s console. Similar to Logrus, NGX Logger supports multiple log levels: Trace, Debug, Info, Warning, Error, Fatal, and Off. However, instead of just outputting messages, NGX Logger allows us to output properly formatted log entries to the browser’s console.
The level of logs output is configured to be dependent on the environment, Production or not Production. Below is an example of the log output from the Angular UI in Chrome. Since the UI’s Docker Image was built with the Production configuration, the log level is set to INFO
. You would not want to expose potentially sensitive information in verbose log output to our end-users in Production.

Controlling logging levels is accomplished by adding the following ternary operator to the app.module.ts
file.
imports: [
BrowserModule,
HttpClientModule,
FormsModule,
LoggerModule.forRoot({
level: !environment.production ?
NgxLoggerLevel.DEBUG : NgxLoggerLevel.INFO,
serverLogLevel: NgxLoggerLevel.INFO
})
],
Platform Logs
Based on the platform built, configured, and deployed in , you now have access logs from multiple sources.
- Amazon DocumentDB: Amazon CloudWatch Audit and Profiler logs;
- Amazon MQ: Amazon CloudWatch logs;
- Amazon EKS: API server, Audit, Authenticator, Controller manager, and Scheduler CloudWatch logs;
- Kubernetes Dashboard: Individual EKS Pod and Replica Set logs;
- Kiali: Individual EKS Pod and Container logs;
- Fluent Bit: EKS performance, host, dataplane, and application CloudWatch logs;
Fluent Bit
According to a recent AWS Blog post, Fluent Bit Integration in CloudWatch Container Insights for EKS, Fluent Bit is an open-source, multi-platform log processor and forwarder that allows you to collect data and logs from different sources and unify and send them to different destinations, including CloudWatch Logs. Fluent Bit is also fully compatible with Docker and Kubernetes environments. Using the newly launched Fluent Bit DaemonSet
, you can send container logs from your EKS clusters to CloudWatch logs for logs storage and analytics.
With Fluent Bit, deployed in part one, the EKS cluster’s performance, host, dataplane, and application logs will also be available in Amazon CloudWatch.

Within the application log groups, you have access to the individual log streams for each reference application’s components.

Within each CloudWatch log stream, you can view individual log entries.

CloudWatch Logs Insights enables you to interactively search and analyze your log data in Amazon CloudWatch Logs. You can perform queries to help you more efficiently and effectively respond to operational issues. If an issue occurs, you can use CloudWatch Logs Insights to identify potential causes and validate deployed fixes.

CloudWatch Logs Insights supports CloudWatch Logs Insights query syntax, a query language you can use to perform queries on your log groups. Each query can include one or more query commands separated by Unix-style pipe characters (|). For example:
fields @timestamp, @message
| filter kubernetes.container_name = "service-f"
and @message like "error"
| sort @timestamp desc
| limit 20
Pillar Two: Metrics
For metrics, we will examine CloudWatch Container Insights, Prometheus, and Grafana. Prometheus and Grafana are industry-leading tools you installed as part of the Istio deployment.
Prometheus
Prometheus is an open-source systems monitoring and alerting toolkit originally built at SoundCloud circa 2012. Prometheus joined the Cloud Native Computing Foundation (CNCF) in 2016 as the second project hosted after Kubernetes.

According to Istio, the Prometheus addon is a Prometheus server that comes preconfigured to scrape Istio endpoints to collect metrics. You can use Prometheus with Istio to record metrics that track the health of Istio and applications within the service mesh. You can visualize metrics using tools like Grafana and Kiali. The Istio Prometheus addon is intended for demonstration only and is not tuned for performance or security.
The istioctl dashboard
command provides access to all of the Istio web UIs. With the EKS cluster running, Istio installed, and the reference application platform deployed, access Prometheus using the istioctl dashboard prometheus
command from your terminal. You must be logged into AWS from your terminal to connect to Prometheus successfully. If you are not logged in to AWS, you will often see the following error: Error: not able to locate <tool_name> pod: Unauthorized
. Since we used the non-production demonstration versions of the Istio Addons, there is no authentication and authorization required to access Prometheus.
According to Prometheus, users select and aggregate time-series data in real-time using a functional query language called PromQL (Prometheus Query Language). The result of an expression can either be shown as a graph, viewed as tabular data in Prometheus’s expression browser, or consumed by external systems through Prometheus’ HTTP API. The expression browser includes a drop-down menu with all available metrics as a starting point for building queries. Shown below are a few PromQL examples that were developed as part of writing this post.
istio_agent_go_info{kubernetes_namespace="dev"}
istio_build{kubernetes_namespace="dev"}
up{alpha_eksctl_io_cluster_name="istio-observe-demo", job="kubernetes-nodes"}
sum by (pod) (rate(container_network_transmit_packets_total{stack="reference-app",namespace="dev",pod=~"service-.*"}[5m]))
sum by (instance) (istio_requests_total{source_app="istio-ingressgateway",connection_security_policy="mutual_tls",response_code="200"})
sum by (response_code) (istio_requests_total{source_app="istio-ingressgateway",connection_security_policy="mutual_tls",response_code!~"200|0"})
Prometheus APIs
Prometheus has both an HTTP API and a Management API. There are many useful endpoints in addition to the Prometheus UI, available at http://localhost:9090/graph
. For example, the Prometheus HTTP API endpoint that lists all the command-line configuration flags is available at http://localhost:9090/api/v1/status/flags
. The endpoint that lists all the available Prometheus metrics is available at http://localhost:9090/api/v1/label/__name__/values
; a total of 951 metrics in this demonstration!

The Prometheus endpoint that lists many available metrics with HELP
and TYPE
to explain their function is found at http://localhost:9090/metrics
.

Understanding Metrics
In addition to these endpoints, the standard service level metrics exported by Istio and available via Prometheus are found in the Istio Standard Metrics documentation. An explanation of many of the metrics available via Prometheus are also found in the cAdvisor README on their GitHub site. As mentioned in this AWS Blog Post, the cAdvisor metrics are also available from the command line using the following commands:
export NODE=$(kubectl get nodes | sed -n '2 p') | awk {'print $1'}
kubectl get --raw "/api/v1/nodes/${NODE}/proxy/metrics/cadvisor"
Observing Metrics
Below is an example graph of the backend microservice containers deployed to EKS. The graph PromQL expression returns the amount of working set memory, including recently accessed memory, dirty memory, and kernel memory (container_memory_working_set_bytes
), summed by pod, in megabytes (MB). There was no load on the services during the period displayed.
sum by (pod) (container_memory_working_set_bytes{image=~"registry.hub.docker.com/garystafford/.*"}) / (1024^2)

The container_memory_working_set_bytes
metric is the same metric used by the kubectl top
command (not container_memory_usage_bytes
).
> kubectl top pod -n dev --containers=true --use-protocol-buffer
POD NAME CPU(cores) MEMORY(bytes)
service-a-546fbd558d-28jlm service-a 1m 6Mi
service-a-546fbd558d-2lcsg service-a 1m 6Mi
service-b-545c85df9-dl9h8 service-b 1m 6Mi
service-b-545c85df9-q99xm service-b 1m 5Mi
service-c-58996574-58wd8 service-c 1m 7Mi
service-c-58996574-6q7n4 service-c 1m 7Mi
service-d-867796bb47-87ps5 service-d 1m 6Mi
service-d-867796bb47-fh6wl service-d 1m 6Mi
...
In another Prometheus example, the PromQL query expression returns the per-second rate of CPU resources measured in CPU units (1 CPU = 1 AWS vCPU), as measured over the last 5 minutes, per time series in the range vector, summed by the pod. During this period, the backend services were under a consistent, simulated load of 25 concurrent users using hey
. The four Service D pods were consuming the most CPU units during this time period.
sum by (pod) (rate(container_cpu_usage_seconds_total{image=~"registry.hub.docker.com/garystafford/.*"}[5m])) * 1000

The container_cpu_usage_seconds_total
metric is the same metric used by the kubectl top
command. The above PromQL expression multiplies the query results by 1,000 to match the results from kubectl top
, shown below.
> kubectl top pod -n dev --containers=true --use-protocol-buffer
POD NAME CPU(cores) MEMORY(bytes)
service-a-546fbd558d-28jlm service-a 25m 9Mi
service-a-546fbd558d-2lcsg service-a 27m 8Mi
service-b-545c85df9-dl9h8 service-b 29m 11Mi
service-b-545c85df9-q99xm service-b 23m 8Mi
service-c-58996574-c8hkn service-c 62m 9Mi
service-c-58996574-kx895 service-c 55m 8Mi
service-d-867796bb47-87ps5 service-d 285m 12Mi
service-d-867796bb47-9ln7p service-d 226m 11Mi
...
Limits
Prometheus also exposes container resource limits. For example, the memory limits set on the reference platform’s backend services, displayed in megabytes (MB), using the container_spec_memory_limit_bytes
metric. When viewed alongside the real-time resources consumed by the services, these metrics are useful to properly configure and monitor Kubernetes management features such as the Horizontal Pod Autoscaler.
sum by (container) (container_spec_memory_limit_bytes{image=~"registry.hub.docker.com/garystafford/.*"}) / (1024^2) / count by (container) (container_spec_memory_limit_bytes{image=~"registry.hub.docker.com/garystafford/.*"})
Or, memory limits by Pod:
sum by (pod) (container_spec_memory_limit_bytes{image=~"registry.hub.docker.com/garystafford/.*"}) / (1024^2)

Cluster Metrics
Prometheus also contains metrics about Istio components, Kubernetes components, and the EKS cluster. For example, the total memory in gigabytes (GB) of each m5.large
EC2 worker nodes in the istio-observe-demo
EKS cluster’s managed-ng-1
Managed Node Group.
machine_memory_bytes{alpha_eksctl_io_cluster_name="istio-observe-demo", alpha_eksctl_io_nodegroup_name="managed-ng-1"} / (1024^3)

For total physical cores, use the machine_cpu_physical_core
metric, and for vCPU cores use the machine_cpu_cores
metric.
Grafana
Grafana describes itself as the leading open-source software for time-series analytics. According to Grafana Labs, Grafana allows you to query, visualize, alert on, and understand your metrics no matter where they are stored. You can easily create, explore, and share visually rich, data-driven dashboards. Grafana also allows users to visually define alert rules for their most important metrics. Grafana will continuously evaluate rules and can send notifications.
If you deployed Grafana using the Istio addons process demonstrated in part one of the post, access Grafana similar to the other tools:
istioctl dashboard grafana

According to Istio, Grafana is an open-source monitoring solution used to configure dashboards for Istio. You can use Grafana to monitor the health of Istio and applications within the service mesh. While you can build your own dashboards, Istio offers a set of preconfigured dashboards for all of the most important metrics for the mesh and the control plane. The preconfigured dashboards use Prometheus as the data source.
- Mesh Dashboard provides an overview of all services in the mesh.
- Service Dashboard provides a detailed breakdown of metrics for a service.
- Workload Dashboard provides a detailed breakdown of metrics for a workload.
- Performance Dashboard monitors the resource usage of the mesh.
- Control Plane Dashboard monitors the health and performance of the control plane.
Below is an example of the Istio Mesh Dashboard, filtered to show the eight backend services workloads running in the dev
namespace. During this period, the backend services were under a consistent simulated load of approximately 20 concurrent users using hey
. You can observe the p50, p90, and p99 latency of requests to these workloads.

Dashboards are built from Panels, the basic visualization building blocks in Grafana. Each panel has a query editor specific to the data source (Prometheus in this case) selected. The query editor allows you to write your (PromQL) query. Below is the PromQL expression query responsible for the p50 latency Panel displayed in the Istio Mesh Dashboard.
label_join((histogram_quantile(0.50, sum(rate(istio_request_duration_milliseconds_bucket{reporter="source"}[1m])) by (le, destination_workload, destination_workload_namespace)) / 1000) or histogram_quantile(0.50, sum(rate(istio_request_duration_seconds_bucket{reporter="source"}[1m])) by (le, destination_workload, destination_workload_namespace)), "destination_workload_var", ".", "destination_workload", "destination_workload_namespace")
Below is an example of the Outbound Workloads section of the Istio Workload Dashboard. The complete dashboard contains three sections: General, Inbound Workloads, and Outbound Workloads. Here we have filtered the on reference platform’s backend services in the dev
namespace.

Here is a different view of the Istio Workload Dashboard, the dashboard’s Inbound Workloads section filtered to a single workload, Service A, the backend’s edge service. Service A accepts incoming traffic from the Istio Ingress Gateway as shown in the dashboard’s panels.

Grafana provides the ability to Explore a Panel. Explore strips away the dashboard and panel options so that you can focus on the query. It helps you iterate until you have a working query and then think about building a dashboard. Below is an example of the Panel showing the egress TCP traffic, based on the istio_tcp_sent_bytes_total
metric, for Service F. Service F consumes messages off on the RabbitMQ queue (Amazon MQ) and writes messages to MongoDB (DocumentDB).

You can monitor the resource usage of Istio with the Performance Dashboard.

Additional Dashboards
Grafana provides a site containing official and community-built dashboards, including the above-mentioned Istio dashboards. Importing dashboards into your Grafana instance is as simple as copying the dashboard URL or the ID provided from the Grafana dashboard site and pasting it into the dashboard import option of your Grafana instance. Be aware that not every Kubernetes dashboard in Grafan’s site is compatible with your specific version of Kubernetes, Istio, or EKS, nor relies on Prometheus as a data source. As a result, you might have to test and tweak imported dashboards to get them working.

Below is an example of an imported community dashboard, Kubernetes cluster monitoring (via Prometheus) by Instrumentisto Team (dashboard ID 315).

Alerting
An effective observability strategy must include more than just the ability to visualize results. An effective strategy must also detect anomalies and notify (alert) the appropriate resources or directly resolve incidents. Grafana, like Prometheus, is capable of alerting and notification. You visually define alert rules for your critical metrics. Grafana will continuously evaluate metrics against the rules and send notifications when pre-defined thresholds are breached.
Prometheus supports multiple popular notification channels, including PagerDuty, HipChat, Email, Kafka, and Slack. Below is an example of a Prometheus notification channel that sends alert notifications to a Slack support channel.

Below is an example of an alert based on an arbitrarily high CPU usage of 300 milliCPUs (m). When the CPU usage of a single pod goes above that value for more than 3 minutes, an alert is sent. The high CPU usage could be caused by the Horizontal Pod Autoscaler not functioning, or the HPA has reached its maxReplicas
limit, or there are not enough resources available within the cluster to schedule additional pods.

Triggered by the alert, Prometheus sends detailed notifications to the designated Slack channel.

Amazon CloudWatch Container Insights
Lastly in the category of Metrics, Amazon CloudWatch Container Insights collects, aggregates, and summarizes metrics and logs from your containerized applications and microservices. CloudWatch alarms can be set on metrics that Container Insights collects. Container Insights is available for Amazon Elastic Container Service (Amazon ECS) including Fargate, Amazon EKS, and Kubernetes platforms on Amazon EC2.

In Amazon EKS, Container Insights uses a containerized version of the CloudWatch agent to discover all running containers in a cluster. It then collects performance data at every layer of the performance stack. Container Insights collects data as performance log events using the embedded metric format. These performance log events are entries that use a structured JSON schema that enables high-cardinality data to be ingested and stored at scale.
In part one of the post, we also installed CloudWatch Container Insights monitoring for Prometheus, which automates the discovery of Prometheus metrics from containerized systems and workloads.

Below is an example of a basic Performance Monitoring CloudWatch Container Insights Dashboard. The dashboard is filtered to the dev
namespace of the EKS cluster, where the reference application platform is running. During this period, the backend services were put under a simulated load using hey
. As the load on the application increases, observe the Number of Pods increases from 19 to 34 pods, based on the Deployment resources and HPA configurations. There is also an Alert, shown on the right of the screen. An alarm was triggered for an arbitrarily high level of network transmission activity.

Next is an example of Container Insights’ Container Map view in Memory mode. You see a visual representation of the dev
namespace, with each of the backend service’s Service
and Deployment
resources shown.

There is a warning icon indicating an Alarm on the cluster was triggered.

Lastly, CloudWatch Insights allows you to jump from the CloudWatch Insights to the CloudWatch Log Insights console. CloudWatch Insights will also write the CloudWatch Insights query for you. Below, we went from the Service D container metrics view in the CloudWatch Insights Performance Monitoring console directly to the CloudWatch Log Insights console with a query, ready to run.

Pillar 3: Traces
According to the Open Tracing website, distributed tracing, also called distributed request tracing, is used to profile and monitor applications, especially those built using a microservices architecture. Distributed tracing helps pinpoint where failures occur and what causes poor performance.
According to Istio, header propagation may be accomplished through client libraries, such as Zipkin or Jaeger. It may also be accomplished manually, referred to as trace context propagation, documented in the Distributed Tracing Task. Istio proxies can automatically send spans. Applications need to propagate the appropriate HTTP headers so that when the proxies send span information, the spans can be correlated correctly into a single trace. To accomplish this, an application needs to collect and propagate the following headers from the incoming request to any outgoing requests.
x-request-id
x-b3-traceid
x-b3-spanid
x-b3-parentspanid
x-b3-sampled
x-b3-flags
x-ot-span-context
The x-b3
headers originated as part of the Zipkin project. The B3 portion of the header is named for the original name of Zipkin, BigBrotherBird. Passing these headers across service calls is known as B3 propagation. According to Zipkin, these attributes are propagated in-process and eventually downstream (often via HTTP headers) to ensure all activity originating from the same root are collected together.
To demonstrate distributed tracing with Jaeger and Zipkin, Service A, Service B, and Service E have been modified to pass the b3 headers. These are the three services that make HTTP requests to other upstream services. The following code has been added to propagate the headers from one service to the next. The Istio sidecar proxy (Envoy) generates the first headers. It is critical to only propagate the headers that are present in the downstream request and have a value, as the code below does. Propagating an empty header will break the distributed tracing.
incomingHeaders := []string{
"x-b3-flags",
"x-b3-parentspanid",
"x-b3-sampled",
"x-b3-spanid",
"x-b3-traceid",
"x-ot-span-context",
"x-request-id",
}
for _, header := range incomingHeaders {
if r.Header.Get(header) != "" {
req.Header.Add(header, r.Header.Get(header))
}
}
Below, the highlighted section of the response payload from a call to Service A’s /api/request-echo
endpoint reveals the b3 headers originating from the Istio proxy and passed to Service A.

Jaeger
According to their website, Jaeger, inspired by Dapper and OpenZipkin, is a distributed tracing system released as open source by Uber Technologies. Jaeger is used for monitoring and troubleshooting microservices-based distributed systems, including distributed context propagation, distributed transaction monitoring, root cause analysis, service dependency analysis, and performance and latency optimization. The Jaeger website contains a helpful overview of Jaeger’s architecture and general tracing-related terminology.
If you deployed Jaeger using the Istio addons process demonstrated in part one of the post, access Jaeger similar to the other tools:
istioctl dashboard jaeger
Below is an example of the Jaeger UI’s Search view, displaying the results of a search for the Istio Ingress Gateway service over a period of time. We see a timeline of traces across the top with a list of trace results below. As discussed on the Jaeger website, a trace is composed of spans. A span represents a logical unit of work in Jaeger that has an operation name. A trace is an execution path through the system and can be thought of as a directed acyclic graph (DAG) of spans. If you have worked with systems like Apache Spark, you are probably already familiar with the concept of DAGs.

Below is a detailed view of a single trace in Jaeger’s Trace Timeline mode. The 14 spans encompass eight of the reference platform’s components: seven of the eight backend services and the Istio Ingress Gateway. The spans each have individual timings, with an overall trace time of 160 ms. The root span in the trace is the Istio Ingress Gateway. The Angular UI, loaded in the end user’s web browser, calls Service A via the Istio Ingress Gateway. From there, we see the expected flow of our service-to-service IPC. Service A calls Services B and Service C. Service B calls Service E, which calls Service G and Service H.
In this demonstration, traces are not instrumented to span the RabbitMQ message queue nor MongoDB. This means you would not see a trace that includes a call from Service D to Service F via the RabbitMQ.

The visualization of the trace’s timeline demonstrates the synchronous nature of the reference platform’s service-to-service IPC instead of the asynchronous nature of the decoupled communications using the RabbitMQ messaging queue. Note how Service A waits for each service in its call chain to respond before returning its response to the requester.
Within Jaeger’s Trace Timeline view, you have the ability to drill into a single span, which contains additional metadata. The span’s metadata includes the API endpoint URL being called, HTTP method, response status, and several other headers.

Jaeger also has an experimental Trace Graph mode, which displays a graph view of the same trace.

Jaeger also includes a Compare Trace feature and two Dependencies views: Force-Directed Graph and DAG. I find both views rather primitive compared to Kiali. Lacking access to Kiali, the views are marginally useful as a dependency graph.

Zipkin
Zipkin is a distributed tracing system, which helps gather timing data needed to troubleshoot latency problems in service architectures. According to a 2012 post on Twitter’s Engineering Blog, Zipkin started as a project during Twitter’s first Hack Week. During that week, they implemented a basic version of the Google Dapper paper for Thrift.
Zipkin and Jaeger are very similar in terms of capabilities. I have chosen to focus on Jaeger in this post as I prefer it over Zipkin. If you want to try Zipkin instead of Jaeger, you can use the following commands to remove Jaeger and install Zipkin from the Istio addons extras directory. In part one of the post, we did not install Zipkin by default when we deployed the Istio addons. Be aware that running both tools at the same time in the same Kubernetes cluster will cause unpredictable tracing results.
kubectl delete -f https://raw.githubusercontent.com/istio/istio/release-1.10/samples/addons/jaeger.yaml
kubectl apply -f https://raw.githubusercontent.com/istio/istio/release-1.10/samples/addons/extras/zipkin.yaml
Access Zipkin similar to the other observability tools:
istioctl dashboard zipkin
Below is an example of a distributed trace visualized in Zipkin’s UI, containing 14 spans. This is very similar to the trace visualized in Jaeger, shown above. The spans encompass eight of the reference platform’s components: seven of the eight backend services and the Istio Ingress Gateway. The spans each have individual timings, with an overall trace time of 154 ms.

Zipkin can also visualize a dependency graph based on the distributed trace. Below is an example of a traffic simulation over a two-minute period, showing network traffic flowing between the reference platform’s components, illustrated as a dependency graph.

Kiali: Microservice Observability
According to their website, Kiali is a management console for an Istio-based service mesh. It provides dashboards, observability, and lets you operate your mesh with robust configuration and validation capabilities. It shows the structure of a service mesh by inferring traffic topology and displaying the mesh’s health. Kiali provides detailed metrics, powerful validation, Grafana access, and strong integration for distributed tracing with Jaeger.
If you deployed Kaili using the Istio addons process demonstrated in part one of the post, access Kiali similar to the other tools:
istioctl dashboard kaili
For improved security, I optionally chose to install the latest version of Kaili using the customizable install mentioned in Istio’s documentation. Using Kiali’s Install via Kiali Server Helm Chart option adds token-based authentication, similar to the Kubernetes Dashboard.

Logging into Kiali, we see the Overview tab, which provides a global view of all namespaces within the Istio service mesh and the number of applications within each namespace.

The Graph tab in the Kiali UI represents the components running in the Istio service mesh. Below, filtering on the cluster’s dev
Namespace, we can observe that Kiali has mapped 8 applications (Workloads), 10 services, and 22 edges (a graph term). Specifically, we see the Istio Ingres Proxy at the edge of the service mesh, the Angular UI and eight backend services all with their respective Envoy proxy sidecars that are taking traffic (Service F did not take any direct traffic from another service in this example), the external DocumentDB egress point, and the external Amazon MQ egress point. Finally, note how service-to-service traffic flows, with Istio, from the service to its sidecar proxy, to the other service’s sidecar proxy, and finally to the service.

Below is a similar view of the service mesh, but this time, there are failures between the Istio Ingress Gateway and Service A, shown in red. We can also observe overall metrics for the HTTP traffic, such as the request per second inbound and outbound, total requests, success and error rates, and HTTP status codes.

Kiali allows you to zoom in and focus on a single component in the graph and its individual metrics.

Kiali can also display average request times and other metrics for each edge in the graph (communication between two components). Kaili can even show those metrics over a given period of time, using Kiali’s Replay feature, shown below.

Focusing on the external DocumentDB cluster, Kiali also allows us to view TCP traffic between the four services within the service mesh that connect to the external cluster.

The Applications tab lists all the applications, their namespace, and labels.

You can drill into an individual component on both the Applications and Workloads tabs and view additional details. Details include the overall health, Pods, and Istio Config status. Below is an overview of the Service A workload in the dev
Namespace.

The Workloads detailed view also includes inbound and outbound metrics. Below is an example of the outbound request volume, duration, throughput, and size metrics, for Service A in the dev
Namespace.

Kiali also gives you access to the individual pod’s container logs. Although log access is not as user-friendly as other log sources discussed previously, having logs available alongside metrics (integration with Grafana), traces (integration with Jaeger), and mesh visualization, all in Kiali, can be very effective as a single source for observability.

Kiali also has an Istio Config tab. The Istio Config tab displays a list of all of the available Istio configuration objects that exist in the user’s environment.

You can use Kiali to configure and manage the Istio service mesh and its installed resources. Using Kiali, you can actually modify the deployed resources, similar to using the kubectl edit
command.

Oftentimes, I find Kiali to be my first stop when troubleshooting platform issues. Once I identify the specific components or communication paths having issues, I can query the CloudWatch logs and Prometheus metrics through the Grafana dashboard.
Conclusion
In this two-part post, we explored a set of popular open-source observability tools, easily integrated with the Istio service mesh. These tools included Jaeger and Zipkin for distributed transaction monitoring, Prometheus for metrics collection and alerting, Grafana for metrics querying, visualization, and alerting, and Kiali for overall observability and management of Istio. We rounded out the toolset with the addition of Fluent Bit for log processing and forwarding to Amazon CloudWatch Container Insights. Using these tools, we successfully observed a microservices-based, distributed reference application platform deployed to Amazon EKS.
This blog represents my own viewpoints and not of my employer, Amazon Web Services (AWS). All product names, logos, and brands are the property of their respective owners.
Kubernetes-based Microservice Observability with Istio Service Mesh: Part 1 of 2
Posted by Gary A. Stafford in AWS, DevOps, Go, JavaScript, Kubernetes on June 3, 2021
This two-part post explores a set of popular open-source observability tools that are easily integrated with the Istio service mesh. While these tools are not a part of Istio, they are essential to making the most of Istio’s observability features. The tools include Jaeger and Zipkin for distributed transaction monitoring, Prometheus for metrics collection and alerting, Grafana for metrics querying, visualization, and alerting, and Kiali for overall observability and management of Istio. We will round out the toolset with the addition of Fluent Bit for log processing and aggregation. We will observe a distributed, microservices-based reference application platform deployed to an Amazon Elastic Kubernetes Service (Amazon EKS) cluster using these tools. The platform, running on EKS, will use Amazon DocumentDB as a persistent data store and Amazon MQ to exchange messages.

Observability
Similar to quantum computing, big data, artificial intelligence, machine learning, and 5G, observability is currently a hot buzzword in the IT industry. According to Wikipedia, observability is a measure of how well the internal states of a system can be inferred from its external outputs. The O’Reilly book, Distributed Systems Observability, by Cindy Sridharan, describes The Three Pillars of Observability in Chapter 4: “Logs, metrics, and traces are often known as the three pillars of observability. While plainly having access to logs, metrics, and traces doesn’t necessarily make systems more observable, these are powerful tools that, if understood well, can unlock the ability to build better systems.”
Logs, metrics, and traces are often known as the three pillars of observability.
Cindy Sridharan
Honeycomb is a developer of observability tools for production systems. The honeycomb.io site includes articles, blog posts, whitepapers, and podcasts on observability. According to Honeycomb, “Observability is achieved when a system is understandable — which is difficult with complex systems, where most problems are the convergence of many things failing at once.”
As modern distributed systems grow ever more complex, the ability to observe those systems demands equally modern tooling designed with this level of complexity in mind. Traditional logging and monitoring tools struggle with today’s polyglot, distributed, event-driven, ephemeral, containerized and serverless application environments. Tools like the Istio service mesh attempt to solve the observability challenge by offering easy integration with several popular open-source telemetry tools. Istio’s integrations include Jaeger for distributed tracing, Kiali for Istio service mesh-based microservice visualization, and Prometheus and Grafana for metric collection, monitoring, and alerting. Combined with cloud-native monitoring and logging tools such as Fluent Bit and Amazon CloudWatch Container Insights, we have a complete observability platform for modern distributed applications running on Amazon Elastic Kubernetes Service (Amazon EKS).
Traditional logging and monitoring tools struggle with today’s polyglot, distributed, event-driven, ephemeral, containerized and serverless application environments.
Gary Stafford
Reference Application Platform
To demonstrate Istio’s observability tools, we will deploy a reference application platform, written in Go and TypeScript with Angular, to EKS on AWS. The reference application platform was developed to demonstrate different Kubernetes platforms, such as EKS, GKE, and AKS, and concepts such as service mesh, API management, observability, DevOps, and Chaos Engineering. The platform is currently comprised of a backend containing eight Go-based microservices, labeled generically as Service A — Service H, one Angular 12 TypeScript-based frontend UI, four MongoDB databases, and one RabbitMQ message queue for event-based communications. The platform and all its source code are open-sourced on GitHub.

The reference application platform is designed to generate HTTP-based service-to-service, TCP-based service-to-database, and TCP-based service-to-queue-to-service IPC (inter-process communication). Service A calls Service B and Service C; Service B calls Service D and Service E; Service D produces a message on a RabbitMQ queue, which Service F consumes and writes to MongoDB, and so on. Distributed service communications can be observed using Istio’s observability tools when the system is deployed to a Kubernetes cluster running the Istio service mesh.

Service Responses
Each Go microservice contains a /greeting
, /health
, and /metrics
endpoint. The service’s /health
endpoint is used to configure Kubernetes Liveness, Readiness, and Startup Probes. The /metrics
endpoint exposes metrics that Prometheus scraps. Lastly, upstream services respond to requests from downstream services when calling their /greeting
endpoint by returning a small informational JSON payload — a greeting.
{
"id": "1f077127-2f9f-4a90-ad88-da52327c2620",
"service": "Service C",
"message": "Konnichiwa (こんにちは), from Service C!",
"created": "2021-06-04T04:34:02.901726709Z",
"hostname": "service-c-6d5cc8fdfd-stsq9"
}
The responses are aggregated across the service call chain, resulting in an array of service responses being returned to the edge service, Service A, and subsequently, the platform’s UI running in the end user’s web browser.
[
{
"id": "a9afab6a-3e2a-41a6-aec7-7257d2904076",
"service": "Service D",
"message": "Shalom (שָׁלוֹם), from Service D!",
"created": "2021-06-04T14:28:32.695151047Z",
"hostname": "service-d-565c775894-vdsjx"
},
{
"id": "6d4cc38a-b069-482c-ace5-65f0c2d82713",
"service": "Service G",
"message": "Ahlan (أهلا), from Service G!",
"created": "2021-06-04T14:28:32.814550521Z",
"hostname": "service-g-5b846ff479-znpcb"
},
{
"id": "988757e3-29d2-4f53-87bf-e4ff6fbbb105",
"service": "Service H",
"message": "Nǐ hǎo (你好), from Service H!",
"created": "2021-06-04T14:28:32.947406463Z",
"hostname": "service-h-76cb7c8d66-lkr26"
},
{
"id": "966b0bfa-0b63-4e21-96a1-22a76e78f9cd",
"service": "Service E",
"message": "Bonjour, from Service E!",
"created": "2021-06-04T14:28:33.007881464Z",
"hostname": "service-e-594d4754fc-pr7tc"
},
{
"id": "c612a228-704f-4562-90c5-33357b12ff8d",
"service": "Service B",
"message": "Namasté (नमस्ते), from Service B!",
"created": "2021-06-04T14:28:33.015985983Z",
"hostname": "service-b-697b78cf54-4lk8s"
},
{
"id": "b621bd8a-02ee-4f9b-ac1a-7d91ddad85f5",
"service": "Service C",
"message": "Konnichiwa (こんにちは), from Service C!",
"created": "2021-06-04T14:28:33.042001406Z",
"hostname": "service-c-7fd4dd5947-5wcgs"
},
{
"id": "52eac1fa-4d0c-42b4-984b-b65e70afd98a",
"service": "Service A",
"message": "Hello, from Service A!",
"created": "2021-06-04T14:28:33.093380628Z",
"hostname": "service-a-6f776d798f-5l5dz"
}
]
CORS
The platform’s backend edge service, Service A, is configured for Cross-Origin Resource Sharing (CORS) using the access-control-allow-origin
response header. The CORS configuration allows the Angular UI, running in the end user’s web browser, to call Service A’s /greeting
endpoint, which potentially resides in a different host from the UI. Shown below is the Go source code for Service A. Note the use of the ALLOWED_ORIGINS
environment variable on lines 32 and 195, which allows you to configure the origins that are allowed from the service’s Deployment
resource.
MongoDB- and RabbitMQ-as-a-Service
Using external services will help us understand how Istio and its observability tools collect telemetry for communications between the reference application platform on Kubernetes and external systems.
Amazon DocumentDB
For this demonstration, the reference application platform’s MongoDB databases will be hosted, external to EKS, on Amazon DocumentDB (with MongoDB compatibility). According to AWS, Amazon DocumentDB is a purpose-built database service for JSON data management at scale, fully managed and integrated with AWS, and enterprise-ready with high durability.
Amazon MQ
Similarly, the reference application platform’s RabbitMQ queue will be hosted, external to EKS, on Amazon MQ. AWS MQ is a managed message broker service for Apache ActiveMQ and RabbitMQ, making it easy to set up and operate message brokers on AWS. Amazon MQ reduces your operational responsibilities by managing the provisioning, setup, and maintenance of message brokers for you. For RabbitMQ, Amazon MQ provides access to the RabbitMQ web console. The console allows us to monitor and manage RabbitMQ.

Shown below is the Go source code for Service F. This service consumes messages from the RabbitMQ queue, placed there by Service D, and writes the messages to MongoDB. Services use Sean Treadway’s Go RabbitMQ Client Library and MongoDB’s MongoDB Go Driver for connectivity.
Source Code
All source code for this post is available on GitHub within two projects. Go-based microservices source code and Kubernetes resources are located in the k8s-istio-observe-backend project repository. The Angular UI TypeScript-based source code is located in the k8s-istio-observe-frontend project repository. You do not need to clone the Angular UI project for this demonstration. The demonstration uses the 2021-istio
branch for both projects.
git clone --branch 2021-istio --single-branch \
https://github.com/garystafford/k8s-istio-observe-backend.git
# optional - not needed for demonstration
git clone --branch 2021-istio --single-branch \
https://github.com/garystafford/k8s-istio-observe-frontend.git
Docker images referenced in the Kubernetes Deployment
resource files for the Go services and UI are all available on Docker Hub. The Go microservice Docker images were built using the official Golang Alpine image on DockerHub, containing Go version 1.16.4. Using the Alpine image to compile the Go source code ensures the containers will be as small as possible and minimize the container’s potential attack surface.
Prerequisites
This post will assume a basic level of knowledge of AWS EKS, Kubernetes, and Istio. Furthermore, the post assumes you have already installed recent versions of the AWS CLI v2, kubectl, Weaveworks’ eksctl, Docker, and Istio. Meaning that the aws
, kubectl
, eksctl
, istioctl
, and docker
command tools are all available from the terminal.

CLI for Amazon EKS
Weaveworks’ eksctl
is a simple CLI tool for creating and managing clusters on EKS — Amazon’s managed Kubernetes service for EC2. It is written in Go and uses CloudFormation.
CLI for Istio
The Istio configuration command-line utility, istioctl
, is designed to help debug and diagnose the Istio mesh.
Set-up and Installation
To deploy the microservices platform to EKS, we will proceed in roughly the following order:
- Create a TLS certificate and Route53 hosted zone records for ALB;
- Create an Amazon DocumentDB database cluster;
- Create an Amazon MQ RabbitMQ message broker;
- Create an EKS cluster;
- Modify Kubernetes resources for your own environment;
- Deploy AWS Application Load Balancer (ALB) and associated resources;
- Deploy Istio to the EKS cluster;
- Deploy Fluent Bit to the EKS cluster;
- Deploy the reference platform to EKS;
- Test and troubleshoot the platform;
- Observe the results in part two;
Amazon DocumentDB
As previously mentioned, the MongoDB databases will be hosted, external to EKS, on Amazon DocumentDB, with MongoDB compatibility. Create a DocumentDB cluster. For the sake of simplicity and affordability of the demo, I recommend creating a single db.r5.large
node cluster. We will connect from the microservices to Amazon DocumentDB using the supplied mongodb://
connection string.
Amazon DocumentDB clusters are deployed within an Amazon Virtual Private Cloud (Amazon VPC). If you are installing DocumentDB in a separate VPC than EKS, you will need to ensure that the EKS VPC can access the DocumentDB VPC. Per the DocumentDB documentation, DocumentDB clusters can be accessed directly by Amazon EC2 instances or other AWS services that are deployed in the same Amazon VPC. Additionally, Amazon DocumentDB can be accessed via EC2 instances or other AWS services from different VPCs in the same AWS Region or other Regions via VPC peering.

Amazon MQ
Similarly, the RabbitMQ queues will be hosted, external to EKS, on Amazon MQ. Create an Amazon MQ RabbitMQ broker. To ensure the simplicity and affordability of the demo, I recommend a single mq.m5.large
instance broker. The broker is running the RabbitMQ engine and has TLS disabled. We will connect from the microservices to Amazon MQ using AMQP (Advanced Message Queuing Protocol). Amazon MQ provides an amqps://
endpoint. The amqps
URI scheme is used to instruct a client to make a secure connection to the server. You can manage and observe RabbitMQ from the RabbitMQ web console provided by Amazon MQ.

Modify Kubernetes Resources
You will need to change several configuration settings in the GitHub project’s Kubernetes resource files to match your environment.
Istio ServiceEntry for Document DB
Modify the Istio ServiceEntry
resource, external-mesh-document-db.yaml
, adding your DocumentDB host address. This file allows egress traffic from the microservices on EKS to the DocumentDB cluster.
apiVersion: networking.istio.io/v1alpha3
kind: ServiceEntry
metadata:
name: docdb-external-mesh
spec:
hosts:
- {{ your_document_db_hostname }}
ports:
- name: mongo
number: 27017
protocol: MONGO
location: MESH_EXTERNAL
resolution: NONE
Istio ServiceEntry for Amazon MQ
Modify the Istio ServiceEntry
resource, external-mesh-amazon-mq.yaml
, adding your Amazon MQ host address. This file allows egress traffic from the microservices on EKS to the Amazon MQ RabbitMQ broker.
apiVersion: networking.istio.io/v1alpha3
kind: ServiceEntry
metadata:
name: amazon-mq-external-mesh
spec:
hosts:
- {{ your_amazon_mq_hostname }}
ports:
- name: rabbitmq
number: 5671
protocol: TCP
location: MESH_EXTERNAL
resolution: NONE
Istio Gateway
There are numerous strategies you can use to route traffic into the EKS cluster via Istio. For this demonstration, I am using an AWS Application Load Balancer (ALB). I have mapped one hostname, observe-ui.example-api.com
, to the Angular UI application running on EKS. The backend microservice-based API, specifically the edge service, Service A, is mapped to a second hostname, observe-api.example-api.com
.

According to Istio, the Gateway
describes a load balancer operating at the edge of the mesh, receiving incoming or outgoing HTTP/TCP connections. Modify the Istio Ingress Gateway
resource, gateway.yaml
. Insert your own DNS entries into the hosts
section. These are the only hosts that will be allowed into the mesh on port 80.
apiVersion: networking.istio.io/v1beta1
kind: Gateway
metadata:
name: istio-gateway
spec:
selector:
istio: ingressgateway # use istio default controller
servers:
- port:
number: 80
name: ui
protocol: HTTP
hosts:
- {{ your_ui_hostname }}
- {{ your_api_hostname }}
Istio VirtualService
According to Istio, a VirtualService
defines a set of traffic routing rules to apply when a host is addressed. A VirtualService
is bound to a Gateway
to control the forwarding of traffic arriving at a particular host and port. Modify the project’s two Istio VirtualServices
resources, virtualservices.yaml
. Insert the corresponding DNS entries from the Istio Gateway.
---
apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:
name: angular-ui
spec:
hosts:
- {{ your_ui_hostname }}
gateways:
- istio-gateway
http:
- match:
- uri:
prefix: /
route:
- destination:
host: angular-ui.dev.svc.cluster.local
subset: v1
port:
number: 80
---
apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:
name: service-a
spec:
hosts:
- {{ your_api_hostname }}
gateways:
- istio-gateway
http:
- match:
- uri:
prefix: /api
route:
- destination:
host: service-a.dev.svc.cluster.local
subset: v1
port:
number: 8080
Kubernetes Secret
According to the Kubernetes project, Kubernetes Secrets lets you store and manage sensitive information, such as passwords, OAuth tokens, and SSH keys. Storing confidential information in a Secret is safer and more flexible than putting it verbatim in a Pod definition or in a container image.
The project contains a Kubernetes Opaque
type Secret
resource, go-srv-demo.yaml
. The Secret
contains several pieces of arbitrary user-defined data we want to secure. Data includes the full DocumentDB mongodb://
connection string and the Amazon MQ amqps://
connection string used by the microservices. We will use the Secret
to secure the entire connection string, including the hostname, port, username, and password. The data also includes the DocumentDB host, username, and password, and an arbitrary username and password to login to Mongo Express using Basic Authentication.
You must encode your secret’s values using base64
. On Linux and Mac, you can use the base64
program to encode the connection strings.
echo -n '{{ your_secret_to_encode }}' | base64
# e.g., echo -n 'amqps://username:password@hostname.mq.us-east-1.amazonaws.com:5671/' | base64
Add the base64
encoded values to the Secret
resource.
apiVersion: v1
kind: Secret
metadata:
name: go-srv-config
namespace: dev
type: Opaque
data:
mongodb.conn: {{ your_base64_encoded_secret }}
rabbitmq.conn: {{ your_base64_encoded_secret }}
---
apiVersion: v1
kind: Secret
metadata:
name: mongo-express-config
namespace: mongo-express
type: Opaque
data:
me.basicauth.username: {{ your_base64_encoded_secret }}
me.basicauth.password: {{ your_base64_encoded_secret }}
mongodb.host: {{ your_base64_encoded_secret }}
mongodb.username: {{ your_base64_encoded_secret }}
mongodb.password: {{ your_base64_encoded_secret }}
AWS Load Balancer Controller
The project contains a Custom Resource Definition (CRD) and associated resources, aws-load-balancer-controller-v220-all.yaml
. These resources configure the AWS Application Load Balancer (ALB) using the AWS Load Balancer Controller v2.2.0, aws-load-balancer-controller
. The AWS Load Balancer Controller manages AWS Elastic Load Balancers (ELB) for a Kubernetes cluster. The controller provisions an AWS ALB when you create a Kubernetes Ingress
.
Modify line 797 to include the name of your own cluster. I am using the cluster name istio-observe-demo
throughout the demo.
spec:
containers:
- args:
- --cluster-name=istio-observe-demo
- --ingress-class=alb
image: amazon/aws-alb-ingress-controller:v2.2.0
livenessProbe:
failureThreshold: 2
httpGet:
path: /healthz
port: 61779
scheme: HTTP
EKS Cluster Config
The project contains an eksctl
ClusterConfig
resource, cluster.yaml
. The ClusterConfig
defines the configuration of the Amazon EKS cluster along with networking, security, and other associated resources. Instead of a pre-existing Amazon Virtual Private Cloud (Amazon VPC) for this demo, eksctl
will create a VPC and associated AWS resources as part of cluster creation. Modify the file to match your AWS Region, desired EKS cluster name, and Kubernetes release. For the demo, I am using the latest Kubernetes 1.20 release.
apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig
metadata:
name: istio-observe-demo
region: us-east-1
version: "1.20"
iam:
withOIDC: true
Set Environment Variables
Modify and set the following environment variables in your terminal. I will be using us-east-1
for all the demonstration’s AWS resources that are part of the demonstration. They should match the eksctl
ClusterConfig
resource above.
export AWS_ACCOUNT=$(aws sts get-caller-identity --output text --query 'Account')
export EKS_REGION="us-east-1"
export CLUSTER_NAME="istio-observe-demo"
Istio Home
Set your ISTIO_HOME
directory. I have the latest Istio 1.10.0 installed and have theISTIO_HOME
environment variable set in my Oh My Zsh .zshrc
file. I have also set Istio’s bin/
subdirectory in my PATH
environment variable. The bin/
subdirectory contains the istioctl
executable.
echo $ISTIO_HOME
/Applications/Istio/istio-1.10.0
where istioctl
/Applications/Istio/istio-1.10.0/bin/istioctl
istioctl version
client version: 1.10.0
control plane version: 1.10.0
data plane version: 1.10.0 (4 proxies)
Create EKS Cluster
With the cluster.yaml
file modified previously, deploy the EKS cluster to a new VPC on AWS.
eksctl create cluster -f ./resources/other/cluster.yaml
This step deploys a large number of resources using CloudFormation. The complete EKS provisioning process can take up to 15–20 minutes to complete.

For the complete demonstration, eksctl
will deploy a total of four CloudFormation stacks to your AWS environment.

Once complete, configure kubectl
so that you can connect to an Amazon EKS cluster.
aws eks --region ${EKS_REGION} update-kubeconfig \
--name ${CLUSTER_NAME}
Confirm that your cluster creation was successful with the following commands:
kubectl cluster-info
eksctl utils describe-stacks \
--region ${EKS_REGION} --cluster ${CLUSTER_NAME}

Use the EKS Management Console to review the new cluster’s details.

The EKS cluster in this demonstration was created with a single Amazon EKS managed node group, managed-ng-1
. The managed node group contains three m5.large
EC2 instances. The composition of the EKS cluster can be modified in the eksctl
ClusterConfig
resource, cluster.yaml
.

Deploy AWS Load Balancer Controller
Using the aws-load-balancer-controller-v220-all.yaml
file you previously modified, deploy the AWS Load Balancer Controller v2.2.0. Please carefully review the AWS Load Balancer Controller instructions to understand how this resource is configured and integrated with EKS.
curl -o resources/aws/iam-policy.json \
https://raw.githubusercontent.com/kubernetes-sigs/aws-load-balancer-controller/v2.2.0/docs/install/iam_policy.json
aws iam create-policy \
--policy-name AWSLoadBalancerControllerIAMPolicy220 \
--policy-document file://resources/aws/iam-policy.json
eksctl create iamserviceaccount \
--region ${EKS_REGION} \
--cluster ${CLUSTER_NAME} \
--namespace=kube-system \
--name=aws-load-balancer-controller \
--attach-policy-arn=arn:aws:iam::${AWS_ACCOUNT}:policy/AWSLoadBalancerControllerIAMPolicy220 \
--override-existing-serviceaccounts \
--approve
kubectl apply --validate=false \
-f https://github.com/jetstack/cert-manager/releases/download/v1.3.1/cert-manager.yaml
kubectl apply -f resources/other/aws-load-balancer-controller-v220-all.yaml
To confirm the aws-load-balancer-controller
is deployed and ready, run the following command:
kubectl get deployment -n kube-system aws-load-balancer-controller
NAME READY UP-TO-DATE AVAILABLE AGE
aws-load-balancer-controller 1/1 1 1 55s
AWS Load Balancer Controller Policy
There is an OpenID Connect provider URL associated with the EKS cluster. To use IAM roles for service accounts, an IAM OIDC provider must exist for your cluster. Obtain the URL from the EKS Management Console’s Details tab.

You can also obtain the URL using the following AWS CLI commands:
aws eks describe-cluster --name ${CLUSTER_NAME}
aws iam list-open-id-connect-providers
The project contains a policy document, trust-eks-policy.json
. Modify the policy document by adding the OpenID Connect information found above. Instructions are also included in the AWS Create an IAM OIDC provider for your cluster documentation.
{
"Version":"2012-10-17",
"Statement":[
{
"Effect":"Allow",
"Principal":{
"Federated":" {{ your_openid_connect_arn }}"
},
"Action":"sts:AssumeRoleWithWebIdentity",
"Condition":{
"StringEquals":{
"oidc.eks.us-east-1.amazonaws.com/id/{{ your_open_id_connect_id }}:sub":"system:serviceaccount:kube-system:alb-ingress-controller"
}
}
}
]
}
Create and attach the AWS Load Balancer Controller IAM policies and roles.
aws iam create-role \
--role-name eks-alb-ingress-controller-eks-istio-observe-demo \
--assume-role-policy-document file://resources/aws/trust-eks-policy.json
aws iam attach-role-policy \
--role-name eks-alb-ingress-controller-eks-istio-observe-demo \
--policy-arn="arn:aws:iam::${AWS_ACCOUNT}:policy/AWSLoadBalancerControllerIAMPolicy220"
aws iam attach-role-policy \
--role-name eks-alb-ingress-controller-eks-istio-observe-demo \
--policy-arn arn:aws:iam::aws:policy/AmazonEKSWorkerNodePolicy
aws iam attach-role-policy \
--role-name eks-alb-ingress-controller-eks-istio-observe-demo \
--policy-arn arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy
Create Namespaces
Kubernetes supports multiple virtual clusters backed by the same physical cluster. These virtual clusters are called namespaces. The dev
namespace will house the reference application platform for this demonstration — the Angular UI frontend and Go microservices backend. This namespace represents a development environment on EKS for our reference application platform. A second namespace, mongo-express
, will be used to deploy Mongo Express later in the post.
kubectl apply -f ./minikube/resources/namespaces.yaml
Enable Automatic Sidecar Injection
To take advantage of Istio’s features, pods in the mesh must be running an Istio sidecar proxy. By setting the istio-injection=enabled
label
on a namespace and the injection webhook is enabled, any new pods created in that namespace will automatically have an Istio sidecar proxy added to them. Labeling the dev
namespace for automatic sidecar injection ensures that our reference application platform — the UI and the microservices — will have Istio sidecar proxy automatically injected into their pods.
kubectl label namespace dev istio-injection=enabled
Deploy Secret Resources
Create the DocumentDB and Amazon MQ Secrets in the appropriate dev
and mongo-express
namespaces.
kubectl apply -f ./resources/secrets/secrets.yaml
Install Istio Configuration Profile
Istio comes with several built-in configuration profiles. The profiles provide customization of the Istio control plane and the sidecars for the Istio data plane.
istioctl profile list
Istio configuration profiles:
default
demo
empty
external
minimal
openshift
preview
remote
For this demonstration, use the default
profile, which installs Istio core, istiod
, istio-ingressgateway
, and istio-egressgateway
.
istioctl install --set profile=demo -y
✔ Istio core installed
✔ Istiod installed
✔ Ingress gateways installed
✔ Egress gateways installed
✔ Installation complete
Deploy Istio Gateway, VirtualService, and DestinationRule Resources
An Istio Gateway
describes a load balancer operating at the edge of the mesh receiving incoming or outgoing HTTP/TCP connections. An Istio VirtualService
defines a set of traffic routing rules to apply when a host is addressed. Lastly, an Istio DestinationRule
defines policies that apply to traffic intended for a Service after routing has occurred. You need to deploy an Istio Gateway
and a set of VirtualService
. You will also need to deploy a set of DestinationRule
resources. Create the Istio Gateway, Virtual Services, and Destination Rules, which you modified earlier.
kubectl apply -f resources/istio/gateway.yaml -n dev
kubectl apply -f resources/istio/virtualservices.yaml -n dev
kubectl apply -f resources/istio/destination-rules.yaml -n dev
Deploy Istio Telemetry Add-ons
The Istio project includes sample deployments of various telemetry add-ons that integrate with Istio. The add-ons include Jaeger, Zipkin, Kiali, Prometheus, and Grafana. While these applications are not a part of Istio, they are essential to making the most of Istio’s observability features. According to the Istio project, the deployments are meant to quickly get up and running and are optimized for this case. As a result, they may not be suitable for production. See the GitHub project for more info on integrating a production-grade version of each add-on.
Install the add-ons using the default configurations and then replace Prometheus with a modified version included in the project. The modified Kubernetes ConfigMap
in the prometheus.yaml
file has added configuration to scrape our reference platform’s /api/metrics
endpoint.
kubectl apply -f $ISTIO_HOME/samples/addons
kubectl apply -f resources/istio/prometheus.yaml -n istio-system
You should see seven workloads in the namespace from the EKS Management Console’s Workloads tab, each with one pod up and running. The workloads include Grafana, Jaeger, Kiali, and Prometheus. Also included is the Istio Configuration demo
Profile’s istiod
, istio-ingressgateway
, and istio-egressgateway
, installed previously.

Deploy Kubernetes Web UI (Dashboard)
Kubernetes Web UI (Dashboard) is a web-based Kubernetes user interface. You can use the Dashboard to deploy containerized applications to a Kubernetes cluster, troubleshoot your containerized application, and manage cluster resources. You can use the Dashboard to get an overview of applications running on your cluster, as well as for creating or modifying individual Kubernetes resources.

To deploy the dashboard, follow the steps outlined in the Tutorial: Deploy the Kubernetes Dashboard (web UI).
kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/v2.0.5/aio/deploy/recommended.yaml
kubectl apply -f resources/aws/eks-admin-service-account.yaml
Each Service Account has a Secret with a valid Bearer Token that can be used to log in to the Dashboard. Use the following command to retrieve the token associated with the eks-admin
Account.
kubectl -n kube-system describe secret $(kubectl -n kube-system get secret | grep eks-admin | awk '{print $1}')
Start the kubectl proxy
in a separate terminal window.
kubectl proxy
Use the eks-admin
Account’s token to log in to the Kubernetes Dashboard at the following URL:
http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-dashboard:/proxy/#!/login

Deploy Mongo Express
Mongo Express is a web-based MongoDB administrative interface written with Node.js, Express, and Bootstrap3. Install Mongo Express into the mongo-express
namespace on the EKS cluster to manage the DocumentDB cluster.
kubectl apply -f ./resources/services/mongo-express.yaml -n mongo-express
Obtain the external IP address of any of the Kubernetes worker nodes and the NodePort of Mongo Express with the following two commands:
kubectl get nodes -o wide | awk {'print $1" " $2 " " $7'} | column -t
kubectl get service/mongo-express -n mongo-express
To ensure secure access to Mongo Express, create an Inbound Rule in your VPC’s Security Group that allows only your IP address (the ‘My IP’ option) access to Mongo Express running on the NodePort obtained above.

Start the kubectl proxy
in a separate terminal window.
kubectl proxy
Use the external IP address of any of the Kubernetes worker nodes and current NodePort to access Mongo Express. Mongo Express will require you to enter the username and password you encoded in the Kubernetes Secret created earlier using basic authentication. Once you have deployed the reference application platform, later in the post, you will observe four databases: service-c
, service-f
, service-g
, and service-h
. The typical operational databases you would normally see with your own MongoDB installation are unavailable in the UI since DocumentDB is a managed service.

Modify and Deploy the ALB Ingress
The project contains an ALB Ingress
resource, alb-ingress.yaml
. The AWS Load Balancer Controller installed earlier is configured to limit the ingresses ALB ingress controller controls. By setting the --ingress-class=alb
argument, it constrains the controller’s scope to ingresses with matching kubernetes.io/ingress.class: alb
annotation. This is especially helpful when running multiple ingress controllers in the same cluster.
The ALB Ingress
resource, alb-ingress.yaml
, needs to be modified before deployment. First, update the alb.ingress.kubernetes.io/healthcheck-port
annotation. The port value is derived from the status-port
of the istio-ingressgateway
, which was installed as part of the Istio demo
configuration profile. To obtain the status-port
from the istio-ingressgateway
, run the following command:
kubectl -n istio-system get svc istio-ingressgateway \
-o jsonpath='{.spec.ports[?(@.name=="status-port")].nodePort}'
Next, insert the ARN of your SSL/TLS (Transport Layer Security) certificate that is associated with the domain listed in the external-dns.alpha.kubernetes.io/hostname
annotation into the ALB Ingress
resource, alb-ingress.yaml
. Run the following command to insert the TLS certificate’s ARN into the alb.ingress.kubernetes.io/certificate-arn
annotation. This command assumes that your SSL/TLS certificate is registered with AWS Certificate Manager (ACM).
export ALB_CERT=$(aws acm list-certificates --certificate-statuses ISSUED \
| jq -r '.CertificateSummaryList[] | select(.DomainName=="*.example-api.com") | .CertificateArn')
yq e '.metadata.annotations."alb.ingress.kubernetes.io/certificate-arn" = env(ALB_CERT)' -i resources/other/alb-ingress.yaml
The alb.ingress.kubernetes.io/actions.ssl-redirect
annotation will redirect all HTTP traffic to HTTPS. The TLS certificate is used for HTTPS traffic. The ALB then terminates the HTTPS traffic at the ALB and forwards the unencrypted traffic to the EKS cluster on port 80.
Finally, update external-dns.alpha.kubernetes.io/hostname
annotation with a common-delimited list of your platform’s UI and API hostnames. Below is the complete ALB Ingress
resource, alb-ingress.yaml
.
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: demo-ingress
namespace: istio-system
annotations:
kubernetes.io/ingress.class: alb
alb.ingress.kubernetes.io/scheme: internet-facing
alb.ingress.kubernetes.io/tags: Environment=dev
alb.ingress.kubernetes.io/healthcheck-port: '{{ your_status_port }}'
alb.ingress.kubernetes.io/healthcheck-path: /healthz/ready
alb.ingress.kubernetes.io/healthcheck-protocol: HTTP
alb.ingress.kubernetes.io/listen-ports: '[{"HTTP": 80}, {"HTTPS":443}]'
alb.ingress.kubernetes.io/actions.ssl-redirect: '{"Type": "redirect", "RedirectConfig": { "Protocol": "HTTPS", "Port": "443", "StatusCode": "HTTP_301"}}'
external-dns.alpha.kubernetes.io/hostname: "{{ your_ui_hostname, your_api_hostname }}"
alb.ingress.kubernetes.io/certificate-arn: "{{ your_ssl_tls_cert_arn }}"
alb.ingress.kubernetes.io/load-balancer-attributes: routing.http2.enabled=true,idle_timeout.timeout_seconds=30
labels:
app: reference-app
spec:
rules:
- http:
paths:
- pathType: Prefix
path: /
backend:
service:
name: ssl-redirect
port:
name: use-annotation
- pathType: Prefix
path: /
backend:
service:
name: istio-ingressgateway
port:
number: 80
- pathType: Prefix
path: /api
backend:
service:
name: istio-ingressgateway
port:
number: 80
To deploy the ALB Ingress
resource, alb-ingress.yaml
, run the following command:
kubectl apply -f resources/other/alb-ingress.yaml
To confirm the configuration of the AWS Load Balancer Controller and the ingresses ALB ingress controller controls, run the following command:
kubectl describe ingress.networking.k8s.io --all-namespaces
Any misconfigurations should show up as errors in the Events
section.

Running the following command should display the public DNS address of the ALB associated with port 80.
kubectl -n istio-system get ingress
NAME CLASS HOSTS ADDRESS PORTS AGE
demo-ingress <none> * k8s-istiosys-demoingr-...us-east-1.elb.amazonaws.com 80 23m
Use the EC2 Load Balancer Management Console to review the new ALB’s details.

Deploy Fluent Bit
According to a recent AWS Blog post, Fluent Bit Integration in CloudWatch Container Insights for EKS, Fluent Bit is an open-source, multi-platform log processor and forwarder that allows you to collect data and logs from different sources and unify and send them to different destinations, including CloudWatch Logs. Fluent Bit is also fully compatible with Docker and Kubernetes environments. Using the newly launched Fluent Bit DaemonSet
, you can send container logs from your EKS clusters to CloudWatch logs for logs storage and analytics.
We will use Fluent Bit to send the reference platform’s logs to Amazon CloudWatch Container Insights. To install Fluent Bit, I have used the procedure outlined in the AWS documentation: Quick Start Setup for Container Insights on Amazon EKS and Kubernetes. I recommend reviewing this documentation for detailed installation instructions.
kubectl apply -f https://raw.githubusercontent.com/aws-samples/amazon-cloudwatch-container-insights/latest/k8s-deployment-manifest-templates/deployment-mode/daemonset/container-insights-monitoring/cloudwatch-namespace.yaml
ClusterName=${CLUSTER_NAME}
RegionName=${EKS_REGION}
FluentBitHttpPort='2020'
FluentBitReadFromHead='Off'
[[ ${FluentBitReadFromHead} = 'On' ]] && FluentBitReadFromTail='Off'|| FluentBitReadFromTail='On'
[[ -z ${FluentBitHttpPort} ]] && FluentBitHttpServer='Off' || FluentBitHttpServer='On'
kubectl create configmap fluent-bit-cluster-info \
--from-literal=cluster.name=${ClusterName} \
--from-literal=http.server=${FluentBitHttpServer} \
--from-literal=http.port=${FluentBitHttpPort} \
--from-literal=read.head=${FluentBitReadFromHead} \
--from-literal=read.tail=${FluentBitReadFromTail} \
--from-literal=logs.region=${RegionName} -n amazon-cloudwatch
kubectl apply -f https://raw.githubusercontent.com/aws-samples/amazon-cloudwatch-container-insights/latest/k8s-deployment-manifest-templates/deployment-mode/daemonset/container-insights-monitoring/fluent-bit/fluent-bit.yaml
kubectl get pods -n amazon-cloudwatch
DASHBOARD_NAME=istio_observe_demo
REGION_NAME=${EKS_REGION}
CLUSTER_NAME=${CLUSTER_NAME}
curl https://raw.githubusercontent.com/aws-samples/amazon-cloudwatch-container-insights/latest/k8s-deployment-manifest-templates/deployment-mode/service/cwagent-prometheus/sample_cloudwatch_dashboards/fluent-bit/cw_dashboard_fluent_bit.json \
| sed "s/{{YOUR_AWS_REGION}}/${REGION_NAME}/g" \
| sed "s/{{YOUR_CLUSTER_NAME}}/${CLUSTER_NAME}/g" \
| xargs -0 aws cloudwatch put-dashboard --dashboard-name ${DASHBOARD_NAME} --dashboard-body
curl https://raw.githubusercontent.com/aws-samples/amazon-cloudwatch-container-insights/latest/k8s-deployment-manifest-templates/deployment-mode/daemonset/container-insights-monitoring/fluentd/fluentd.yaml | kubectl delete -f -
kubectl delete configmap cluster-info -n amazon-cloudwatch
From the EKS Management Console’s Workloads tab, you should see three fluent-bit
pods up and running in the amazon-cloudwatch
namespace. There is one fluent-bit
pod per EKS worker node.

Once the reference application platform is deployed and running, you should be able to visualize the application in the Amazon CloudWatch Container Insights console’s Map view.

The reference platform’s cluster logs will also be available in Amazon CloudWatch. You should have access to individual Log groups for each application’s components.

Lastly, individual pod logs can also be viewed through the Kubernetes Dashboard. The microservice’s log verbosity level is set to info
by default. This level can be changed using the LOG_LEVEL
environment variable in the service’s Kubernetes Deployment
resource.

Deploy ServiceEntry Resources
Using Istio ServiceEntry
configurations, you can reach any publicly accessible service from within your Istio cluster. The Istio proxy can be configured to block any host without an HTTP service or service entry defined within the mesh. We will not go to this extreme in the demonstration. However, we will configure ServiceEntry
configurations to monitor egress traffic to the reference platform’s two external services, DocumentDB and Amazon MQ.
Confirm the istio-egressgateway
is running, then deploy the two ServiceEntry
resources you modified earlier.
kubectl get pod -l istio=egressgateway -n istio-system
NAME READY STATUS RESTARTS AGE
istio-egressgateway-585f7668fc-74qtf 1/1 Running 0 14h
kubectl apply -f resources/istio/external-mesh-document-db-internal.yaml
kubectl apply -f resources/istio/external-mesh-amazon-mq-internal.yaml
Deploy the Reference Application Platform
Each of the platform’s components has a file in the project containing both the Kubernetes Service
and corresponding Deployment
resources.
Deploy the reference application platform’s frontend UI and eight backend microservices to the EKS cluster using the following commands:
kubectl apply -f ./resources/services/angular-ui.yaml -n dev
for service in a b c d e f g h; do
kubectl apply -f "./resources/services/service-$service.yaml" -n dev
done
From the EKS Management Console’s Workloads tab, you should observe that the three pods for each reference application platform component are up and running in the dev
namespace.

You can also use the Kubernetes Dashboard to confirm that the deployments were successful to the dev
namespace.

Test the Platform
You want to ensure the platform’s web-based UI is reachable via the AWS Application Load Balancer to EKS through Istio and to the UI’s FQDN (fully qualified domain name) of angular-ui.dev.svc.cluster.local
. You want to ensure the platform’s eight microservices are communicating with each other and communicating with the external DocumentDB cluster and Amazon MQ RabbitMQ broker. The easiest way to test the cluster is by viewing the Angular UI in a web browser. For example, in my case, https://observe-ui.example-api.com
.

The UI requires you to input the hostname of the backend, which is the edge service, Service A. For example, in my case, https://observe-api.example-api.com
. Since you want to use your own hostname and the UI’s JavaScript code is running locally in your web browser, this option allows you to provide your own hostname. This is the same hostname you inserted into the Istio VirtualService
for Service A. This hostname routes the API calls to the FQDN of Service A running in the dev
namespace, service-a.dev.svc.cluster.local
. You should observe seven greeting responses displayed in the UI, all but Service F.
You can also use tools like Postman to test the backend directly, using the same hostname of the backend, as above.


Load Testing with Hey
You can also use performance testing tools to load-test the platform. Many issues will not show up until the platform is placed under elevated load. I recently tried hey, a modern go-based load generator tool as a replacement for Apache Bench (ab
), Unlike ab
, hey
supports HTTP/2 endpoints, which is required to test the platform on EKS with Istio. You can install hey with Homebrew.
brew install hey
Using hey, you can test the reference application platform by hitting the API hostname and /api/greeting
endpoint. The command below generates 1,000 requests, simulates 25 concurrent users, and uses HTTP/2. Traffic will be generated across all the services, the RabbitMQ broker, and the DocumentDB databases.
hey -n 1000 -c 25 -h2
{{ your_api_hostname }}/api/greeting
The results show 1,000 successful HTTP 200
responses from the reference platform’s API in about 43 seconds with an average response time of 1.0430 seconds.

To generate a consistent level of traffic over a longer period of time, try this variation of the command:
hey -n
25000-c 25
-q 1-h2
{{ your_api_hostname }}/api/greeting
This command generates a steady stream of traffic for about 18 minutes, making it more convenient when exploring and troubleshooting your observability tools.

Part Two
In part two of this post, we will explore each observability tool and see how they can help us manage the reference application platform running on the EKS cluster.

To tear down the EKS cluster, DocumentDB cluster, and Amazon MQ broker, use the commands below.
# EKS cluster
eksctl delete cluster --name $CLUSTER_NAME
# Amazon MQ
aws mq list-brokers | jq -r '.BrokerSummaries[] | .BrokerId'
aws mq delete-broker --broker-id {{ your_broker_id }}
# DocumentDB
aws docdb describe-db-clusters \
| jq -r '.DBClusters[] | .DbClusterResourceId'
aws docdb delete-db-cluster \
--db-cluster-identifier {{ your_cluster_id }}
This blog represents my own viewpoints and not of my employer, Amazon Web Services (AWS). All product names, logos, and brands are the property of their respective owners.