Posts Tagged hashicorp

Deploying Spring Boot Apps to AWS with Netflix Nebula and Spinnaker: Part 2 of 2

Part One of this post examined enterprise deployment tools and introduced two of Netflix’s open-source deployment tools, the Nebula Gradle plugins, and Spinnaker. In Part Two, we will deploy a production-ready Spring Boot application, the Election microservice, to multiple Amazon EC2 instances, behind an Elastic Load Balancer (ELB). We will use a fully automated DevOps workflow. The build, test, package, bake, deploy process will be handled by the Netflix Nebula Gradle Linux Packaging Plugin, Jenkins, and Spinnaker. The high-level process will involve the following steps:

  • Configure Gradle to build a production-ready fully executable application for Unix systems (executable JAR)
  • Using deb-s3 and GPG Suite, create a secure, signed APT (Debian) repository on Amazon S3
  • Using Jenkins and the Netflix Nebula plugin, build a Debian package, containing the executable JAR and configuration files
  • Using Jenkins and deb-s3, publish the package to the S3-based APT repository
  • Using Spinnaker (HashiCorp Packer under the covers), bake an Ubuntu Amazon Machine Image (AMI), replete with the executable JAR installed from the Debian package
  • Deploy an auto-scaling set of Amazon EC2 instances from the baked AMI, behind an ELB, running the Spring Boot application using both the Red/Black and Highlander deployment strategies
  • Be able to repeat the entire automated build, test, package, bake, deploy process, triggered by a new code push to GitHub

The overall build, test, package, bake, deploy process will look as follows.

DebianPackageWorkflow12.png

DevOps Architecture

Spinnaker’s modern architecture is comprised of several independent microservices. The codebase is written in Java and Groovy, and leverages the Spring Boot framework¹. Spinnaker’s configuration, startup, updates, and rollbacks are centrally managed by Halyard. Halyard provides a single point of contact for command line interaction with Spinnaker’s microservices.

Spinnaker can be installed on most private or public infrastructure, either containerized or virtualized. Spinnaker has links to a number of Quickstart installations on their website. For this demonstration, I deployed and configured Spinnaker on Azure, starting with one of the Azure Spinnaker quick-start ARM templates. The template provisions all the necessary Azure resources. For better performance, I chose upgraded the default VM to a larger Standard D4 v3, which contains 4 vCPUs and 16 GB of memory. I would recommend at least 2 vCPUs and 8 GB of memory at a minimum for Spinnaker.

Another Azure VM, in the same virtual network as the Spinnaker VM, already hosts Jenkins, SonarQube, and Nexus Repository OSS.

From Spinnaker on Azure, Debian Packages are uploaded to the APT package repository on AWS S3. Spinnaker also bakes Amazon Machine Images (AMI) on AWS. Spinnaker provisions the AWS resources, including EC2 instances, Load Balancers, Auto Scaling Groups, Launch Configurations, and Security Groups. The only resources you need on AWS to get started with Spinnaker are a VPC and Subnets. There are some minor, yet critical prerequisites for naming your VPC and Subnets.

Other external tools include GitHub for source control and Slack for notifications. I have built and managed everything from a Mac, however, all tools are platform agnostic. The Spring Boot application was developed in JetBrains IntelliJ.

Spinnaker Architecture 2.png

Source Code

All source code for this post can be found on GitHub. The project’s README file contains a list of the Election service’s endpoints.

Code samples in this post are displayed as Gists, which may not display correctly on some mobile and social media browsers. Links to gists are also provided.

APT Repository

After setting up Spinnaker on Azure, I created an APT repository on Amazon S3, using the instructions provided by Netflix, in their Code Lab, An Introduction to Spinnaker: Hello Deployment. The setup involves creating an Amazon S3 bucket to serve as an APT (Debian) repository, creating a GPG key for signing, and using deb-s3 to manage the repository. The Code Lab also uses Aptly, a great tool, which I skipped for brevity.

spin19

GPG Key

On the Mac, I used GPG Suite to create a GPG (GNU Privacy Guard or GnuPG) automatic signing key for my APT repository. The key is required by Spinnaker to verify the Debian packages in the repository, before installation.

The Ruby Gem, deb-s3, makes management of the Debian packages easy and automatable with Jenkins. Jenkins uploads the Debian packages, using a deb-s3 command, such as the following (gist). In this post, Jenkins calls the command from the shell script, upload-deb-package.sh, which is included in the GitHub project.

The Jenkins user requires access to the signing key, to build and upload the Debian packages. I created my GPG key on my Mac, securely copied the key to my Ubuntu-based Jenkins VM, and then imported the key for the Jenkins user. You could also create your key on Ubuntu, directly. Make sure you backup your private key in a secure location!

Nebula Packaging Plugin

Next, I set up a Gradle task in my build.gradle file to build my Debian packages using the Netflix Nebula Gradle Linux Packaging Plugin. Although Debian packaging tasks could become complex for larger application installations, this task for this post is pretty simple. I used many of the best-practices suggested by Spring for Production-grade deployments. The best-practices guide recommends file location, file modes, and file user and group ownership. I create the JAR as a fully executable JAR, meaning it is started like any other executable and does not have to be started with the standard java -jar command.

In the task, shown below (gist), the JAR and the external configuration file (optional) are copied to specific locations during the deployment and symlinked, as required. I used the older SysVInit system (init.d) to enable the application to automatically starts on boot. You should probably use systemctl for your services with Ubuntu 16.04.

You can use the ar (archive) command (i.e., ar -x spring-postgresql-demo_4.5.0_all.deb), to extract and inspect the structure of a Debian package. The data.tar.gz file, displayed below in Atom, shows the final package structure.

spin47.png

Base AMI

Next, I baked a base AMI for Spinnaker to use. This base AMI is used by Spinnaker to bake (re-bake) the final AMI(s) used for provisioning the EC2 instances, containing the Spring Boot Application. The Spinnaker base AMI is built from another base AMI, the official Ubuntu 16.04 LTS image. I installed the OpenJDK 8 package on the AMI, which is required to run the Java-based Election service. Lastly and critically, I added information about the location of my S3-based APT Debian package repository to the list of configured APT data sources, and the GPG key required for package verification. This information and key will be used later by Spinnaker to bake AMIʼs, using this base AMI. The set-up script, base_ubuntu_ami_setup.sh, which is included in the GitHub project.

Jenkins

This post uses a single Jenkins CI/CD pipeline. Using a Webhook, the pipeline is automatically triggered by every git push to the GitHub project. The pipeline pulls the source code, builds the application, and performs unit-tests and static code analysis with SonarQube. If the build succeeds and the tests pass, the build artifact (JAR file) is bundled into a Debian package using the Nebula Packaging plugin, uploaded to the S3 APT repository using s3-deb, and archived locally for Spinnaker to reference. Once the pipeline is completed, on success or on failure, a Slack notification is sent. The Jenkinsfile, used for this post is available in the project on Github.

Below is a traditional Jenkins view of the CI/CD pipeline, with links to unit test reports, SonarQube results, build artifacts, and GitHub source code.

spin01

Below is the same pipeline viewed using the Jenkins Blue Ocean plugin.

spin02

It is important to perform sufficient testing before building the Debian package. You donʼt want to bake an AMI and deploy EC2 instances, at a cost, before finding out the application has bugs.

spin03

Spinnaker Setup

First, I set up a new Spinnaker Slack channel and a custom bot user. Spinnaker details the Slack set up in their Notifications and Events Guide. You can configure what type of Spinnaker events trigger Slack notifications.

spin46.png

AWS Spinnaker User

Next, I added the required Spinnaker User, Policy, and Roles to AWS. Spinnaker uses this access to query and provision infrastructure on your behalf. The Spinnaker User requires Power User level access to perform all their necessary tasks. AWS IAM set up is detailed by Spinnaker in their Cloud Providers Setup for AWS. They also describe the setup of other cloud providers. You need to be reasonably familiar with AWS IAM, including the PassRole permission to set up this part. As part of the setup, you enable AWS for Spinnaker and add your AWS account using the Halyard interface.

spin45

Spinnaker Security Groups

Next, I set up two Spinnaker Security Groups, corresponding to two AWS Security Groups, one for the load balancer and one for the Election service. The load balancer security group exposes port 80, and the Election service security group exposes port 8080.

spin36

Spinnaker Load Balancer

Next, I created a Spinnaker Load Balancer, corresponding to an Amazon Classic Load Balancer. The Load Balancer will load-balance the Election service EC2 instances. Below you see a Load Balancer, balancing a pair of active EC2 instances, the result of a Red/Black deployment.

spin37

Spinnaker can currently create both AWS Classic Load Balancers as well as Application Load Balancers (ALB).

spin25

Spinnaker Pipeline

This post uses a single, basic Spinnaker Pipeline. The pipeline bakes a new AMI from the Debian package generated by the Jenkins pipeline. After a manual approval stage, Spinnaker deploys a set of EC2 instances, behind the Load Balancer, which contains the latest version of the Election service. Spinnaker finishes the pipeline by sending a Slack notification.

spin26

Jenkins Integration

The pipeline is triggered by the successful completion of the Jenkins pipeline. This is set in the Configuration stage of the pipeline. The integration with Jenkins is managed through Spinnaker’s Igor service.

spin22.png

Bake Stage

Next, in the Bake stage, Spinnaker bakes a new AMI, containing the Debian package generated by the Jenkins pipeline. The stageʼs configuration contains the package name to reference.

spin29

The stageʼs configuration also includes a reference to which Base AMI to use, to bake the new AMIs. Here I have used the AMI ID of the base Spinnaker AMI, I created previously.

spin27

Deploy Stage

Next, the Deploy stage deploys the Election service, running on EC2 instances, provisioned from the new AMI, which was baked in the last stage. To configure the Deploy stage, you define a Spinnaker Server Group. According to Spinnaker, the Server Group identifies the deployable artifact, VM image type, the number of instances, autoscaling policies, metadata, Load Balancer, and a Security Group.

spin32

The Server Group also defines the Deployment Strategy. Below, I chose the Red/Black Deployment Strategy (also referred to as Blue/Green). This strategy will disable, not terminate the active Server Group. If the new deployment fails, we can manually or automatically perform a Rollback to the previous, currently disabled Server Group.

spin11

Letʼs Start Baking!

With set up complete, letʼs kick off a git push, trigger and complete the Jenkins pipeline, and finally trigger the Spinnaker pipeline. Below we see the pipelineʼs Bake stage has been started. Spinnakerʼs UI lets us view the Bakery Details. The Bakery, provided by Spinnakerʼs Rosco service, bakes the AMIs. Rosco uses HashiCorp Packer to bake the AMIs, using standard Packer templates.

spin04

Below we see Spinnaker (Rosco/Packer) locating the Base Spinnaker AMI we configured in the Pipelineʼs Bake stage. Next, we see Spinnaker sshʼing into a new EC2 instance with a temporary keypair and Security Group and starting the Election service Debian package installation.

spin23

Continuing, we see the latest Debian package, derived from the Jenkins pipelineʼs archive, being pulled from the S3-based APT repo. The package is verified using the GPG key and then installed. Lastly, we see a new AMI is created, containing the deployed Election service, which was initially built and packaged by Jenkins. Note the AWS Resource Tags created by Spinnaker, as shown in the Bakery output.

spin24

The base Spinnaker AMI and the AMIs baked by Spinnaker are visible in the AWS Console. Note the naming conventions used by Spinnaker for the AMIs, the Source AMI used to build the new APIs, and the addition of the Tags, which we saw being applied in the Bakery output above. The use of Tags indirectly allows full traceability from the deployed EC2 instance all the way back to the original code commit to git by the Developer.

spin48.png

Red/Black Deployments

With the new AMI baked successfully, and a required manual approval, using a Manual Judgement type pipeline stage, we can now begin a Red/Black deployment to AWS.

spin07

Using the Server Group configuration in the Deploy stage, Spinnaker deploys two EC2 instances, behind the ELB.

spin08

Below, we see the successful results of the Red/Black deployment. The single Spinnaker Cluster contains two deployed Server Groups. One group, the previously active Server Group (RED), comprised of two EC2 instances, is disabled. The ‘RED’ EC2 instances are unregistered with the load balancer but still running. The new Server Group (BLACK), also comprised of two EC2 instances, is now active and registered with the Load Balancer. Spinnaker will spread EC2 instances evenly across all Availability Zones in the US East (N. Virginia) Region.

spin38

From the AWS Console, we can observe four running instances, though only two are registered with the load-balancer.

spin34

Here we see each deployed Server Group has a different Auto Scaling Group and Launch Configuration. Note the continued use of naming conventions by Spinnaker.

spin33

 There can be only one, Highlander!

Now, in the Deploy stage of the pipeline, we will switch the Server Groupʼs Strategy to Highlander. The Highlander strategy will, as you probably guessed by the name, destroy all other Server Groups in the Cluster. This is more typically used for lower environments, like Development or Test, where you are only interested in the next version of the application for testing. The Red/Black strategy is more applicable to Production, where you want the opportunity to quickly rollback to the previous deployment, if necessary.

spin12

Following a successful deployment, below, we now see the first two Server Groups have been terminated, and a third Server Group in the Cluster is active.

spin40.png

In the AWS Console, we can confirm the four previous EC2 instances have been successfully terminated as a result of the Highlander deployment strategy, and two new instances are running.

spin39

As well, the previous Auto Scaling Groups and Launch Configurations have been deleted from AWS by Spinnaker.

spin44.png

As expected, the Classic Load Balancer only contains the two most recent EC2 instances from the last Server Group deployed.

spin41

Confirming the Deployment

Using the DNS address of the load balancer, we can hit the Election service endpoints, on either of the EC2 instances. All API endpoints are listed in the Projectʼs README file. Below, from a web browser, we see the candidates resource returning candidate information, retrieved from the Electionʼs PostgreSQL RDS database Test instance.

spin42

Similarly, from Postman, we can hit the load balancer and get back election information from the elections resource, using an HTTP GET.

spin43.png

I intentionally left out a discussion of the service’s RDS database and how configuration management was handled with Spring Profiles and Spring Cloud Config. Both topics were out of scope for this post.

Conclusion

Although this was a brief, whirlwind overview of deployment tools, it shows the power of delivery tools like Spinnaker, when seamlessly combined with other tools, like Jenkins and the Nebula plugins. Together, these tools are capable of efficiently, repeatably, and securely deploying large numbers of containerized and non-containerized applications to a variety of private, public, and hybrid cloud infrastructure.

All opinions expressed in this post are my own and not necessarily the views of my current or past employers or their clients.

¹ Running Spinnaker on Compute Engine

, , , , , , , , , , , ,

1 Comment

Deploying Spring Boot Apps to AWS with Netflix Nebula and Spinnaker: Part 1 of 2

Listening to DevOps industry pundits, you might be convinced everyone is running containers in Production (or by now, serverless). Although containerization is growing at a phenomenal rate, several recent surveys¹ indicate less than 50% of enterprises are deploying containers in Production. Filter those results further with the fact, of those enterprises, only a small percentage of their total application portfolios are containerized, let alone in Production.

As a DevOps Consultant, I regularly work with corporations whose global portfolios are in the thousands of applications. Indeed, some percentage of their applications are containerized, with less running in Production. However, a majority of those applications, even those built on modern, light-weight, distributed architectures, are still being deployed to bare-metal and virtualized public cloud and private data center infrastructure, for a variety of reasons.

Enterprise Deployment

Due to the scale and complexity of application portfolios, many organizations have invested in enterprise deployment tools, either commercially available or developed in-house. The enterprise deployment tool’s primary objective is to standardize the process of securely, reliably, and repeatably packaging, publishing, and deploying both containerized and non-containerized applications to large fleets of virtual machines and bare-metal servers, across multiple, geographically dispersed data centers and cloud providers. Enterprise deployment tools are particularly common in tightly regulated and compliance-driven organizations, as well as organizations that have undertaken large amounts of M&A, resulting in vastly different application technology stacks.

Enterprise CI/CD/Release Workflow

Better-known examples of commercially available enterprise deployment tools include IBM UrbanCode Deploy (aka uDeploy), XebiaLabs XL Deploy, CA Automic Release Automation, Octopus Deploy, and Electric Cloud ElectricFlow. While commercial tools continue to gain market share³, many organizations are tightly coupled to their in-house solutions through years of use and fear of widespread process disruption, given current economic, security, compliance, and skills-gap sensitivities.

Deployment Tool Anatomy

Most Enterprise deployment tools are compatible with standard binary package types, including Debian (.deb) and Red Hat  (RPM) Package Manager (.rpm) packages for Linux, NuGet (.nupkg) packages for Windows, and Node Package Manager (.npm) and Bower for JavaScript. There are equivalent package types for other popular languages and formats, such as Go, Python, Ruby, SQL, Android, Objective-C, Swift, and Docker. Packages usually contain application metadata, a signature to ensure the integrity and/or authenticity², and a compressed payload.

Enterprise deployment tools are normally integrated with open-source packaging and publishing tools, such as Apache Maven, Apache Ivy/Ant, Gradle, NPMNuGet, BundlerPIP, and Docker.

Binary packages (and images), built with enterprise deployment tools, are typically stored in private, open-source or commercial binary (artifact) repositories, such as SpacewalkJFrog Artifactory, and Sonatype Nexus Repository. The latter two, Artifactory and Nexus, support a multitude of modern package types and repository structures, including Maven, NuGet, PyPI, NPM, Bower, Ruby Gems, CocoaPods, Puppet, Chef, and Docker.

Mature binary repositories provide many features in addition to package management, including role-based access control, vulnerability scanning, rich APIs, DevOps integration, and fault-tolerant, high-availability architectures.

Lastly, enterprise deployment tools generally rely on standard package management systems to retrieve and install cryptographically verifiable packages and images. These include YUM (Yellowdog Updater, Modified), APT (aptitude), APK (Alpine Linux), NuGet, Chocolatey, NPM, PIP, Bundler, and Docker. Packages are deployed directly to running infrastructure, or indirectly to intermediate deployable components as Amazon Machine Images (AMI), Google Compute Engine machine images, VMware machines, Docker Images, or CoreOS rkt.

Open-Source Alternative

One such enterprise with an extensive portfolio of both containerized and non-containerized applications is Netflix. To standardize their deployments to multiple types of cloud infrastructure, Netflix has developed several well-known open-source software (OSS) tools, including the Nebula Gradle plugins and Spinnaker. I discussed Spinnaker in my previous post, Managing Applications Across Multiple Kubernetes Environments with Istio, as an alternative to Jenkins for deploying container workloads to Kubernetes on Google (GKE).

As a leader in OSS, Netflix has documented their deployment process in several articles and presentations, including a post from 2016, ‘How We Build Code at Netflix.’ According to the article, the high-level process for deployment to Amazon EC2 instances involves the following steps:

  • Code is built and tested locally using Nebula
  • Changes are committed to a central git repository
  • Jenkins job executes Nebula, which builds, tests, and packages the application for deployment
  • Builds are “baked” into Amazon Machine Images (using Spinnaker)
  • Spinnaker pipelines are used to deploy and promote the code change

The Nebula plugins and Spinnaker leverage many underlying, open-source technologies, including Pivotal Spring, Java, Groovy, Gradle, Maven, Apache Commons, Redline RPM, HashiCorp Packer, Redis, HashiCorp Consul, Cassandra, and Apache Thrift.

Both the Nebula plugins and Spinnaker have been battle tested in Production by Netflix, as well as by many other industry leaders after Netflix open-sourced the tools in 2014 (Nebula) and 2015 (Spinnaker). Currently, there are approximately 20 Nebula Gradle plugins available on GitHub. Notable core-contributors in the development of Spinnaker include Google, Microsoft, Pivotal, Target, Veritas, and Oracle, to name a few. A sign of its success, Spinnaker currently has over 4,600 Stars on GitHub!

Part Two: Demonstration

In Part Two, we will deploy a production-ready Spring Boot application, the Election microservice, to multiple Amazon EC2 instances, behind an Elastic Load Balancer (ELB). We will use a fully automated DevOps workflow. The build, test, package, bake, deploy process will be handled by the Netflix Nebula Gradle Linux Packaging Plugin, Jenkins, and Spinnaker. The high-level process will involve the following steps:

  • Configure Gradle to build a production-ready fully executable application for Unix systems (executable JAR)
  • Using deb-s3 and GPG Suite, create a secure, signed APT (Debian) repository on Amazon S3
  • Using Jenkins and the Netflix Nebula plugin, build a Debian package, containing the executable JAR and configuration files
  • Using Jenkins and deb-s3, publish the package to the S3-based APT repository
  • Using Spinnaker (HashiCorp Packer under the covers), bake an Ubuntu Amazon Machine Image (AMI), replete with the executable JAR installed from the Debian package
  • Deploy an auto-scaling set of Amazon EC2 instances from the baked AMI, behind an ELB, running the Spring Boot application using both the Red/Black and Highlander deployment strategies
  • Be able to repeat the entire automated build, test, package, bake, deploy process, triggered by a new code push to GitHub

The overall build, test, package, bake, deploy process will look as follows.

DebianPackageWorkflow12

References

 

All opinions expressed in this post are my own and not necessarily the views of my current or past employers or their clients.

¹ Recent Surveys: ForresterPortworx,  Cloud Foundry Survey
² Courtesy Wikipedia – rpm
³ XebiaLabs Kicks Off 2017 with Triple-Digit Growth in Enterprise DevOps

, , , , , , , , , , , ,

1 Comment

Provision and Deploy a Consul Cluster on AWS, using Terraform, Docker, and Jenkins

Cover2

Introduction

Modern DevOps tools, such as HashiCorp’s Packer and Terraform, make it easier to provision and manage complex cloud architecture. Utilizing a CI/CD server, such as Jenkins, to securely automate the use of these DevOps tools, ensures quick and consistent results.

In a recent post, Distributed Service Configuration with Consul, Spring Cloud, and Docker, we built a Consul cluster using Docker swarm mode, to host distributed configurations for a Spring Boot application. The cluster was built locally with VirtualBox. This architecture is fine for development and testing, but not for use in Production.

In this post, we will deploy a highly available three-node Consul cluster to AWS. We will use Terraform to provision a set of EC2 instances and accompanying infrastructure. The instances will be built from a hybrid AMIs containing the new Docker Community Edition (CE). In a recent post, Baking AWS AMI with new Docker CE Using Packer, we provisioned an Ubuntu AMI with Docker CE, using Packer. We will deploy Docker containers to each EC2 host, containing an instance of Consul server.

All source code can be found on GitHub.

Jenkins

I have chosen Jenkins to automate all of the post’s build, provisioning, and deployment tasks. However, none of the code is written specific to Jenkins; you may run all of it from the command line.

For this post, I have built four projects in Jenkins, as follows:

  1. Provision Docker CE AMI: Builds Ubuntu AMI with Docker CE, using Packer
  2. Provision Consul Infra AWS: Provisions Consul infrastructure on AWS, using Terraform
  3. Deploy Consul Cluster AWS: Deploys Consul to AWS, using Docker
  4. Destroy Consul Infra AWS: Destroys Consul infrastructure on AWS, using Terraform

Jenkins UI

We will primarily be using the ‘Provision Consul Infra AWS’, ‘Deploy Consul Cluster AWS’, and ‘Destroy Consul Infra AWS’ Jenkins projects in this post. The fourth Jenkins project, ‘Provision Docker CE AMI’, automates the steps found in the recent post, Baking AWS AMI with new Docker CE Using Packer, to build the AMI used to provision the EC2 instances in this post.

Consul AWS Diagram 2

Terraform

Using Terraform, we will provision EC2 instances in three different Availability Zones within the US East 1 (N. Virginia) Region. Using Terraform’s Amazon Web Services (AWS) provider, we will create the following AWS resources:

  • (1) Virtual Private Cloud (VPC)
  • (1) Internet Gateway
  • (1) Key Pair
  • (3) Elastic Cloud Compute (EC2) Instances
  • (2) Security Groups
  • (3) Subnets
  • (1) Route
  • (3) Route Tables
  • (3) Route Table Associations

The final AWS architecture should resemble the following:

Consul AWS Diagram

Production Ready AWS

Although we have provisioned a fairly complete VPC for this post, it is far from being ready for Production. I have created two security groups, limiting the ingress and egress to the cluster. However, to further productionize the environment would require additional security hardening. At a minimum, you should consider adding public/private subnets, NAT gateways, network access control list rules (network ACLs), and the use of HTTPS for secure communications.

In production, applications would communicate with Consul through local Consul clients. Consul clients would take part in the LAN gossip pool from different subnets, Availability Zones, Regions, or VPCs using VPC peering. Communications would be tightly controlled by IAM, VPC, subnet, IP address, and port.

Also, you would not have direct access to the Consul UI through a publicly exposed IP or DNS address. Access to the UI would be removed altogether or locked down to specific IP addresses, and accessed restricted to secure communication channels.

Consul

We will achieve high availability (HA) by clustering three Consul server nodes across the three Elastic Cloud Compute (EC2) instances. In this minimally sized, three-node cluster of Consul servers, we are protected from the loss of one Consul server node, one EC2 instance, or one Availability Zone(AZ). The cluster will still maintain a quorum of two nodes. An additional level of HA that Consul supports, multiple datacenters (multiple AWS Regions), is not demonstrated in this post.

Docker

Having Docker CE already installed on each EC2 instance allows us to execute remote Docker commands over SSH from Jenkins. These commands will deploy and configure a Consul server node, within a Docker container, on each EC2 instance. The containers are built from HashiCorp’s latest Consul Docker image pulled from Docker Hub.

Getting Started

Preliminary Steps

If you have built infrastructure on AWS with Terraform, these steps should be familiar to you:

  1. First, you will need an AMI with Docker. I suggest reading Baking AWS AMI with new Docker CE Using Packer.
  2. You will need an AWS IAM User with the proper access to create the required infrastructure. For this post, I created a separate Jenkins IAM User with PowerUser level access.
  3. You will need to have an RSA public-private key pair, which can be used to SSH into the EC2 instances and install Consul.
  4. Ensure you have your AWS credentials set. I usually source mine from a .env file, as environment variables. Jenkins can securely manage credentials, using secret text or files.
  5. Fork and/or clone the Consul cluster project from  GitHub.
  6. Change the aws_key_name and public_key_path variable values to your own RSA key, in the variables.tf file
  7. Change the aws_amis_base variable values to your own AMI ID (see step 1)
  8. If you are do not want to use the US East 1 Region and its AZs, modify the variables.tf, network.tf, and instances.tf files.
  9. Disable Terraform’s remote state or modify the resource to match your remote state configuration, in the main.tf file. I am using an Amazon S3 bucket to store my Terraform remote state.

Building an AMI with Docker

If you have not built an Amazon Machine Image (AMI) for use in this post already, you can do so using the scripts provided in the previous post’s GitHub repository. To automate the AMI build task, I built the ‘Provision Docker CE AMI’ Jenkins project. Identical to the other three Jenkins projects in this post, this project has three main tasks, which include: 1) SCM: clone the Packer AMI GitHub project, 2) Bindings: set up the AWS credentials, and 3) Build: run Packer.

The SCM and Bindings tasks are identical to the other projects (see below for details), except for the use of a different GitHub repository. The project’s Build step, which runs the packer_build_ami.sh script looks as follows:

jenkins_13

The resulting AMI ID will need to be manually placed in Terraform’s variables.tf file, before provisioning the AWS infrastructure with Terraform. The new AMI ID will be displayed in Jenkin’s build output.

jenkins_14

Provisioning with Terraform

Based on the modifications you made in the Preliminary Steps, execute the terraform validate command to confirm your changes. Then, run the terraform plan command to review the plan. Assuming are were no errors, finally, run the terraform apply command to provision the AWS infrastructure components.

In Jenkins, I have created the ‘Provision Consul Infra AWS’ project. This project has three tasks, which include: 1) SCM: clone the GitHub project, 2) Bindings: set up the AWS credentials, and 3) Build: run Terraform. Those tasks look as follows:

Jenkins_08.png

You will obviously need to use your modified GitHub project, incorporating the configuration changes detailed above, as the SCM source for Jenkins.

Jenkins Credentials

You will also need to configure your AWS credentials.

Jenkins_03.png

The provision_infra.sh script provisions the AWS infrastructure using Terraform. The script also updates Terraform’s remote state. Remember to update the remote state configuration in the script to match your personal settings.

The Jenkins build output should look similar to the following:

jenkins_12.png

Although the build only takes about 90 seconds to complete, the EC2 instances could take a few extra minutes to complete their Status Checks and be completely ready. The final results in the AWS EC2 Management Console should look as follows:

EC2 Management Console

Note each EC2 instance is running in a different US East 1 Availability Zone.

Installing Consul

Once the AWS infrastructure is running and the EC2 instances have completed their Status Checks successfully, we are ready to deploy Consul. In Jenkins, I have created the ‘Deploy Consul Cluster AWS’ project. This project has three tasks, which include: 1) SCM: clone the GitHub project, 2) Bindings: set up the AWS credentials, and 3) Build: run an SSH remote Docker command on each EC2 instance to deploy Consul. The SCM and Bindings tasks are identical to the project above. The project’s Build step looks as follows:

Jenkins_04.png

First, the delete_containers.sh script deletes any previous instances of Consul containers. This is helpful if you need to re-deploy Consul. Next, the deploy_consul.sh script executes a series of SSH remote Docker commands to install and configure Consul on each EC2 instance.

The entire Jenkins build process only takes about 30 seconds. Afterward, the output from a successful Jenkins build should show that all three Consul server instances are running, have formed a quorum, and have elected a Leader.

Jenkins_05.png

Persisting State

The Consul Docker image exposes VOLUME /consul/data, which is a path were Consul will place its persisted state. Using Terraform’s remote-exec provisioner, we create a directory on each EC2 instance, at /home/ubuntu/consul/config. The docker run command bind-mounts the container’s /consul/data path to the EC2 host’s /home/ubuntu/consul/config directory.

According to Consul, the Consul server container instance will ‘store the client information plus snapshots and data related to the consensus algorithm and other state, like Consul’s key/value store and catalog’ in the /consul/data directory. That container directory is now bind-mounted to the EC2 host, as demonstrated below.

jenkins_15

Accessing Consul

Following a successful deployment, you should be able to use the public URL, displayed in the build output of the ‘Deploy Consul Cluster AWS’ project, to access the Consul UI. Clicking on the Nodes tab in the UI, you should see all three Consul server instances, one per EC2 instance, running and healthy.

Consul UI

Destroying Infrastructure

When you are finished with the post, you may want to remove the running infrastructure, so you don’t continue to get billed by Amazon. The ‘Destroy Consul Infra AWS’ project destroys all the AWS infrastructure, provisioned as part of this post, in about 60 seconds. The project’s SCM and Bindings tasks are identical to the both previous projects. The Build step calls the destroy_infra.sh script, which is included in the GitHub project. The script executes the terraform destroy -force command. It will delete all running infrastructure components associated with the post and update Terraform’s remote state.

Jenkins_09

Conclusion

This post has demonstrated how modern DevOps tooling, such as HashiCorp’s Packer and Terraform, make it easy to build, provision and manage complex cloud architecture. Using a CI/CD server, such as Jenkins, to securely automate the use of these tools, ensures quick and consistent results.

All opinions in this post are my own and not necessarily the views of my current employer or their clients.

, , , , , , , , , ,

3 Comments