Posts Tagged Istio

Automating Multi-Environment Kubernetes Virtual Clusters with Google Cloud DNS, Auth0, and Istio 1.0

Kubernetes supports multiple virtual clusters within the same physical cluster. These virtual clusters are called Namespaces. Namespaces are a way to divide cluster resources between multiple users. Many enterprises use Namespaces to divide the same physical Kubernetes cluster into different virtual software development environments as part of their overall Software Development Lifecycle (SDLC). This practice is commonly used in ‘lower environments’ or ‘non-prod’ (not Production) environments. These environments commonly include Continous Integration and Delivery (CI/CD), Development, Integration, Testing/Quality Assurance (QA), User Acceptance Testing (UAT), Staging, Demo, and Hotfix. Namespaces provide a basic form of what is referred to as soft multi-tenancy.

Generally, the security boundaries and performance requirements between non-prod environments, within the same enterprise, are less restrictive than Production or Disaster Recovery (DR) environments. This allows for multi-tenant environments, while Production and DR are normally single-tenant environments. In order to approximate the performance characteristics of Production, the Performance Testing environment is also often isolated to a single-tenant. A typical enterprise would minimally have a non-prod, performance, production, and DR environment.

Using Namespaces to create virtual separation on the same physical Kubernetes cluster provides enterprises with more efficient use of virtual compute resources, reduces Cloud costs, eases the management burden, and often expedites and simplifies the release process.

Demonstration

In this post, we will re-examine the topic of virtual clusters, similar to the recent post, Managing Applications Across Multiple Kubernetes Environments with Istio: Part 1 and Part 2. We will focus specifically on automating the creation of the virtual clusters on GKE with Istio 1.0, managing the Google Cloud DNS records associated with the cluster’s environments, and enabling both HTTPS and token-based OAuth access to each environment. We will use the Storefront API for our demonstration, featured in the previous three posts, including Building a Microservices Platform with Confluent Cloud, MongoDB Atlas, Istio, and Google Kubernetes Engine.

gke-routing.png

Source Code

The source code for this post may be found on the gke branch of the storefront-kafka-docker GitHub repository.

git clone --branch gke --single-branch --depth 1 --no-tags \
  https://github.com/garystafford/storefront-kafka-docker.git

Source code samples in this post are displayed as GitHub Gists, which may not display correctly on all mobile and social media browsers, such as LinkedIn.

This project contains all the code to deploy and configure the GKE cluster and Kubernetes resources.

Screen Shot 2019-01-19 at 11.49.31 AM.png

To follow along, you will need to register your own domain, arrange for an Auth0, or alternative, authentication and authorization service, and obtain an SSL/TLS certificate.

SSL/TLS Wildcard Certificate

In the recent post, Securing Your Istio Ingress Gateway with HTTPS, we examined how to create and apply an SSL/TLS certificate to our GKE cluster, to secure communications. Although we are only creating a non-prod cluster, it is more and more common to use SSL/TLS everywhere, especially in the Cloud. For this post, I have registered a single wildcard certificate, *.api.storefront-demo.com. This certificate will cover the three second-level subdomains associated with the virtual clusters: dev.api.storefront-demo.com, test.api.storefront-demo.com, and uat.api.storefront-demo.com. Setting the environment name, such as dev.*, as the second-level subdomain of my storefront-demo domain, following the first level api.* subdomain, makes the use of a wildcard certificate much easier.

screen_shot_2019-01-13_at_10.04.23_pm

As shown below, my wildcard certificate contains the Subject Name and Subject Alternative Name (SAN) of *.api.storefront-demo.com. For Production, api.storefront-demo.com, I prefer to use a separate certificate.

screen_shot_2019-01-13_at_10.36.33_pm_detail

Create GKE Cluster

With your certificate in hand, create the non-prod Kubernetes cluster. Below, the script creates a minimally-sized, three-node, multi-zone GKE cluster, running on GCP, with Kubernetes Engine cluster version 1.11.5-gke.5 and Istio on GKE version 1.0.3-gke.0. I have enabled the master authorized networks option to secure my GKE cluster master endpoint. For the demo, you can add your own IP address CIDR on line 9 (i.e. 1.2.3.4/32), or remove lines 30 – 31 to remove the restriction (gist).

  • Lines 16–39: Create a 3-node, multi-zone GKE cluster with Istio;
  • Line 48: Creates three non-prod Namespaces: dev, test, and uat;
  • Lines 51–53: Enable Istio automatic sidecar injection within each Namespace;

If successful, the results should look similar to the output, below.

screen_shot_2019-01-15_at_11.51.08_pm

The cluster will contain a pool of three minimally-sized VMs, the Kubernetes nodes.

screen_shot_2019-01-16_at_12.06.03_am

Deploying Resources

The Istio Gateway and three ServiceEntry resources are the primary resources responsible for routing the traffic from the ingress router to the Services, within the multiple Namespaces. Both of these resource types are new to Istio 1.0 (gist).

  • Lines 9–16: Port config that only accepts HTTPS traffic on port 443 using TLS;
  • Lines 18–20: The three subdomains being routed to the non-prod GKE cluster;
  • Lines 28, 63, 98: The three subdomains being routed to the non-prod GKE cluster;
  • Lines 39, 47, 65, 74, 82, 90, 109, 117, 125: Routing to FQDN of Storefront API Services within the three Namespaces;

Next, deploy the Istio and Kubernetes resources to the new GKE cluster. For the sake of brevity, we will deploy the same number of instances and the same version of each the three Storefront API services (Accounts, Orders, Fulfillment) to each of the three non-prod environments (dev, test, uat). In reality, you would have varying numbers of instances of each service, and each environment would contain progressive versions of each service, as part of the SDLC of each microservice (gist).

  • Lines 13–14: Deploy the SSL/TLS certificate and the private key;
  • Line 17: Deploy the Istio Gateway and three ServiceEntry resources;
  • Lines 20–22: Deploy the Istio Authentication Policy resources each Namespace;
  • Lines 26–37: Deploy the same set of resources to the dev, test, and uat Namespaces;

The deployed Storefront API Services should look as follows.

screen_shot_2019-01-13_at_7.16.03_pm

Google Cloud DNS

Next, we need to enable DNS access to the GKE cluster using Google Cloud DNS. According to Google, Cloud DNS is a scalable, reliable and managed authoritative Domain Name System (DNS) service running on the same infrastructure as Google. It has low latency, high availability, and is a cost-effective way to make your applications and services available to your users.

Whenever a new GKE cluster is created, a new Network Load Balancer is also created. By default, the load balancer’s front-end is an external IP address.

screen_shot_2019-01-15_at_11.56.01_pm.png

Using a forwarding rule, traffic directed at the external IP address is redirected to the load balancer’s back-end. The load balancer’s back-end is comprised of three VM instances, which are the three Kubernete nodes in the GKE cluster.

screen_shot_2019-01-15_at_11.56.19_pm

If you are following along with this post’s demonstration, we will assume you have a domain registered and configured with Google Cloud DNS. I am using the storefront-demo.com domain, which I have used in the last three posts to demonstrate Istio and GKE.

Google Cloud DNS has a fully functional web console, part of the Google Cloud Console. However, using the Cloud DNS web console is impractical in a DevOps CI/CD workflow, where Kubernetes clusters, Namespaces, and Workloads are ephemeral. Therefore we will use the following script. Within the script, we reset the IP address associated with the A records for each non-prod subdomains associated with storefront-demo.com domain (gist).

  • Lines 23–25: Find the previous load balancer’s front-end IP address;
  • Lines 27–29: Find the new load balancer’s front-end IP address;
  • Line 35: Start the Cloud DNS transaction;
  • Lines 37–47: Add the DNS record changes to the transaction;
  • Line 49: Execute the Cloud DNS transaction;

The outcome of the script is shown below. Note how changes are executed as part of a transaction, by automatically creating a transaction.yaml file. The file contains the six DNS changes, three additions and three deletions. The command executes the transaction and then deletes the transaction.yaml file.

> sh ./part3_set_cloud_dns.sh
Old LB IP Address: 35.193.208.115
New LB IP Address: 35.238.196.231

Transaction started [transaction.yaml].

dev.api.storefront-demo.com.
Record removal appended to transaction at [transaction.yaml].
Record addition appended to transaction at [transaction.yaml].

test.api.storefront-demo.com.
Record removal appended to transaction at [transaction.yaml].
Record addition appended to transaction at [transaction.yaml].

uat.api.storefront-demo.com.
Record removal appended to transaction at [transaction.yaml].
Record addition appended to transaction at [transaction.yaml].

Executed transaction [transaction.yaml] for managed-zone [storefront-demo-com-zone].
Created [https://www.googleapis.com/dns/v1/projects/gke-confluent-atlas/managedZones/storefront-demo-com-zone/changes/53].

ID  START_TIME                STATUS
55  2019-01-16T04:54:14.984Z  pending

Based on my own domain and cluster details, the transaction.yaml file looks as follows. Again, note the six DNS changes, three additions, followed by three deletions (gist).

Confirm DNS Changes

Use the dig command to confirm the DNS records are now correct and that DNS propagation has occurred. The IP address returned by dig should be the external IP address assigned to the front-end of the Google Cloud Load Balancer.

> dig dev.api.storefront-demo.com +short
35.238.196.231

Or, all the three records.

echo \
  "dev.api.storefront-demo.com\n" \
  "test.api.storefront-demo.com\n" \
  "uat.api.storefront-demo.com" \
  > records.txt | dig -f records.txt +short

35.238.196.231
35.238.196.231
35.238.196.231

Optionally, more verbosely by removing the +short option.

> dig +nocmd dev.api.storefront-demo.com

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 30763
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 512
;; QUESTION SECTION:
;dev.api.storefront-demo.com.   IN  A

;; ANSWER SECTION:
dev.api.storefront-demo.com. 299 IN A   35.238.196.231

;; Query time: 27 msec
;; SERVER: 8.8.8.8#53(8.8.8.8)
;; WHEN: Wed Jan 16 18:00:49 EST 2019
;; MSG SIZE  rcvd: 72

The resulting records in the Google Cloud DNS management console should look as follows.

screen_shot_2019-01-15_at_11.57.12_pm

JWT-based Authentication

As discussed in the previous post, Istio End-User Authentication for Kubernetes using JSON Web Tokens (JWT) and Auth0, it is typical to limit restrict access to the Kubernetes cluster, Namespaces within the cluster, or Services running within Namespaces to end-users, whether they are humans or other applications. In that previous post, we saw an example of applying a machine-to-machine (M2M) Istio Authentication Policy to only the uat Namespace. This scenario is common when you want to control access to resources in non-production environments, such as UAT, to outside test teams, accessing the uat Namespace through an external application. To simulate this scenario, we will apply the following Istio Authentication Policy to the uat Namespace. (gist).

For the dev and test Namespaces, we will apply an additional, different Istio Authentication Policy. This policy will protect against the possibility of dev and test M2M API consumers interfering with uat M2M API consumers and vice-versa. Below is the dev and test version of the Policy (gist).

Testing Authentication

Using Postman, with the ‘Bearer Token’ type authentication method, as detailed in the previous post, a call a Storefront API resource in the uat Namespace should succeed. This also confirms DNS and HTTPS are working properly.

screen_shot_2019-01-15_at_11.58.41_pm

The dev and test Namespaces require different authentication. Trying to use no Authentication, or authenticating as a UAT API consumer, will result in a 401 Unauthorized HTTP status, along with the Origin authentication failed. error message.

screen_shot_2019-01-16_at_12.00.55_am

Conclusion

In this brief post, we demonstrated how to create a GKE cluster with Istio 1.0.x, containing three virtual clusters, or Namespaces. Each Namespace represents an environment, which is part of an application’s SDLC. We enforced HTTP over TLS (HTTPS) using a wildcard SSL/TLS certificate. We also enforced end-user authentication using JWT-based OAuth 2.0 with Auth0. Lastly, we provided user-friendly DNS routing to each environment, using Google Cloud DNS. Short of a fully managed API Gateway, like Apigee, and automating the execution of the scripts with Jenkins or Spinnaker, this cluster is ready to provide a functional path to Production for developing our Storefront API.

All opinions expressed in this post are my own and not necessarily the views of my current or past employers or their clients.

, , , , , , , , , , ,

1 Comment

Istio End-User Authentication for Kubernetes using JSON Web Tokens (JWT) and Auth0

In the recent post, Building a Microservices Platform with Confluent Cloud, MongoDB Atlas, Istio, and Google Kubernetes Engine, we built and deployed a microservice-based, cloud-native API to Google Kubernetes Engine, with Istio 1.0.x, on Google Cloud Platform. For brevity, we intentionally omitted a few key features required to operationalize and secure the API. These missing features included HTTPS, user authentication, request quotas, request throttling, and the integration of a full lifecycle API management tool, like Google Apigee.

In a follow-up post, Securing Your Istio Ingress Gateway with HTTPS, we disabled HTTP access to the API running on the GKE cluster. We then enabled bidirectional encryption of communications between a client and GKE cluster with HTTPS.

In this post, we will further enhance the security of the Storefront Demo API by enabling Istio end-user authentication using JSON Web Token-based credentials. Using JSON Web Tokens (JWT), pronounced ‘jot’, will allow Istio to authenticate end-users calling the Storefront Demo API. We will use Auth0, an Authentication-as-a-Service provider, to generate JWT tokens for registered Storefront Demo API consumers, and to validate JWT tokens from Istio, as part of an OAuth 2.0 token-based authorization flow.

istio-gke-auth

JSON Web Tokens

Token-based authentication, according to Auth0, works by ensuring that each request to a server is accompanied by a signed token which the server verifies for authenticity and only then responds to the request. JWT, according to JWT.io, is an open standard (RFC 7519) that defines a compact and self-contained way for securely transmitting information between parties as a JSON object. This information can be verified and trusted because it is digitally signed. Other common token types include Simple Web Tokens (SWT) and Security Assertion Markup Language Tokens (SAML).

JWTs can be signed using a secret with the Hash-based Message Authentication Code (HMAC) algorithm, or a public/private key pair using Rivest–Shamir–Adleman (RSA) or Elliptic Curve Digital Signature Algorithm (ECDSA). Authorization is the most common scenario for using JWT. Within the token payload, you can easily specify user roles and permissions as well as resources that the user can access.

A registered API consumer makes an initial request to the Authorization server, in which they exchange some form of credentials for a token. The JWT is associated with a set of specific user roles and permissions. Each subsequent request will include the token, allowing the user to access authorized routes, services, and resources that are permitted with that token.

Auth0

To use JWTs for end-user authentication with Istio, we need a way to authenticate credentials associated with specific users and exchange those credentials for a JWT. Further, we need a way to validate the JWTs from Istio. To meet these requirements, we will use Auth0. Auth0 provides a universal authentication and authorization platform for web, mobile, and legacy applications. According to G2 Crowd, competitors to Auth0 in the Customer Identity and Access Management (CIAM) Software category include Okta, Microsoft Azure Active Directory (AD) and AD B2C, Salesforce Platform: Identity, OneLogin, Idaptive, IBM Cloud Identity Service, and Bitium.

screen_shot_2019-01-09_at_10.18.16_am.png

Auth0 currently offers four pricing plans: Free, Developer, Developer Pro, and Enterprise. Subscriptions to plans are on a monthly or discounted yearly basis. For this demo’s limited requirements, you need only use Auth0’s Free Plan.

screen_shot_2019-01-06_at_6.11.45_pm

Client Credentials Grant

The OAuth 2.0 protocol defines four flows, or grants types, to get an Access Token, depending on the application architecture and the type of end-user. We will be simulating a third-party, external application that needs to consume the Storefront API, using the Client Credentials grant type. According to Auth0, The Client Credentials Grant, defined in The OAuth 2.0 Authorization Framework RFC 6749, section 4.4, allows an application to request an Access Token using its Client Id and Client Secret. It is used for non-interactive applications, such as a CLI, a daemon, or a Service running on your backend, where the token is issued to the application itself, instead of an end user.

jwt-istio-authorize-flow

With Auth0, we need to create two types of entities, an Auth0 API and an Auth0 Application. First, we define an Auth0 API, which represents the Storefront API we are securing. Second, we define an Auth0 Application, a consumer of our API. The Application is associated with the API. This association allows the Application (consumer of the API) to authenticate with Auth0 and receive a JWT. Note there is no direct integration between Auth0 and Istio or the Storefront API. We are facilitating a decoupled, mutual trust relationship between Auth0, Istio, and the registered end-user application consuming the API.

Start by creating a new Auth0 API, the ‘Storefront Demo API’. For this demo, I used my domain’s URL as the Identifier. For use with Istio, choose RS256 (RSA Signature with SHA-256), an asymmetric algorithm that uses a public/private key pair, as opposed to the HS256 symmetric algorithm. With RS256, Auth0 will use the same private key to both create the signature and to validate it. Auth0 has published a good post on the use of RS256 vs. HS256 algorithms.

screen_shot_2019-01-05_at_9.39.01_am

screen_shot_2019-01-05_at_1.49.06_pm

Scopes

Auth0 allows granular access control to your API through the use of Scopes. The permissions represented by the Access Token in OAuth 2.0 terms are known as scopes, According to Auth0. The scope parameter allows the application to express the desired scope of the access request. The scope parameter can also be used by the authorization server in the response to indicate which scopes were actually granted.

Although it is necessary to define and assign at least one scope to our Auth0 Application, we will not actually be using those scopes to control fine-grain authorization to resources within the Storefront API. In this demo, if an end-user is authenticated, they will be authorized to access all Storefront API resources.

screen_shot_2019-01-05_at_9.45.22_am

Machine to Machine Applications

Next, define a new Auth0 Machine to Machine (M2M) Application, ‘Storefront Demo API Consumer 1’.

screen_shot_2019-01-06_at_7.05.21_pm.png

Next, authorize the new M2M Application to request access to the new Storefront Demo API. Again, we are not using scopes, but at least one scope is required, or you will not be able to authenticate, later.

screen_shot_2019-01-06_at_7.23.40_pm.png

Each M2M Application has a unique Client ID and Client Secret, which are used to authenticate with the Auth0 server and retrieve a JWT.

screen_shot_2019-01-05_at_1.50.32_pm

Multiple M2M Applications may be authorized to request access to APIs.

screen_shot_2019-01-05_at_1.50.17_pm

In the Endpoints tab of the Advanced Application Settings, there are a series of OAuth URLs. To authorize our new M2M Application to consume the Storefront Demo API, we need the ‘OAuth Authorization URL’.

screen_shot_2019-01-06_at_7.32.54_pm.png

Testing Auth0

To test the Auth0 JWT-based authentication and authorization workflow, I prefer to use Postman. Conveniently, Auth0 provides a Postman Collection with all the HTTP request you will need, already built. Use the Client Credentials POST request. The grant_type header value will always be client_credentials. You will need to supply the Auth0 Application’s Client ID and Client Secret as the client_id and client_secret header values. The audience header value will be the API Identifier you used to create the Auth0 API earlier.

screen_shot_2019-01-06_at_5.25.50_pm

If the HTTP request is successful, you should receive a JWT access_token in response, which will allow us to authenticate with the Storefront API, later. Note the scopes you defined with Auth0 are also part of the response, along with the token’s TTL.

jwt.io Debugger

For now, test the JWT using the jwt.io Debugger page. If everything is working correctly, the JWT should be successfully validated.

screen_shot_2019-01-05_at_1.54.35_pm

Istio Authentication Policy

To enable Istio end-user authentication using JWT with Auth0, we add an Istio Policy authentication resource to the existing set of deployed resources. You have a few choices for end-user authentication, such as:

  1. Applied globally, to all Services across all Namespaces via the Istio Ingress Gateway;
  2. Applied locally, to all Services within a specific Namespace (i.e. uat);
  3. Applied locally, to a single Service or Services within a specific Namespace (i.e prod.accounts);

In reality, since you would likely have more than one registered consumer of the API, with different roles, you would have more than one Authentication Policy applied the cluster.

For this demo, we will enable global end-user authentication to the Storefront API, using JWTs, at the Istio Ingress Gateway. To create an Istio Authentication Policy resource, we use the Istio Authentication API version authentication.istio.io/v1alpha1(gist).

The single audiences YAML map value is the same Audience header value you used in your earlier Postman request, which was the API Identifier you used to create the Auth0 Storefront Demo API earlier. The issuer YAML scalar value is Auth0 M2M Application’s Domain value, found in the ‘Storefront Demo API Consumer 1’ Settings tab. The jwksUri YAML scalar value is the JSON Web Key Set URL value, found in the Endpoints tab of the Advanced Application Settings.

screen_shot_2019-01-06_at_8.26.55_pm.png

The JSON Web Key Set URL is a publicly accessible endpoint. This endpoint will be accessed by Istio to obtain the public key used to authenticate the JWT.

screen_shot_2019-01-06_at_5.27.40_pm

Assuming you have already have deployed the Storefront API to the GKE cluster, simply apply the new Istio Policy. We should now have end-user authentication enabled on the Istio Ingress Gateway using JSON Web Tokens.

kubectl apply -f ./resources/other/ingressgateway-jwt-policy.yaml

Finer-grain Authentication

If you need finer-grain authentication of resources, alternately, you can apply an Istio Authentication Policy across a Namespace and to a specific Service or Services. Below, we see an example of applying a Policy to only the uat Namespace. This scenario is common when you want to control access to resources in non-production environments, such as UAT, to outside test teams or a select set of external beta-testers. According to Istio, to apply Namespace-wide end-user authentication, across a single Namespace, it is necessary to name the Policy, default (gist).

Below, we see an even finer-grain Policy example, scoped to just the accounts Service within just the prod Namespace. This scenario is common when you have an API consumer whose role only requires access to a portion of the API. For example, a marketing application might only require access to the accounts Service, but not the orders or fulfillment Services (gist).

Test Authentication

To test end-user authentication, first, call any valid Storefront Demo API endpoint, without supplying a JWT for authorization. You should receive a ‘401 Unauthorized’ HTTP response code, along with an Origin authentication failed. message in the response body. This means the Storefront Demo API is now inaccessible unless the API consumer supplies a JWT, which can be successfully validated by Istio.

screen_shot_2019-01-06_at_5.22.36_pm

Next, add authorization to the Postman request by selecting the ‘Bearer Token’ type authentication method. Copy and paste the JWT (access_token) you received earlier from the Client Credentials request. This will add an Authorization request header. In curl, the request header would look as follows (gist).

Make the request with Postman. If the Istio Policy is applied correctly, the request should now receive a successful response from the Storefront API. A successful response indicates that Istio successfully validated the JWT, located in the Authorization header, against the Auth0 Authorization Server. Istio then allows the user, the ‘Storefront Demo API Consumer 1’ application, access to all Storefront API resources.

screen_shot_2019-01-06_at_5.22.20_pm

Troubleshooting

Istio has several pages of online documentation on troubleshooting authentication issues. One of the first places to look for errors, if your end-user authentication is not working, but the JWT is valid, is the Istio Pilot logs. The core component used for traffic management in Istio, Pilot, manages and configures all the Envoy proxy instances deployed in a particular Istio service mesh. Pilot distributes authentication policies, like our new end-user authentication policy, and secure naming information to the proxies.

Below, in Google Stackdriver Logging, we see typical log entries indicating the Pilot was unable to retrieve the JWT public key (recall we are using RS256 public/private key pair asymmetric algorithm). This particular error was due to a typo in the Istio Policy authentication resource YAML file.

screen_shot_2019-01-06_at_8.49.56_pm

Below we see an Istio Mixer log entry containing details of a Postman request to the Accounts Storefront service /accounts/customers/summary endpoint. According to Istio, Mixer is the Istio component responsible for providing policy controls and telemetry collection. Note the apiClaims section of the textPayload of the log entry, corresponds to the Payload Segment of the JWT passed in this request. The log entry clearly shows that the JWT was decoded and validated by Istio, before forwarding the request to the Accounts Service.

screen_shot_2019-01-07_at_8.59.50_pm.png

Conclusion

In this brief post, we added end-user authentication to our Storefront Demo API, running on GKE with Istio. Although still not Production-ready, we have secured the Storefront API with both HTTPS client-server encryption and JSON Web Token-based authorization. Next steps would be to add mutual TLS (mTLS) and a fully-managed API Gateway in front of the Storefront API GKE cluster, to provide advanced API features, like caching, quotas and rate limits.

All opinions expressed in this post are my own and not necessarily the views of my current or past employers or their clients.

, , , , , , , , , , ,

3 Comments

Securing Your Istio Ingress Gateway with HTTPS

In the last post, Building a Microservices Platform with Confluent Cloud, MongoDB Atlas, Istio, and Google Kubernetes Engine, we built and deployed a microservice-based, cloud-native API to Google Kubernetes Engine (GKE), with Istio 1.0, on Google Cloud Platform (GCP). For brevity, we neglected a few key API features, required in Production, including HTTPS, OAuth for authentication, request quotas, request throttling, and the integration of a full lifecycle API management tool, like Google Apigee.

In this brief post, we will revisit the previous post’s project. We will disable HTTP, and secure the GKE cluster with HTTPS, using simple TLS, as opposed to mutual TLS authentication (mTLS). This post assumes you have created the GKE cluster and deployed the Storefront API and its associated resources, as explained in the previous post.

What is HTTPS?

According to Wikipedia, Hypertext Transfer Protocol Secure (HTTPS) is an extension of the Hypertext Transfer Protocol (HTTP) for securing communications over a computer network. In HTTPS, the communication protocol is encrypted using Transport Layer Security (TLS), or, formerly, its predecessor, Secure Sockets Layer (SSL). The protocol is therefore also often referred to as HTTP over TLS, or HTTP over SSL.

Further, according to Wikipedia, the principal motivation for HTTPS is authentication of the accessed website and protection of the privacy and integrity of the exchanged data while in transit. It protects against man-in-the-middle attacks. The bidirectional encryption of communications between a client and server provides a reasonable assurance that one is communicating without interference by attackers with the website that one intended to communicate with, as opposed to an impostor.

Public Key Infrastructure

According to Comodo, both the TLS and SSL protocols use what is known as an asymmetric Public Key Infrastructure (PKI) system. An asymmetric system uses two keys to encrypt communications, a public key and a private key. Anything encrypted with the public key can only be decrypted by the private key and vice-versa.

Again, according to Wikipedia, a PKI is an arrangement that binds public keys with respective identities of entities, like people and organizations. The binding is established through a process of registration and issuance of certificates at and by a certificate authority (CA).

SSL/TLS Digital Certificate

Again, according to Comodo, when you request an HTTPS connection to a webpage, the website will initially send its SSL certificate to your browser. This certificate contains the public key needed to begin the secure session. Based on this initial exchange, your browser and the website then initiate the SSL handshake (actually, TLS handshake). The handshake involves the generation of shared secrets to establish a uniquely secure connection between yourself and the website. When a trusted SSL digital certificate is used during an HTTPS connection, users will see the padlock icon in the browser’s address bar.

Registered Domain

In order to secure an SSL Digital Certificate, required to enable HTTPS with the GKE cluster, we must first have a registered domain name. For the last post, and this post, I am using my own personal domain, storefront-demo.com. The domain’s primary A record (‘@’) and all sub-domain A records, such as api.dev, are all resolve to the external IP address on the front-end of the GCP load balancer.

For DNS hosting, I happen to be using Azure DNS to host the domain, storefront-demo.com. All DNS hosting services basically work the same way, whether you chose Azure, AWS, GCP, or another third party provider.

Let’s Encrypt

If you have used Let’s Encrypt before, then you know how easy it is to get free SSL/TLS Certificates. Let’s Encrypt is the first free, automated, and open certificate authority (CA) brought to you by the non-profit Internet Security Research Group (ISRG).

According to Let’s Encrypt, to enable HTTPS on your website, you need to get a certificate from a Certificate Authority (CA); Let’s Encrypt is a CA. In order to get a certificate for your website’s domain from Let’s Encrypt, you have to demonstrate control over the domain. With Let’s Encrypt, you do this using software that uses the ACME protocol, which typically runs on your web host. If you have generated certificates with Let’s Encrypt, you also know the domain validation by installing the Certbot ACME client can be a bit daunting, depending on your level of access and technical expertise.

SSL For Free

This is where SSL For Free comes in. SSL For Free acts as a proxy of sorts to Let’s Encrypt. SSL For Free generates certificates using their ACME server by using domain validation. Private Keys are generated in your browser and never transmitted.

screen_shot_2019-01-02_at_4.50.10_pm

SSL For Free offers three domain validation methods:

  1. Automatic FTP Verification: Enter FTP information to automatically verify the domain;
  2. Manual Verification: Upload verification files manually to your domain to verify ownership;
  3. Manual Verification (DNS): Add TXT records to your DNS server;

Using the third domain validation method, manual verification using DNS, is extremely easy, if you have access to your domain’s DNS recordset.

screen_shot_2019-01-02_at_4.51.03_pm

SSL For Free provides TXT records for each domain you are adding to the certificate. Below, I am adding a single domain to the certificate.

screen_shot_2019-01-02_at_4.51.12_pm

Add the TXT records to your domain’s recordset. Shown below is an example of a single TXT record that has been to my recordset using the Azure DNS service.

screen_shot_2019-01-02_at_4.53.15_pm

SSL For Free then uses the TXT record to validate your domain is actually yours.

screen_shot_2019-01-02_at_4.53.38_pm

With the TXT record in place and validation successful, you can download a ZIPped package containing the certificate, private key, and CA bundle. The CA bundle containing the end-entity root and intermediate certificates.

screen_shot_2019-01-02_at_4.54.03_pm

Decoding PEM Encoded SSL Certificate

Using a tool like SSL Shopper’s Certificate Decoder, we can decode our Privacy-Enhanced Mail (PEM) encoded SSL certificates and view all of the certificate’s information. Decoding the information contained in my certificate.crt,  I see the following.

Certificate Information:
Common Name: api.dev.storefront-demo.com
Subject Alternative Names: api.dev.storefront-demo.com
Valid From: December 26, 2018
Valid To: March 26, 2019
Issuer: Let's Encrypt Authority X3, Let's Encrypt
Serial Number: 03a5ec86bf79de65fb679ee7741ba07df1e4

Decoding the information contained in my ca_bundle.crt, I see the following.

Certificate Information:
Common Name: Let's Encrypt Authority X3
Organization: Let's Encrypt
Country: US
Valid From: March 17, 2016
Valid To: March 17, 2021
Issuer: DST Root CA X3, Digital Signature Trust Co.
Serial Number: 0a0141420000015385736a0b85eca708

The Let’s Encrypt intermediate certificate is also cross-signed by another certificate authority, IdenTrust, whose root is already trusted in all major browsers. IdenTrust cross-signs the Let’s Encrypt intermediate certificate using their DST Root CA X3. Thus, the Issuer, shown above.

Configure Istio Ingress Gateway

Unzip the sslforfree.zip package and place the individual files in a location you have access to from the command line.

unzip -l ~/Downloads/sslforfree.zip
Archive:  /Users/garystafford/Downloads/sslforfree.zip
  Length      Date    Time    Name
---------  ---------- -----   ----
     1943  12-26-2018 18:35   certificate.crt
     1707  12-26-2018 18:35   private.key
     1646  12-26-2018 18:35   ca_bundle.crt
---------                     -------
     5296                     3 files

Following the process outlined in the Istio documentation, Securing Gateways with HTTPS, run the following command. This will place the istio-ingressgateway-certs Secret in the istio-system namespace, on the GKE cluster.

kubectl create -n istio-system secret tls istio-ingressgateway-certs \
  --key path_to_files/sslforfree/private.key \
  --cert path_to_files/sslforfree/certificate.crt

Modify the existing Istio Gateway from the previous project, istio-gateway.yaml. Remove the HTTP port configuration item and replace with the HTTPS protocol item (gist). Redeploy the Istio Gateway to the GKE cluster.

By deploying the new istio-ingressgateway-certs Secret and redeploying the Gateway, the certificate and private key were deployed to the /etc/istio/ingressgateway-certs/ directory of the istio-proxy container, running on the istio-ingressgateway Pod. To confirm both the certificate and private key were deployed correctly, run the following command.

kubectl exec -it -n istio-system \
  $(kubectl -n istio-system get pods \
    -l istio=ingressgateway \
    -o jsonpath='{.items[0].metadata.name}') \
  -- ls -l /etc/istio/ingressgateway-certs/

lrwxrwxrwx 1 root root 14 Jan  2 17:53 tls.crt -> ..data/tls.crt
lrwxrwxrwx 1 root root 14 Jan  2 17:53 tls.key -> ..data/tls.key

That’s it. We should now have simple TLS enabled on the Istio Gateway, providing bidirectional encryption of communications between a client (Storefront API consumer) and server (Storefront API running on the GKE cluster). Users accessing the API will now have to use HTTPS.

Confirm HTTPS is Working

After completing the deployment, as outlined in the previous post, test the Storefront API by using HTTP, first. Since we removed the HTTP port item configuration in the Istio Gateway, the HTTP request should fail with a connection refused error. Insecure traffic is no longer allowed by the Storefront API.

screen_shot_2019-01-02_at_5.07.53_pm

Now try switching from HTTP to HTTPS. The page should be displayed and the black lock icon should appear in the browser’s address bar. Clicking on the lock icon, we will see the SSL certificate, used by the GKE cluster is valid.

screen_shot_2019-01-01_at_6.55.39_pm

By clicking on the valid certificate indicator, we may observe more details about the SSL certificate, used to secure the Storefront API. Observe the certificate is issued by Let’s Encrypt Authority X3. It is valid for 90 days from its time of issuance. Let’s Encrypt only issues certificates with a 90-day lifetime. Observe the public key uses SHA-256 with RSA (Rivest–Shamir–Adleman) encryption.

screen_shot_2019-01-01_at_6.58.07_pm

In Chrome, we can also use the Developer Tools Security tab to inspect the certificate. The certificate is recognized as valid and trusted. Also important, note the connection to this Storefront API is encrypted and authenticated using TLS 1.2 (a strong protocol), ECDHE_RSA with X25519 (a strong key exchange), and AES_128_GCM (a strong cipher). According to How’s My SSL?, TLS 1.2 is the latest version of TLS. The TLS 1.2 protocol provides access to advanced cipher suites that support elliptical curve cryptography and AEAD block cipher modes. TLS 1.2 is an improvement on previous TLS 1.1, 1.0, and SSLv3 or earlier.

screen_shot_2019-01-01_at_7.51.54_pm

Lastly, the best way to really understand what is happening with HTTPS, the Storefront API, and Istio, is verbosely curl an API endpoint.

curl -Iv https://api.dev.storefront-demo.com/accounts/

Using the above curl command, we can see exactly how the client successfully verifies the server, negotiates a secure HTTP/2 connection (HTTP/2 over TLS 1.2), and makes a request (gist).

  • Line 3: DNS resolution of the URL to the external IP address of the GCP load-balancer
  • Line 3: HTTPS traffic is routed to TCP port 443
  • Lines 4 – 5: Application-Layer Protocol Negotiation (ALPN) starts to occur with the server
  • Lines 7 – 9: Certificate to verify located
  • Lines 10 – 20: TLS handshake is performed and is successful using TLS 1.2 protocol
  • Line 20: CHACHA is the stream cipher and POLY1305 is the authenticator in the Transport Layer Security (TLS) 1.2 protocol ChaCha20-Poly1305 Cipher Suite
  • Lines 22 – 27: SSL certificate details
  • Line 28: Certificate verified
  • Lines 29 – 38: Establishing HTTP/2 connection with the server
  • Lines 33 – 36: Request headers
  • Lines 39 – 46: Response headers containing the expected 204 HTTP return code

Mutual TLS

Istio also supports mutual authentication using the TLS protocol, known as mutual TLS authentication (mTLS), between external clients and the gateway, as outlined in the Istio 1.0 documentation. According to Wikipedia, mutual authentication or two-way authentication refers to two parties authenticating each other at the same time. Mutual authentication a default mode of authentication in some protocols (IKE, SSH), but optional in TLS.

Again, according to Wikipedia, by default, TLS only proves the identity of the server to the client using X.509 certificates. The authentication of the client to the server is left to the application layer. TLS also offers client-to-server authentication using client-side X.509 authentication. As it requires provisioning of the certificates to the clients and involves less user-friendly experience, it is rarely used in end-user applications. Mutual TLS is much more widespread in B2B applications, where a limited number of programmatic clients are connecting to specific web services. The operational burden is limited and security requirements are usually much higher as compared to consumer environments.

This form of mutual authentication would be beneficial if we had external applications or other services outside our GKE cluster, consuming our API. Using mTLS, we could further enhance the security of those types of interactions.

All opinions expressed in this post are my own and not necessarily the views of my current or past employers or their clients.

, , , , , , , ,

4 Comments

Developing on the Google Cloud Platform

Looking for some New Years reading about developing on the Google Cloud Platform? Enjoy some of my most recent articles on the subject.

  1. Getting Started with Red Hat Ansible for Google Cloud Platform (January 2019)
  2. Automating Multi-Environment Kubernetes Virtual Clusters with Google Cloud DNS, Auth0, and Istio 1.0 (January 2019)
  3. Istio End-User Authentication for Kubernetes using JSON Web Tokens (JWT) and Auth0 (January 2019)
  4. Securing Kubernetes with Istio End User Authentication using JSON Web Tokens (JWT) (January 2019)
  5. Securing Your Istio Ingress Gateway with HTTPS (January 2019)
  6. Building a Microservices Platform with Confluent Cloud, MongoDB Atlas, Istio, and Google Kubernetes Engine (December 2018)
  7. Using the Google Cloud Dataproc WorkflowTemplates API to Automate Spark and Hadoop Workloads on GCP (December 2018)
  8. Big Data Analytics with Java and Python, using Cloud Dataproc, Google’s Fully-Managed Spark and Hadoop Service (December 2018)
  9. Integrating Search Capabilities with Actions for Google Assistant, using GKE and Elasticsearch: Part 1 (September 2018)
  10. Integrating Search Capabilities with Actions for Google Assistant, using GKE and Elasticsearch: Part 2 (September 2018)
  11. Building Serverless Actions for Google Assistant with Google Cloud Functions, Cloud Datastore, and Cloud Storage (August 2018)
  12. Managing Applications Across Multiple Kubernetes Environments with Istio: Part 1 (April 2018)
  13. Managing Applications Across Multiple Kubernetes Environments with Istio: Part 2 (April 2018)
  14. Deploying and Configuring Istio on Google Kubernetes Engine (GKE) (December 2017)

 

 All opinions expressed in this post are my own and not necessarily the views of my current or past employers or their clients.

, , , , ,

Leave a comment

Managing Applications Across Multiple Kubernetes Environments with Istio: Part 2

In this two-part post, we are exploring the creation of a GKE cluster, replete with the latest version of Istio, often referred to as IoK (Istio on Kubernetes). We will then deploy, perform integration testing, and promote an application across multiple environments within the cluster.

Part Two

In Part One of this post, we created a Kubernetes cluster on the Google Cloud Platform, installed Istio, provisioned a PostgreSQL database, and configured DNS for routing. Under the assumption that v1 of the Election microservice had already been released to Production, we deployed v1 to each of the three namespaces.

In Part Two of this post, we will learn how to utilize the advanced API testing capabilities of Postman and Newman to ensure v2 is ready for UAT and release to Production. We will deploy and perform integration testing of a new v2 of the Election microservice, locally on Kubernetes Minikube. Once confident v2 is functioning as intended, we will promote and test v2 across the dev, test, and uat namespaces.

Source Code

As a reminder, all source code for this post can be found on GitHub. The project’s README file contains a list of the Election microservice’s endpoints. To get started quickly, use one of the two following options (gist).

Code samples in this post are displayed as Gists, which may not display correctly on some mobile and social media browsers. Links to gists are also provided.

This project includes a kubernetes sub-directory, containing all the Kubernetes resource files and scripts necessary to recreate the example shown in the post.

Testing Locally with Minikube

Deploying to GKE, no matter how automated, takes time and resources, whether those resources are team members or just compute and system resources. Before deploying v2 of the Election service to the non-prod GKE cluster, we should ensure that it has been thoroughly tested locally. Local testing should include the following test criteria:

  1. Source code builds successfully
  2. All unit-tests pass
  3. A new Docker Image can be created from the build artifact
  4. The Service can be deployed to Kubernetes (Minikube)
  5. The deployed instance can connect to the database and execute the Liquibase changesets
  6. The deployed instance passes a minimal set of integration tests

Minikube gives us the ability to quickly iterate and test an application, as well as the Kubernetes and Istio resources required for its operation, before promoting to GKE. These resources include Kubernetes Namespaces, Secrets, Deployments, Services, Route Rules, and Istio Ingresses. Since Minikube is just that, a miniature version of our GKE cluster, we should be able to have a nearly one-to-one parity between the Kubernetes resources we apply locally and those applied to GKE. This post assumes you have the latest version of Minikube installed, and are familiar with its operation.

This project includes a minikube sub-directory, containing all the Kubernetes resource files and scripts necessary to recreate the Minikube deployment example shown in this post. The three included scripts are designed to be easily adapted to a CI/CD DevOps workflow. You may need to modify the scripts to match your environment’s configuration. Note this Minikube-deployed version of the Election service relies on the external Amazon RDS database instance.

Local Database Version

To eliminate the AWS costs, I have included a second, alternate version of the Minikube Kubernetes resource files, minikube_db_local This version deploys a single containerized PostgreSQL database instance to Minikube, as opposed to relying on the external Amazon RDS instance. Be aware, the database does not have persistent storage or an Istio sidecar proxy.

istio_100.png

Minikube Cluster

If you do not have a running Minikube cluster, create one with the minikube start command.

istio_081

Minikube allows you to use normal kubectl CLI commands to interact with the Minikube cluster. Using the kubectl get nodes command, we should see a single Minikube node running the latest Kubernetes v1.10.0.

istio_082

Istio on Minikube

Next, install Istio following Istio’s online installation instructions. A basic Istio installation on Minikube, without the additional add-ons, should only require a single Istio install script.

istio_083

If successful, you should observe a new istio-system namespace, containing the four main Istio components: istio-ca, istio-ingress, istio-mixer, and istio-pilot.

istio_084

Deploy v2 to Minikube

Next, create a Minikube Development environment, consisting of a dev Namespace, Istio Ingress, and Secret, using the part1-create-environment.sh script. Next, deploy v2 of the Election service to thedev Namespace, along with an associated Route Rule, using the part2-deploy-v2.sh script. One v2 instance should be sufficient to satisfy the testing requirements.

istio_085

Access to v2 of the Election service on Minikube is a bit different than with GKE. When routing external HTTP requests, there is no load balancer, no external public IP address, and no public DNS or subdomains. To access the single instance of v2 running on Minikube, we use the local IP address of the Minikube cluster, obtained with the minikube ip command. The access port required is the Node Port (nodePort) of the istio-ingress Service. The command is shown below (gist) and included in the part3-smoke-test.sh script.

The second part of our HTTP request routing is the same as with GKE, relying on an Istio Route Rules. The /v2/ sub-collection resource in the HTTP request URL is rewritten and routed to the v2 election Pod by the Route Rule. To confirm v2 of the Election service is running and addressable, curl the /v2/actuator/health endpoint. Spring Actuator’s /health endpoint is frequently used at the end of a CI/CD server’s deployment pipeline to confirm success. The Spring Boot application can take a few minutes to fully start up and be responsive to requests, depending on the speed of your local machine.

istio_093.png

Using the Kubernetes Dashboard, we should see our deployment of the single Election service Pod is running successfully in Minikube’s dev namespace.

istio_087

Once deployed, we run a battery of integration tests to confirm that the new v2 functionality is working as intended before deploying to GKE. In the next section of this post, we will explore the process creating and managing Postman Collections and Postman Environments, and how to automate those Collections of tests with Newman and Jenkins.

istio_088

Integration Testing

The typical reason an application is deployed to lower environments, prior to Production, is to perform application testing. Although definitions vary across organizations, testing commonly includes some or all of the following types: Integration Testing, Functional Testing, System Testing, Stress or Load Testing, Performance Testing, Security Testing, Usability Testing, Acceptance Testing, Regression Testing, Alpha and Beta Testing, and End-to-End Testing. Test teams may also refer to other testing forms, such as Whitebox (Glassbox), Blackbox Testing, Smoke, Validation, or Sanity Testing, and Happy Path Testing.

The site, softwaretestinghelp.com, defines integration testing as, ‘testing of all integrated modules to verify the combined functionality after integration is termed so. Modules are typically code modules, individual applications, client and server applications on a network, etc. This type of testing is especially relevant to client/server and distributed systems.

In this post, we are concerned that our integrated modules are functioning cohesively, primarily the Election service, Amazon RDS database, DNS, Istio Ingress, Route Rules, and the Istio sidecar Proxy. Unlike Unit Testing and Static Code Analysis (SCA), which is done pre-deployment, integration testing requires an application to be deployed and running in an environment.

Postman

I have chosen Postman, along with Newman, to execute a Collection of integration tests before promoting to the next environment. The integration tests confirm the deployed application’s name and version. The integration tests then perform a series of HTTP GET, POST, PUT, PATCH, and DELETE actions against the service’s resources. The integration tests verify a successful HTTP response code is returned, based on the type of request made.

istio_055

Postman tests are written in JavaScript, similar to other popular, modern testing frameworks. Postman offers advanced features such as test-chaining. Tests can be chained together through the use of environment variables to store response values and pass them onto to other tests. Values shared between tests are also stored in the Postman Environments. Below, we store the ID of the new candidate, the result of an HTTP POST to the /candidates endpoint. We then use the stored candidate ID in proceeding HTTP GET, PUT, and PATCH test requests to the same /candidates endpoint.

istio_056

Environment-specific variables, such as the resource host, port, and environment sub-collection resource, are abstracted and stored as key/value pairs within Postman Environments, and called through variables in the request URL and within the tests. Thus, the same Postman Collection of tests may be run against multiple environments using different Postman Environments.

istio_057

Postman Runner allows us to run multiple iterations of our Collection. We also have the option to build in delays between tests. Lastly, Postman Runner can load external JSON and CSV formatted test data, which is beyond the scope of this post.

istio_058

Postman contains a simple Run Summary UI for viewing test results.

istio_060

Test Automation

To support running tests from the command line, Postman provides Newman. According to Postman, Newman is a command-line collection runner for Postman. Newman offers the same functionality as Postman’s Collection Runner, all part of the newman CLI. Newman is Node.js module, installed globally as an npm package, npm install newman --global.

Typically, Development and Testing teams compose Postman Collections and define Postman Environments, locally. Teams run their tests locally in Postman, during their development cycle. Then, those same Postman Collections are executed from the command line, or more commonly as part of a CI/CD pipeline, such as with Jenkins.

Below, the same Collection of integration tests ran in the Postman Runner UI, are run from the command line, using Newman.

istio_061

Jenkins

Without a doubt, Jenkins is the leading open-source CI/CD automation server. The building, testing, publishing, and deployment of microservices to Kubernetes is relatively easy with Jenkins. Generally, you would build, unit-test, push a new Docker image, and then deploy your application to Kubernetes using a series of CI/CD pipelines. Below, we see examples of these pipelines using Jenkins Blue Ocean, starting with a continuous integration pipeline, which includes unit-testing and Static Code Analysis (SCA) with SonarQube.

istio_108

Followed by a pipeline to build the Docker Image, using the build artifact from the above pipeline, and pushes the Image to Docker Hub.

istio_109

The third pipeline that demonstrates building the three Kubernetes environments and deploying v1 of the Election service to the dev namespace. This pipeline is just for demonstration purposes; typically, you would separate these functions.

istio_110

Spinnaker

An alternative to Jenkins for the deployment of microservices is Spinnaker, created by Netflix. According to Netflix, ‘Spinnaker is an open source, multi-cloud continuous delivery platform for releasing software changes with high velocity and confidence.’ Spinnaker is designed to integrate easily with Jenkins, dividing responsibilities for continuous integration and delivery, with deployment. Below, Spinnaker two sample deployment pipelines, similar to Jenkins, for deploying v1 and v2 of the Election service to the non-prod GKE cluster.

spin_07

Below, Spinnaker has deployed v2 of the Election service to dev using a Highlander deployment strategy. Subsequently, Spinnaker has deployed v2 to test using a Red/Black deployment strategy, leaving the previously released v1 Server Group in place, in case a rollback is required.

spin_08

Once Spinnaker is has completed the deployment tasks, the Postman Collections of smoke and integration tests are executed by Newman, as part of another Jenkins CI/CD pipeline.

istio_101B.png

In this pipeline, a set of basic smoke tests is run first to ensure the new deployment is running properly, and then the integration tests are executed.

istio_102

In this simple example, we have a three-stage pipeline created from a Jenkinsfile (gist).

Test Results

Newman offers several options for displaying test results. For easy integration with Jenkins, Newman results can be delivered in a format that can be displayed as JUnit test reports. The JUnit test report format, XML, is a popular method of standardizing test results from different testing tools. Below is a truncated example of a test report file (gist).

Translating Newman test results to JUnit reports allows the percentage of test cases successfully executed, to be tracked over multiple deployments, a universal testing metric. Below we see the JUnit Test Reports Test Result Trend graph for a series of test runs.

istio_103

Deploying to Development

Development environments typically have a rapid turnover of application versions. Many teams use their Development environment as a continuous integration environment, where every commit that successfully builds and passes all unit tests, is deployed. The purpose of the CI deployments is to ensure build artifacts will successfully deploy through the CI/CD pipeline, start properly, and pass a basic set of smoke tests.

Other teams use the Development environments as an extension of their local Minikube environment. The Development environment will possess some or all of the required external integration points, which the Developer’s local Minikube environment may not. The goal of the Development environment is to help Developers ensure their application is functioning correctly and is ready for the Test teams to evaluate, prior to promotion to the Test environment.

Some external integration points, such as external payment gateways, customer relationship management (CRM) systems, content management systems (CMS), or data analytics engines, are often stubbed-out in lower environments. Generally, third-party providers only offer a limited number of parallel non-Production integration environments. While an application may pass through several non-prod environments, testing against all external integration points will only occur in one or two of those environments.

With v2 of the Election service ready for testing on GKE, we deploy it to the GKE cluster’s dev namespace using the part4a-deploy-v2-dev.sh script. We will also delete the previous v1 version of the Election service. Similar to the v1 deployment script, the v2 scripts perform a kube-inject command, which manually injects the Istio sidecar proxy alongside the Election service, into each election v2 Pod. The deployment script also deploys an alternate Istio Route Rule, which routes requests to api.dev.voter-demo.com/v2/* resource of v2 of the Election service.

istio_054.png

Once deployed, we run our Postman Collection of integration tests with Newman or as part of a CI/CD pipeline. In the Development environment, we may choose to run a limited set of tests for the sake of expediency, or because not all external integration points are accessible.

Promotion to Test

With local Minikube and Development environment testing complete, we promote and deploy v2 of the Election service to the Test environment, using the part4b-deploy-v2-test.sh script. In Test, we will not delete v1 of the Election service.

istio_062

Often, an organization will maintain a running copy of all versions of an application currently deployed to Production, in a lower environment. Let’s look at two scenarios where this is common. First, v1 of the Election service has an issue in Production, which needs to be confirmed and may require a hot-fix by the Development team. Validation of the v1 Production bug is often done in a lower environment. The second scenario for having both versions running in an environment is when v1 and v2 both need to co-exist in Production. Organizations frequently support multiple API versions. Cutting over an entire API user-base to a new API version is often completed over a series of releases, and requires careful coordination with API consumers.

Testing All Versions

An essential role of integration testing should be to confirm that both versions of the Election service are functioning correctly, while simultaneously running in the same namespace. For example, we want to verify traffic is routed correctly, based on the HTTP request URL, to the correct version. Another common test scenario is database schema changes. Suppose we make what we believe are backward-compatible database changes to v2 of the Election service. We should be able to prove, through testing, that both the old and new versions function correctly against the latest version of the database schema.

There are different automation strategies that could be employed to test multiple versions of an application without creating separate Collections and Environments. A simple solution would be to templatize the Environments file, and then programmatically change the Postman Environment’s version variable injected from a pipeline parameter (abridged environment file shown below).

istio_095.png

Once initial automated integration testing is complete, Test teams will typically execute additional forms of application testing if necessary, before signing off for UAT and Performance Testing to begin.

User-Acceptance Testing

With testing in the Test environments completed, we continue onto UAT. The term UAT suggest that a set of actual end-users (API consumers) of the Election service will perform their own testing. Frequently, UAT is only done for a short, fixed period of time, often with a specialized team of Testers. Issues experienced during UAT can be expensive and impact the ability to release an application to Production on-time if sign-off is delayed.

After deploying v2 of the Election service to UAT, and before opening it up to the UAT team, we would naturally want to repeat the same integration testing process we conducted in the previous Test environment. We must ensure that v2 is functioning as expected before our end-users begin their testing. This is where leveraging a tool like Jenkins makes automated integration testing more manageable and repeatable. One strategy would be to duplicate our existing Development and Test pipelines, and re-target the new pipeline to call v2 of the Election service in UAT.

istio_104.png

Again, in a JUnit report format, we can examine individual results through the Jenkins Console.

istio_105.png

We can also examine individual results from each test run using a specific build’s Console Output.

istio_106.png

Testing and Instrumentation

To fully evaluate the integration test results, you must look beyond just the percentage of test cases executed successfully. It makes little sense to release a new version of an application if it passes all functional tests, but significantly increases client response times, unnecessarily increases memory consumption or wastes other compute resources, or is grossly inefficient in the number of calls it makes to the database or third-party dependencies. Often times, integration testing uncovers potential performance bottlenecks that are incorporated into performance test plans.

Critical intelligence about the performance of the application can only be obtained through the use of logging and metrics collection and instrumentation. Istio provides this telemetry out-of-the-box with Zipkin, Jaeger, Service Graph, Fluentd, Prometheus, and Grafana. In the included Grafana Istio Dashboard below, we see the performance of v1 of the Election service, under test, in the Test environment. We can compare request and response payload size and timing, as well as request and response times to external integration points, such as our Amazon RDS database. We are able to observe the impact of individual test requests on the application and all its integration points.

istio_067

As part of integration testing, we should monitor the Amazon RDS CloudWatch metrics. CloudWatch allows us to evaluate critical database performance metrics, such as the number of concurrent database connections, CPU utilization, read and write IOPS, Memory consumption, and disk storage requirements.

istio_043

A discussion of metrics starts moving us toward load and performance testing against Production service-level agreements (SLAs). Using a similar approach to integration testing, with load and performance testing, we should be able to accurately estimate the sizing requirements our new application for Production. Load and Performance Testing helps answer questions like the type and size of compute resources are required for our GKE Production cluster and for our Amazon RDS database, or how many compute nodes and number of instances (Pods) are necessary to support the expected user-load.

All opinions expressed in this post are my own, and not necessarily the views of my current or past employers, or their clients.

, , , , , , , , , , , , , ,

4 Comments

Managing Applications Across Multiple Kubernetes Environments with Istio: Part 1

In the following two-part post, we will explore the creation of a GKE cluster, replete with the latest version of Istio, often referred to as IoK (Istio on Kubernetes). We will then deploy, perform integration testing, and promote an application across multiple environments within the cluster.

Application Environment Management

Container orchestration engines, such as Kubernetes, have revolutionized the deployment and management of microservice-based architectures. Combined with a Service Mesh, such as Istio, Kubernetes provides a secure, instrumented, enterprise-grade platform for modern, distributed applications.

One of many challenges with any platform, even one built on Kubernetes, is managing multiple application environments. Whether applications run on bare-metal, virtual machines, or within containers, deploying to and managing multiple application environments increases operational complexity.

As Agile software development practices continue to increase within organizations, the need for multiple, ephemeral, on-demand environments also grows. Traditional environments that were once only composed of Development, Test, and Production, have expanded in enterprises to include a dozen or more environments, to support the many stages of the modern software development lifecycle. Current application environments often include Continous Integration and Delivery (CI), Sandbox, Development, Integration Testing (QA), User Acceptance Testing (UAT), Staging, Performance, Production, Disaster Recovery (DR), and Hotfix. Each environment requiring its own compute, security, networking, configuration, and corresponding dependencies, such as databases and message queues.

Environments and Kubernetes

There are various infrastructure architectural patterns employed by Operations and DevOps teams to provide Kubernetes-based application environments to Development teams. One pattern consists of separate physical Kubernetes clusters. Separate clusters provide a high level of isolation. Isolation offers many advantages, including increased performance and security, the ability to tune each cluster’s compute resources to meet differing SLAs, and ensuring a reduced blast radius when things go terribly wrong. Conversely, separate clusters often result in increased infrastructure costs and operational overhead, and complex deployment strategies. This pattern is often seen in heavily regulated, compliance-driven organizations, where security, auditability, and separation of duties are paramount.

Kube Clusters Diagram F15

Namespaces

An alternative to separate physical Kubernetes clusters is virtual clusters. Virtual clusters are created using Kubernetes Namespaces. According to Kubernetes documentation, ‘Kubernetes supports multiple virtual clusters backed by the same physical cluster. These virtual clusters are called namespaces’.

In most enterprises, Operations and DevOps teams deliver a combination of both virtual and physical Kubernetes clusters. For example, lower environments, such as those used for Development, Test, and UAT, often reside on the same physical cluster, each in a separate virtual cluster (namespace). At the same time, environments such as Performance, Staging, Production, and DR, often require the level of isolation only achievable with physical Kubernetes clusters.

In the Cloud, physical clusters may be further isolated and secured using separate cloud accounts. For example, with AWS you might have a Non-Production AWS account and a Production AWS account, both managed by an AWS Organization.

Kube Clusters Diagram v2 F3

In a multi-environment scenario, a single physical cluster would contain multiple namespaces, into which separate versions of an application or applications are independently deployed, accessed, and tested. Below we see a simple example of a single Kubernetes non-prod cluster on the left, containing multiple versions of different microservices, deployed across three namespaces. You would likely see this type of deployment pattern as applications are deployed, tested, and promoted across lower environments, before being released to Production.

Kube Clusters Diagram v2 F5.png

Example Application

To demonstrate the promotion and testing of an application across multiple environments, we will use a simple election-themed microservice, developed for a previous post, Developing Cloud-Native Data-Centric Spring Boot Applications for Pivotal Cloud Foundry. The Spring Boot-based application allows API consumers to create, read, update, and delete, candidates, elections, and votes, through an exposed set of resources, accessed via RESTful endpoints.

Source Code

All source code for this post can be found on GitHub. The project’s README file contains a list of the Election microservice’s endpoints. To get started quickly, use one of the two following options (gist).

Code samples in this post are displayed as Gists, which may not display correctly on some mobile and social media browsers. Links to gists are also provided.

This project includes a kubernetes sub-directory, containing all the Kubernetes resource files and scripts necessary to recreate the example shown in the post. The scripts are designed to be easily adapted to a CI/CD DevOps workflow. You will need to modify the script’s variables to match your own environment’s configuration.

istio_107small

Database

The post’s Spring Boot application relies on a PostgreSQL database. In the previous post, ElephantSQL was used to host the PostgreSQL instance. This time, I have used Amazon RDS for PostgreSQL. Amazon RDS for PostgreSQL and ElephantSQL are equivalent choices. For simplicity, you might also consider a containerized version of PostgreSQL, managed as part of your Kubernetes environment.

Ideally, each environment should have a separate database instance. Separate database instances provide better isolation, fine-grained RBAC, easier test data lifecycle management, and improved performance. Although, for this post, I suggest a single, shared, minimally-sized RDS instance.

The PostgreSQL database’s sensitive connection information, including database URL, username, and password, are stored as Kubernetes Secrets, one secret for each namespace, and accessed by the Kubernetes Deployment controllers.

istio_043.png

Istio

Although not required, Istio makes the task of managing multiple virtual and physical clusters significantly easier. Following Istio’s online installation instructions, download and install Istio 0.7.1.

To create a Google Kubernetes Engine (GKE) cluster with Istio, you could use gcloud CLI’s container clusters create command, followed by installing Istio manually using Istio’s supplied Kubernetes resource files. This was the method used in the previous post, Deploying and Configuring Istio on Google Kubernetes Engine (GKE).

Alternatively, you could use Istio’s Google Cloud Platform (GCP) Deployment Manager files, along with the gcloud CLI’s deployment-manager deployments create command to create a Kubernetes cluster, replete with Istio, in a single step. Although arguably simpler, the deployment-manager method does not provide the same level of fine-grain control over cluster configuration as the container clusters create method. For this post, the deployment-manager method will suffice.

istio_001

The latest version of the Google Kubernetes Engine, available at the time of this post, is 1.9.6-gke.0. However, to install this version of Kubernetes Engine using the Istio’s supplied deployment Manager Jinja template requires updating the hardcoded value in the istio-cluster.jinja file from 1.9.2-gke.1. This has been updated in the next release of Istio.

istio_002

Another change, the latest version of Istio offered as an option in the istio-cluster-jinja.schema file. Specifically, the installIstioRelease configuration variable is only 0.6.0. The template does not include 0.7.1 as an option. Modify the istio-cluster-jinja.schema file to include the choice of 0.7.1. Optionally, I also set 0.7.1 as the default. This change should also be included in the next version of Istio.

istio_075.png

There are a limited number of GKE and Istio configuration defaults defined in the istio-cluster.yaml file, all of which can be overridden from the command line.

istio_002B.png

To optimize the cluster, and keep compute costs to a minimum, I have overridden several of the default configuration values using the properties flag with the gcloud CLI’s deployment-manager deployments create command. The README file provided by Istio explains how to use this feature. Configuration changes include the name of the cluster, the version of Istio (0.7.1), the number of nodes (2), the GCP zone (us-east1-b), and the node instance type (n1-standard-1). I also disabled automatic sidecar injection and chose not to install the Istio sample book application onto the cluster (gist).

Cluster Provisioning

To provision the GKE cluster and deploy Istio, first modify the variables in the part1-create-gke-cluster.sh file (shown above), then execute the script. The script also retrieves your cluster’s credentials, to enable command line interaction with the cluster using the kubectl CLI.

istio_002C.png

Once complete, validate the version of Istio by examining Istio’s Docker image versions, using the following command (gist).

The result should be a list of Istio 0.7.1 Docker images.

istio_076.png

The new cluster should be running GKE version 1.9.6.gke.0. This can be confirmed using the following command (gist).

Or, from the GCP Cloud Console.

istio_037

The new GKE cluster should be composed of (2) n1-standard-1 nodes, running in the us-east-1b zone.

istio_038

As part of the deployment, all of the separate Istio components should be running within the istio-system namespace.

istio_040

As part of the deployment, an external IP address and a load balancer were provisioned by GCP and associated with the Istio Ingress. GCP’s Deployment Manager should have also created the necessary firewall rules for cluster ingress and egress.

istio_010.png

Building the Environments

Next, we will create three namespaces,dev, test, and uat, which represent three non-production environments. Each environment consists of a Kubernetes Namespace, Istio Ingress, and Secret. The three environments are deployed using the part2-create-environments.sh script.

istio_048.png

Deploying Election v1

For this demonstration, we will assume v1 of the Election service has been previously promoted, tested, and released to Production. Hence, we would expect v1 to be deployed to each of the lower environments. Additionally, a new v2 of the Election service has been developed and tested locally using Minikube. It is ready for deployment to the three environments and will undergo integration testing (detailed in Part Two of the post).

If you recall from our GKE/Istio configuration, we chose manual sidecar injection of the Istio proxy. Therefore, all election deployment scripts perform a kube-inject command. To connect to our external Amazon RDS database, this kube-inject command requires the includeIPRanges flag, which contains two cluster configuration values, the cluster’s IPv4 CIDR (clusterIpv4Cidr) and the service’s IPv4 CIDR (servicesIpv4Cidr).

Before deployment, we export the includeIPRanges value as an environment variable, which will be used by the deployment scripts, using the following command, export IP_RANGES=$(sh ./get-cluster-ip-ranges.sh). The get-cluster-ip-ranges.sh script is shown below (gist).

Using this method with manual sidecar injection is discussed in the previous post, Deploying and Configuring Istio on Google Kubernetes Engine (GKE).

To deploy v1 of the Election service to all three namespaces, execute the part3-deploy-v1-all-envs.sh script.

istio_051.png

We should now have two instances of v1 of the Election service, running in the dev, test, and uat namespaces, for a total of six election-v1 Kubernetes Pods.

istio_052

HTTP Request Routing

Before deploying additional versions of the Election service in Part Two of this post, we should understand how external HTTP requests will be routed to different versions of the Election service, in multiple namespaces. In the post’s simple example, we have a matrix of three namespaces and two versions of the Election service. That means we need a method to route external traffic to up to six different election versions. There multiple ways to solve this problem, each with their own pros and cons. For this post, I found a combination of DNS and HTTP request rewriting is most effective.

DNS

First, to route external HTTP requests to the correct namespace, we will use subdomains. Using my current DNS management solution, Azure DNS, I create three new A records for my registered domain, voter-demo.com. There is one A record for each namespace, including api.dev, api.test, and api.uat.

istio_077.png

All three subdomains should resolve to the single external IP address assigned to the cluster’s load balancer.

istio_010.png

As part of the environments creation, the script deployed an Istio Ingress, one to each environment. The ingress accepts traffic based on a match to the Request URL (gist).

The istio-ingress service load balancer, running in the istio-system namespace, routes inbound external traffic, based on the Request URL, to the Istio Ingress in the appropriate namespace.

istio_053.png

The Istio Ingress in the namespace then directs the traffic to one of the Kubernetes Pods, containing the Election service and the Istio sidecar proxy.

istio_068.png

HTTP Rewrite

To direct the HTTP request to v1 or v2 of the Election service, an Istio Route Rule is used. As part of the environment creation, along with a Namespace and Ingress resources, we also deployed an Istio Route Rule to each environment. This particular route rule examines the HTTP request URL for a /v1/ or /v2/ sub-collection resource. If it finds the sub-collection resource, it performs a HTTPRewrite, removing the sub-collection resource from the HTTP request. The Route Rule then directs the HTTP request to the appropriate version of the Election service, v1 or v2 (gist).

According to Istio, ‘if there are multiple registered instances with the specified tag(s), they will be routed to based on the load balancing policy (algorithm) configured for the service (round-robin by default).’ We are using the default load balancing algorithm to distribute requests across multiple copies of each Election service.

The final external HTTP request routing for the Election service in the Non-Production GKE cluster is shown on the left, in the diagram, below. Every Election service Pod also contains an Istio sidecar proxy instance.

Kube Clusters Diagram F14

Below are some examples of HTTP GET requests that would be successfully routed to our Election service, using the above-described routing strategy (gist).

Part Two

In Part One of this post, we created the Kubernetes cluster on the Google Cloud Platform, installed Istio, provisioned a PostgreSQL database, and configured DNS for routing. Under the assumption that v1 of the Election microservice had already been released to Production, we deployed v1 to each of the three namespaces.

In Part Two of this post, we will learn how to utilize the sophisticated API testing capabilities of Postman and Newman to ensure v2 is ready for UAT and release to Production. We will deploy and perform integration testing of a new, v2 of the Election microservice, locally, on Kubernetes Minikube. Once we are confident v2 is functioning as intended, we will promote and test v2, across the dev, test, and uat namespaces.

All opinions expressed in this post are my own, and not necessarily the views of my current or past employers, or their clients.

, , , , , , , , , , ,

3 Comments

Deploying and Configuring Istio on Google Kubernetes Engine (GKE)

GKE_021B

Introduction

Unquestionably, Kubernetes has quickly become the leading Container-as-a-Service (CaaS) platform. In late September 2017, Rancher Labs announced the release of Rancher 2.0, based on Kubernetes. In mid-October, at DockerCon Europe 2017, Docker announced they were integrating Kubernetes into the Docker platform. In late October, Microsoft released the public preview of Managed Kubernetes for Azure Container Service (AKS). In November, Google officially renamed its Google Container Engine to Google Kubernetes Engine. Most recently, at AWS re:Invent 2017, Amazon announced its own manged version of Kubernetes, Amazon Elastic Container Service for Kubernetes (Amazon EKS).

The recent abundance of Kuberentes-based CaaS offerings makes deploying, scaling, and managing modern distributed applications increasingly easier. However, as Craig McLuckie, CEO of Heptio, recently stated, “…it doesn’t matter who is delivering Kubernetes, what matters is how it runs.” Making Kubernetes run better is the goal of a new generation of tools, such as Istio, EnvoyProject Calico, Helm, and Ambassador.

What is Istio?

One of those new tools and the subject of this post is Istio. Released in Alpha by Google, IBM and Lyft, in May 2017, Istio is an open platform to connect, manage, and secure microservices. Istio describes itself as, “…an easy way to create a network of deployed services with load balancing, service-to-service authentication, monitoring, and more, without requiring any changes in service code. You add Istio support to services by deploying a special sidecar proxy throughout your environment that intercepts all network communication between microservices, configured and managed using Istio’s control plane functionality.

Istio contains several components, split between the data plane and a control plane. The data plane includes the Istio Proxy (an extended version of Envoy proxy). The control plane includes the Istio Mixer, Istio Pilot, and Istio-Auth. The Istio components work together to provide behavioral insights and operational control over a microservice-based service mesh. Istio describes a service mesh as a “transparently injected layer of infrastructure between a service and the network that gives operators the controls they need while freeing developers from having to bake solutions to distributed system problems into their code.

In this post, we will deploy the latest version of Istio, v0.4.0, on Google Cloud Platform, using the latest version of Google Kubernetes Engine (GKE), 1.8.4-gke.1. Both versions were just released in mid-December, as this post is being written. Google, as you probably know, was the creator of Kubernetes, now an open-source CNCF project. Google was the first Cloud Service Provider (CSP) to offer managed Kubernetes in the Cloud, starting in 2014, with Google Container Engine (GKE), which used Kubernetes. This post will outline the installation of Istio on GKE, as well as the deployment of a sample application, integrated with Istio, to demonstrate Istio’s observability features.

Getting Started

All code from this post is available on GitHub. You will need to change some variables within the code, to meet your own project’s needs (gist).

The scripts used in this post are as follows, in order of execution (gist).

Code samples in this post are displayed as Gists, which may not display correctly on some mobile and social media browsers. Links to gists are also provided.

Creating GKE Cluster

First, we create the Google Kubernetes Engine (GKE) cluster. The GKE cluster creation is highly-configurable from either the GCP Cloud Console or from the command line, using the Google Cloud Platform gcloud CLI. The CLI will be used throughout the post. I have chosen to create a highly-available, 3-node cluster (1 node/zone) in GCP’s South Carolina us-east1 region (gist).

Once built, we need to retrieve the cluster’s credentials.

Having chosen to use Kubernetes’ Alpha Clusters feature, the following warning is displayed, warning the Alpha cluster will be deleted in 30 days (gist).

The resulting GKE cluster will have the following characteristics (gist).

Installing Istio

With the GKE cluster created, we can now deploy Istio. There are at least two options for deploying Istio on GCP. You may choose to manually install and configure Istio in a GKE cluster, as I will do in this post, following these instructions. Alternatively, you may choose to use the Istio GKE Deployment Manager. This all-in-one GCP service will create your GKE cluster, and install and configure Istio and the Istio add-ons, including their Book Info sample application.

G002_DeployCluster

There were a few reasons I chose not to use the Istio GKE Deployment Manager option. First, until very recently, you could not install the latest versions of Istio with this option (as of 12/21 you can now deploy v0.3.0 and v0.4.0). Secondly, currently, you only have the choice of GKE version 1.7.8-gke.0. I wanted to test the latest v1.8.4 release with a stable GA version of RBAC. Thirdly, at least three out of four of my initial attempts to use the Istio GKE Deployment Manager failed during provisioning for unknown reasons. Lastly, you will learn more about GKE, Kubernetes, and Istio by doing it yourself, at least the first time.

Istio Code Changes

Before installing Istio, I had to make several minor code changes to my existing Kubernetes resource files. The requirements are detailed in Istio’s Pod Spec Requirements. These changes are minor, but if missed, cause errors during deployment, which can be hard to identify and resolve.

First, you need to name your Service ports in your Service resource files. More specifically, you need to name your service ports, http, as shown in the Candidate microservice’s Service resource file, below (note line 10) (gist).

Second, an app label is required for Istio. I added an app label to each Deployment and Service resource file, as shown below in the Candidate microservice’s Deployment resource files (note lines 5 and 6) (gist).

The next set of code changes were to my existing Ingress resource file. The requirements for an Ingress resource using Istio are explained here. The first change, Istio ignores all annotations other than kubernetes.io/ingress.class: istio (note line 7, below). The next change, if using HTTPS, the secret containing your TLS/SSL certificate and private key must be called istio-ingress-certs; all other names will be ignored (note line 10, below). Related and critically important, that secret must be deployed to the istio-system namespace, not the application’s namespace. The last change, for my particular my prefix match routing rules, I needed to change the rules from /{service_name} to /{service_name}/.*. The /.* is a special Istio notation that is used to indicate a prefix match (note lines 14, 18, and 22, below) (gist).

Installing Istio

To install Istio, you first will need to download and uncompress the correct distribution of Istio for your OS. Istio provides instructions for installation on various platforms.

My install-istio.sh script contains a variable, ISTIO_HOME, which should point to the root of your local Istio directory. We will also deploy all the current Istio add-ons, including Prometheus, Grafana, ZipkinService Graph, and Zipkin-to-Stackdriver (gist).

Once installed, from the GCP Cloud Console, an alternative to the native Kubernetes Dashboard, we should see the following Istio resources deployed and running. Below, note the three nodes are distributed across three zones within the GCP us-east-1 region, the correct version of GKE is employed, Stackdriver logging and monitoring are enabled, and the Alpha Clusters features are also enabled.

GKE_001

And here, we see the nodes that comprise the GKE cluster.

GKE_001_1

GKE_001_2.PNG

Below, note the four components that comprise Istio: istio-ca, istio-ingress, istio-mixer, and istio-pilot. Additionally, note the five components that comprise the Istio add-ons.

GKE_002

Below, observe the Istio Ingress has automatically been assigned a public IP address by GCP, accessible on ports 80 and 443. This IP address is how we will communicate with applications running on our GKE cluster, behind the Istio Ingress Load Balancer. Later, we will see how the Istio Ingress Load Balancer knows how to route incoming traffic to those application endpoints, using the Voter API’s Ingress configuration.

GKE_003.PNG

Istio makes ample use of Kubernetes Config Maps and Secrets, to store configuration, and to store certificates for mutual TLS.

GKE_004

Creation of the GKE cluster and deployed Istio to the cluster is complete. Following, I will demonstrate the deployment of the Voter API to the cluster. This will be used to demonstrate the capabilities of Istio on GKE.

Kubernetes Dashboard

In addition to the GCP Cloud Console, the native Kubernetes Dashboard is also available. To open, use the kubectl proxy command and connect to the Kubernetes Dashboard at https://127.0.0.1:8001/ui. You should now be able to view and edit all resources, from within the Kubernetes Dashboard.

GKE_005_5

Sample Application

To demonstrate the functionality of Istio and GKE, I will deploy the Voter API. I have used variations of the sample Voter API application in several previous posts, including Architecting Cloud-Optimized Apps with AKS (Azure’s Managed Kubernetes), Azure Service Bus, and Cosmos DB and Eventual Consistency: Decoupling Microservices with Spring AMQP and RabbitMQ. I suggest reading these two post to better understand the Voter API’s design.

AKS

For this post, I have reconfigured the Voter API to use MongoDB’s Atlas Database-as-a-Service (DBaaS) as the NoSQL data-source for each microservice. The Voter API is connected to a MongoDB Atlas 3-node M10 instance cluster in GCP’s us-east1 (South Carolina) region. With Atlas, you have the choice of deploying clusters to GCP or AWS.

GKE_014

The Voter API will use CloudAMQP’s RabbitMQ-as-a-Service for its decoupled, eventually consistent, message-based architecture. For this post, the Voter API is configured to use a RabbitMQ cluster in GCP’s us-east1 (South Carolina) region; I chose a minimally-configured free version of RabbitMQ. CloudAMQP allows you to provide a much more robust multi-node clusters for Production, on GCP or AWS.

GKE_015_1.PNG

CloudAMQP provides access to their own Management UI, in addition to access to RabbitMQ’s Management UI.

GKE_015B

With the Voter API running and taking traffic, we can see each Voter API microservice instance, nine replicas in total, connected to RabbitMQ. They are each publishing and consuming messages off the two queues.

GKE_016

The GKE, MongoDB Atlas, and RabbitMQ clusters are all running in the same GCP Region. Optimizing the Voter API cloud architecture on GCP, within a single Region, greatly reduces network latency, increases API performance, and improves end-to-end application and infrastructure observability and traceability.

Installing the Voter API

For simplicity, I have divided the Voter API deployment into three parts. First, we create the new voter-api Kubernetes Namespace, followed by creating a series of Voter API Kuberentes Secrets (gist).

There are a total of five secrets, one secret for each of the three microservice’s MongoDB databases, one secret for the RabbitMQ connection string (shown below), and one secret containing a Let’s Encrypt SSL/TLS certificate chain and private key for the Voter API’s domain, api.voter-demo.com (shown below).

GKE_011

GKE_006.PNG

GKE_007.PNG

Next, we create the microservice pods, using the Kubernetes Deployment files, create three ClusterIP-type Kubernetes Services, and a Kubernetes Ingress. The Ingress contains the service endpoint configuration, which Istio Ingress will use to correctly route incoming external API traffic (gist).

Three Kubernetes Pods for each of the three microservice should be created, for a total of nine pods. In the GCP Cloud UI’s Workloads (Kubernetes Deployments), you should see the following three resources. Note each Workload has three pods, each containing one replica of the microservice.

GKE_010

In the GCP Cloud UI’s Discovery and Load Balancing tab, you should observe the following four resources. Note the Voter API Ingress endpoints for the three microservices, which are used by the Istio Proxy, discussed below.

GKE_009.PNG

Istio Proxy

Examining the Voter API deployment more closely, you will observe that each of the nine Voter API microservice pods have two containers running within them (gist).

Along with the microservice container, there is an Istio Proxy container, commonly referred to as a sidecar container. Istio Proxy is an extended version of the Envoy proxy, Lyfts well-known, highly performant edge and service proxy. The proxy sidecar container is injected automatically when the Voter API pods are created. This is possible because we deployed the Istio Initializer (istio-initializer.yaml). The Istio Initializer guarantees that Istio Proxy will be automatically injected into every microservice Pod. This is referred to as automatic sidecar injection. Below we see an example of one of three Candidate pods running the istio-proxy sidecar.

GKE_012

In the example above, all traffic to and from the Candidate microservice now passes through the Istio Proxy sidecar. With Istio Proxy, we gain several enterprise-grade features, including enhanced observability, service discovery and load balancing, credential injection, and connection management.

Manual Sidecar Injection

What if we have application components we do not want automatically managed with Istio Proxy. In that case, manual sidecar injection might be preferable to automatic sidecar injection with Istio Initializer. For manual sidecar injection, we execute a istioctl kube-inject command for each of the Kubernetes Deployments. The command manually injects the Istio Proxy container configuration into the Deployment resource file, alongside each Voter API microservice container. On Mac and Linux, this command is similar to the following. Proxy injection is discussed in detail, here (gist).

External Service Egress

Whether you choose automatic or manual sidecar injection of the Istio Proxy, Istio’s egress rules currently only support HTTP and HTTPS requests. The Voter API makes external calls to its backend services, using two alternate protocols, MongoDB Wire Protocol (mongodb://) and RabbitMQ AMQP (amqps://). Since we cannot use an Istio egress rule for either protocol, we will use the includeIPRanges option with the istioctl kube-inject command to open egress to the two backend services. This will completely bypass Istio for a specific IP range. You can read more about calling external services directly, on Istio’s website.

You will need to modify the includeIPRanges argument within the create-voter-api-part3.sh script, adding your own GKE cluster’s IP ranges to the IP_RANGES variable. The two IP ranges can be found using the following GCP CLI command (gist).

The create-voter-api-part3.sh script also contains a modified version the istioctl kube-inject command for each Voter API Deployment. Using the modified command, the original Deployment files are not altered, instead, a temporary copy of the Deployment file is created into which Istio injects the required modifications. The temporary Deployment file is then used for the deployment, and then immediately deleted (gist).

Some would argue not having the actual deployed version of the file checked into in source code control is an anti-pattern; in this case, I would disagree. If I need to redeploy, I would just run the istioctl kube-inject command again. You can always view, edit, and import the deployed YAML file, from the GCP CLI or GKE Management UI.

The amount of Istio configuration injected into each microservice Pod’s Deployment resource file is considerable. The Candidate Deployment file swelled from 68 lines to 276 lines of code! This hints at the power, as well as the complexity of Istio. Shown below is a snippet of the Candidate Deployment YAML, after Istio injection.

GKE_025

Confirming Voter API

Installation of the Voter API is now complete. We can validate the Voter API is working, and that traffic is being routed through Istio, using Postman. Below, we see a list of candidates successfully returned from the Voter microservice, through the Voter API. This means, not only us the API running, but that messages have been successfully passed between the services, using RabbitMQ, and saved to the microservice’s corresponding MongoDB databases.

GKE_030

Below, note the server and x-envoy-upstream-service-time response headers. They both confirm the Voter API HTTPS traffic is being managed by Istio.

GKE_031.PNG

Observability

Observability is certainly one of the primary advantages of implementing Istio. For anyone like myself, who has spent many long and often frustrating hours installing, configuring, and managing monitoring systems for distributed platforms, Istio’s observability features are most welcome. Istio provides Prometheus, Grafana, ZipkinService Graph, and Zipkin-to-Stackdriver add-ons. Combined with the monitoring capabilities of Backend-as-a-Service providers, such as MongoDB Altas and CloudAMQP RabvbitMQ, you get considerable visibility into your application, out-of-the-box.

Prometheus
First, we will look at Prometheus, a leading open-source monitoring solution. The easiest way to access the Prometheus UI, or any of the other add-ons, including Prometheus, is using port-forwarding. For example with Prometheus, we use the following command (gist).

Alternatively, you could securely expose any of the Istio add-ons through the Istio Ingress, similar to how the Voter API microservice endpoints are exposed.

Prometheus collects time series metrics from both the Istio and Voter API components. Below we see two examples of typical metrics being collected; they include the 201 responses generated by the Candidate microservice, and the outflow of bytes by the Election microservice, over a given period of time.

GKE_022

GKE_022_1

Grafana
Although Prometheus is an excellent monitoring solution, Grafana, the leading open source software for time series analytics, provides a much easier way to visualize the metrics collected by Prometheus. Conveniently, Istio provides a dynamically-configured Grafana Dashboard, which will automatically display metrics for components deployed to GKE.

GKE_020B.PNG

Below, note the metrics collected for the Candidate and Election microservice replicas. Out-of-the-box, Grafana displays common HTTP KPIs, such as request rate, success rate, response codes, response time, and response size. Based on the version label included in the Deployment resource files, we can delineate metrics collected by the version of the Voter API microservices, in this case, v1 of the Candidate and Election microservices.

GKE_021B

Zipkin
Next, we have Zipkin, a leading distributed tracing system.

GKE_018

Since the Voter API application uses RabbitMQ to decouple communications between services, versus direct HTTP-based IPC, we won’t see any complex multi-segment traces. We will only see traces representing traffic to and from the microservices, which passes through the Istio Ingress.

GKE_019

Service Graph
Similar to Zipkin, Service Graph is not as valuable with the Voter API application as it could be with more complex applications. Below is a Service Graph view of the Voter API showing microservice version and requests/second to each microservice.

GKE_024

Stackdriver

One last tool we have to monitor our GKE cluster is Stackdriver. Stackdriver provides fine-grain monitoring, logging, and diagnostics. If you recall, we enabled Stackdriver logging and monitoring when we first provisioned the GKE cluster. Stackdrive allows us to examine the performance of the GKE cluster’s resources, review logs, and set alerts.

GKE_028

GKE_029

GKE_027

Zipkin-to-Stackdriver

When we installed Istio, we also installed the Zipkin-to-Stackdriver add-on. The Stackdriver Trace Zipkin Collector is a drop-in replacement for the standard Zipkin HTTP collector that writes to Google’s free Stackdriver Trace distributed tracing service. To use Stackdriver for traces originating from Zipkin, there is additional configuration required, which is commented out of the current version of the zipkin-to-stackdriver.yaml file (gist).

Instructions to configure the Zipkin-to-Stackdriver feature can be found here. Below is an example of how you might add the necessary configuration using a Kubernetes ConfigMap to inject the required user credentials JSON file (zipkin-to-stackdriver-creds.json) into the zipkin-to-stackdriver container. The new configuration can be seen on lines 27-44 (gist).

Conclusion

Istio provides a significant amount of fine-grained management control to Kubernetes. Managed Kubernetes CaaS offerings like GKE, coupled with tools like Istio, will soon make running reliable and secure containerized applications in Production, commonplace.

References

All opinions in this post are my own, and not necessarily the views of my current or past employers or their clients.

, , , , , , , , , , ,

1 Comment