Posts Tagged JAVA EE

Continuous Integration and Delivery of Microservices using Jenkins CI, Docker Machine, and Docker Compose

Continuously integrate and deploy and test a RestExpress microservices-based, multi-container, Java EE application to a virtual test environment, using Docker, Docker Hub, Docker Machine, Docker Compose, Jenkins CI, Maven, and VirtualBox.

Docker Machine with Ambassador

Introduction

In the last post, we learned how to use Jenkins CI, Maven, and Docker Compose to take a set of microservices all the way from source control on GitHub, to a fully tested and running set of integrated Docker containers. We built the microservices, Docker images, and Docker containers. We deployed the containers directly onto the Jenkins CI Server machine. Finally, we performed integration tests to ensure the services were functioning as expected, within the containers.

In a more mature continuous delivery model, we would have deployed the running containers to a fresh ‘production-like’ environment to be more accurately tested, not the Jenkins CI Server host machine. In this post, we will learn how to use the recently released Docker Machine to create a fresh test environment in which to build and host our project’s ten Docker containers. We will couple Docker Machine with Oracle’s VirtualBoxJenkins CI, and Docker Compose to automatically build and test the services within their containers, within the virtual ‘test’ environment.

Update: All code for this post is available on GitHub, release version v2.1.0 on the ‘master’ branch (after running git clone …, run a ‘git checkout tags/v2.1.0’ command).

Docker Machine

If you recall in the last post, after compiling and packaging the microservices, Jenkins was used to deploy the build artifacts to the Virtual-Vehicles Docker GitHub project, as shown below.

Build and Deploy Results

We then used Jenkins, with the Docker CLI and the Docker Compose CLI, to automatically build and test the images and containers. This step will not change, however first we will use Docker Machine to automatically build a test environment, in which we will build the Docker images and containers.

Docker Machine with Ambassador

I’ve copied and modified the second Jenkins job we used in the last post, as shown below. The new job is titled, ‘Virtual-Vehicles_Docker_Machine’. This will replace the previous job, ‘Virtual-Vehicles_Docker_Compose’.

Jenkins CI Jobs Machine

The first step in the new Jenkins job is to clone the Virtual-Vehicles Docker GitHub repository.

Jenkins CI Machine Config 1

Next, Jenkins run a bash script to automatically build the test VM with Docker Machine, build the Docker images and containers with Docker Compose within the new VM, and finally test the services.

Jenkins CI Machine Config 2

The bash script executed by Jenkins contains the following commands:

# optional: record current versions of docker apps with each build
docker -v && docker-compose -v && docker-machine -v

# set-up: clean up any previous machine failures
docker-machine stop test || echo "nothing to stop" && \
docker-machine rm test   || echo "nothing to remove"

# use docker-machine to create and configure 'test' environment
# add a -D (debug) if having issues
docker-machine create --driver virtualbox test
eval "$(docker-machine env test)"

# use docker-compose to pull and build new images and containers
docker-compose -p jenkins up -d

# optional: list machines, images, and containers
docker-machine ls && docker images && docker ps -a

# wait for containers to fully start before tests fire up
sleep 30

# test the services
sh tests.sh $(docker-machine ip test)

# tear down: stop and remove 'test' environment
docker-machine stop test && docker-machine rm test

As the above script shows, first Jenkins uses the Docker Machine CLI to build and activate the ‘test’ virtual machine, using the VirtualBox driver. As of docker-machine version 0.3.0, the VirtualBox driver requires at least VirtualBox 4.3.28 to be installed.

docker-machine create --driver virtualbox test
eval "$(docker-machine env test)"

Once this step is complete you will have the following VirtualBox VM created, running, and active.

NAME   ACTIVE   DRIVER       STATE     URL                         SWARM
test   *        virtualbox   Running   tcp://192.168.99.100:2376

Next, Jenkins uses the Docker Compose CLI to execute the project’s Docker Compose YAML file.

docker-compose -p jenkins up -d

The YAML file directs Docker Compose to pull and build the required Docker images, and to build and configure the Docker containers.

########################################################################
#
# title:       Docker Compose YAML file for Virtual-Vehicles Project
# author:      Gary A. Stafford (https://programmaticponderings.com)
# url:         https://github.com/garystafford/virtual-vehicles-docker  
# description: Pulls (5) images, builds (5) images, and builds (11) containers,
#              for the Virtual-Vehicles Java microservices example REST API
# to run:      docker-compose -p <your_project_name_here> up -d
#
########################################################################

graphite:
  image: hopsoft/graphite-statsd:latest
  ports:
   - "8500:80"

mongoAuthentication:
  image: mongo:latest

mongoValet:
  image: mongo:latest

mongoMaintenance:
  image: mongo:latest

mongoVehicle:
  image: mongo:latest

authentication:
  build: authentication/
  links:
   - graphite
   - mongoAuthentication
   - "ambassador:nginx"
  expose:
   - "8587"

valet:
  build: valet/
  links:
   - graphite
   - mongoValet
   - "ambassador:nginx"
  expose:
   - "8585"

maintenance:
  build: maintenance/
  links:
   - graphite
   - mongoMaintenance
   - "ambassador:nginx"
  expose:
   - "8583"

vehicle:
  build: vehicle/
  links:
   - graphite
   - mongoVehicle
   - "ambassador:nginx"
  expose:
   - "8581"

nginx:
  build: nginx/
  ports:
   - "80:80"
  links:
   - "ambassador:vehicle"
   - "ambassador:valet"
   - "ambassador:authentication"
   - "ambassador:maintenance"

ambassador:
  image: cpuguy83/docker-grand-ambassador
  volumes:
   - "/var/run/docker.sock:/var/run/docker.sock"
  command: "-name jenkins_nginx_1 -name jenkins_authentication_1 -name jenkins_maintenance_1 -name jenkins_valet_1 -name jenkins_vehicle_1"

Running the docker-compose.yaml file, will pull these (5) Docker Hub images:

REPOSITORY                           TAG          IMAGE ID
==========                           ===          ========
java                                 8u45-jdk     1f80eb0f8128
nginx                                latest       319d2015d149
mongo                                latest       66b43e3cae49
hopsoft/graphite-statsd              latest       b03e373279e8
cpuguy83/docker-grand-ambassador     latest       c635b1699f78

And, build these (5) Docker images from Dockerfiles:

REPOSITORY                  TAG          IMAGE ID
==========                  ===          ========
jenkins_nginx               latest       0b53a9adb296
jenkins_vehicle             latest       d80f79e605f4
jenkins_valet               latest       cbe8bdf909b8
jenkins_maintenance         latest       15b8a94c00f4
jenkins_authentication      latest       ef0345369079

And, build these (11) Docker containers from corresponding image:

CONTAINER ID     IMAGE                                NAME
============     =====                                ====
17992acc6542     jenkins_nginx                        jenkins_nginx_1
bcbb2a4b1a7d     jenkins_vehicle                      jenkins_vehicle_1
4ac1ac69f230     mongo:latest                         jenkins_mongoVehicle_1
bcc8b9454103     jenkins_valet                        jenkins_valet_1
7c1794ca7b8c     jenkins_maintenance                  jenkins_maintenance_1
2d0e117fa5fb     jenkins_authentication               jenkins_authentication_1
d9146a1b1d89     hopsoft/graphite-statsd:latest       jenkins_graphite_1
56b34cee9cf3     cpuguy83/docker-grand-ambassador     jenkins_ambassador_1
a72199d51851     mongo:latest                         jenkins_mongoAuthentication_1
307cb2c01cc4     mongo:latest                         jenkins_mongoMaintenance_1
4e0807431479     mongo:latest                         jenkins_mongoValet_1

Since we are connected to the brand new Docker Machine ‘test’ VM, there are no locally cached Docker images. All images required to build the containers must be pulled from Docker Hub. The build time will be 3-4x as long as the last post’s build, which used the cached Docker images on the Jenkins CI machine.

Integration Testing

As in the last post, once the containers are built and configured, we run a series of expanded integration tests to confirm the containers and services are working. One difference, this time we will pass a parameter to the test bash script file:

sh tests.sh $(docker-machine ip test)

The parameter is the hostname used in the test’s RESTful service calls. The parameter, $(docker-machine ip test), is translated to the IP address of the ‘test’ VM. In our example, 192.168.99.100. If a parameter is not provided, the test script’s hostname variable will use the default value of localhost, ‘hostname=${1-'localhost'}‘.

Another change since the last post, the project now uses the open source version of Nginx, the free, open-source, high-performance HTTP server and reverse proxy, as a pseudo-API gateway. Instead calling each microservice directly, using their individual ports (i.e. port 8581 for the Vehicle microservice), all traffic is sent through Nginx on default http port 80, for example:

http://192.168.99.100/vehicles/utils/ping.json
http://192.168.99.100/jwts?apiKey=Z1nXG8JGKwvGlzQgPLwQdndW&secret=ODc4OGNiNjE5ZmI
http://192.168.99.100/vehicles/558f3042e4b0e562c03329ad

Internal traffic between the microservices and MongoDB, and between the microservices and Graphite is still direct, using Docker container linking. Traffic between the microservices and Nginx, in both directions, is handled by an ambassador container, a common pattern. Nginx acts as a reverse proxy for the microservices. Using Nginx brings us closer to a truer production-like experience for testing the services.

#!/bin/sh

########################################################################
#
# title:          Virtual-Vehicles Project Integration Tests
# author:         Gary A. Stafford (https://programmaticponderings.com)
# url:            https://github.com/garystafford/virtual-vehicles-docker  
# description:    Performs integration tests on the Virtual-Vehicles
#                 microservices
# to run:         sh tests.sh
# docker-machine: sh tests.sh $(docker-machine ip test)
#
########################################################################

echo --- Integration Tests ---
echo

### VARIABLES ###
hostname=${1-'localhost'} # use input param or default to localhost
application="Test API Client $(date +%s)" # randomized
secret="$(date +%s | sha256sum | base64 | head -c 15)" # randomized
make="Test"
model="Foo"

echo hostname: ${hostname}
echo application: ${application}
echo secret: ${secret}
echo make: ${make}
echo model: ${model}
echo


### TESTS ###
echo "TEST: GET request should return 'true' in the response body"
url="http://${hostname}/vehicles/utils/ping.json"
echo ${url}
curl -X GET -H 'Accept: application/json; charset=UTF-8' \
--url "${url}" \
| grep true > /dev/null
[ "$?" -ne 0 ] && echo "RESULT: fail" && exit 1
echo "RESULT: pass"
echo


echo "TEST: POST request should return a new client in the response body with an 'id'"
url="http://${hostname}/clients"
echo ${url}
curl -X POST -H "Cache-Control: no-cache" -d "{
    \"application\": \"${application}\",
    \"secret\": \"${secret}\"
}" --url "${url}" \
| grep '"id":"[a-zA-Z0-9]\{24\}"' > /dev/null
[ "$?" -ne 0 ] && echo "RESULT: fail" && exit 1
echo "RESULT: pass"
echo


echo "SETUP: Get the new client's apiKey for next test"
url="http://${hostname}/clients"
echo ${url}
apiKey=$(curl -X POST -H "Cache-Control: no-cache" -d "{
    \"application\": \"${application}\",
    \"secret\": \"${secret}\"
}" --url "${url}" \
| grep -o '"apiKey":"[a-zA-Z0-9]\{24\}"' \
| grep -o '[a-zA-Z0-9]\{24\}' \
| sed -e 's/^"//'  -e 's/"$//')
echo apiKey: ${apiKey}
echo


echo "TEST: GET request should return a new jwt in the response body"
url="http://${hostname}/jwts?apiKey=${apiKey}&secret=${secret}"
echo ${url}
curl -X GET -H "Cache-Control: no-cache" \
--url "${url}" \
| grep '[a-zA-Z0-9_-]\{1,\}\.[a-zA-Z0-9_-]\{1,\}\.[a-zA-Z0-9_-]\{1,\}' > /dev/null
[ "$?" -ne 0 ] && echo "RESULT: fail" && exit 1
echo "RESULT: pass"
echo


echo "SETUP: Get a new jwt using the new client for the next test"
url="http://${hostname}/jwts?apiKey=${apiKey}&secret=${secret}"
echo ${url}
jwt=$(curl -X GET -H "Cache-Control: no-cache" \
--url "${url}" \
| grep '[a-zA-Z0-9_-]\{1,\}\.[a-zA-Z0-9_-]\{1,\}\.[a-zA-Z0-9_-]\{1,\}' \
| sed -e 's/^"//'  -e 's/"$//')
echo jwt: ${jwt}
echo


echo "TEST: POST request should return a new vehicle in the response body with an 'id'"
url="http://${hostname}/vehicles"
echo ${url}
curl -X POST -H "Cache-Control: no-cache" \
-H "Authorization: Bearer ${jwt}" \
-d "{
    \"year\": 2015,
    \"make\": \"${make}\",
    \"model\": \"${model}\",
    \"color\": \"White\",
    \"type\": \"Sedan\",
    \"mileage\": 250
}" --url "${url}" \
| grep '"id":"[a-zA-Z0-9]\{24\}"' > /dev/null
[ "$?" -ne 0 ] && echo "RESULT: fail" && exit 1
echo "RESULT: pass"
echo


echo "SETUP: Get id from new vehicle for the next test"
url="http://${hostname}/vehicles?filter=make::${make}|model::${model}&limit=1"
echo ${url}
id=$(curl -X GET -H "Cache-Control: no-cache" \
-H "Authorization: Bearer ${jwt}" \
--url "${url}" \
| grep '"id":"[a-zA-Z0-9]\{24\}"' \
| grep -o '[a-zA-Z0-9]\{24\}' \
| tail -1 \
| sed -e 's/^"//'  -e 's/"$//')
echo vehicle id: ${id}
echo


echo "TEST: GET request should return a vehicle in the response body with the requested 'id'"
url="http://${hostname}/vehicles/${id}"
echo ${url}
curl -X GET -H "Cache-Control: no-cache" \
-H "Authorization: Bearer ${jwt}" \
--url "${url}" \
| grep '"id":"[a-zA-Z0-9]\{24\}"' > /dev/null
[ "$?" -ne 0 ] && echo "RESULT: fail" && exit 1
echo "RESULT: pass"
echo


echo "TEST: POST request should return a new maintenance record in the response body with an 'id'"
url="http://${hostname}/maintenances"
echo ${url}
curl -X POST -H "Cache-Control: no-cache" \
-H "Authorization: Bearer ${jwt}" \
-d "{
    \"vehicleId\": \"${id}\",
    \"serviceDateTime\": \"2015-27-00T15:00:00.400Z\",
    \"mileage\": 1000,
    \"type\": \"Test Maintenance\",
    \"notes\": \"This is a test notes.\"
}" --url "${url}" \
| grep '"id":"[a-zA-Z0-9]\{24\}"' > /dev/null
[ "$?" -ne 0 ] && echo "RESULT: fail" && exit 1
echo "RESULT: pass"
echo


echo "TEST: POST request should return a new valet transaction in the response body with an 'id'"
url="http://${hostname}/valets"
echo ${url}
curl -X POST -H "Cache-Control: no-cache" \
-H "Authorization: Bearer ${jwt}" \
-d "{
    \"vehicleId\": \"${id}\",
    \"dateTimeIn\": \"2015-27-00T15:00:00.400Z\",
    \"parkingLot\": \"Test Parking Ramp\",
    \"parkingSpot\": 10,
    \"notes\": \"This is a test notes.\"
}" --url "${url}" \
| grep '"id":"[a-zA-Z0-9]\{24\}"' > /dev/null
[ "$?" -ne 0 ] && echo "RESULT: fail" && exit 1
echo "RESULT: pass"
echo

Tear Down

In true continuous integration fashion, once the integration tests have completed, we tear down the project by removing the VirtualBox ‘test’ VM. This also removed all images and containers.

docker-machine stop test && \
docker-machine rm test

Jenkins CI Console Output

Below is an abridged sample of what the Jenkins CI console output will look like from a successful ‘build’.

Started by user anonymous
Building in workspace /var/lib/jenkins/jobs/Virtual-Vehicles_Docker_Machine/workspace
> git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
> git config remote.origin.url https://github.com/garystafford/virtual-vehicles-docker.git # timeout=10
Fetching upstream changes from https://github.com/garystafford/virtual-vehicles-docker.git
> git --version # timeout=10
using GIT_SSH to set credentials
using .gitcredentials to set credentials
> git config --local credential.helper store --file=/tmp/git7588068314920923143.credentials # timeout=10
> git -c core.askpass=true fetch --tags --progress https://github.com/garystafford/virtual-vehicles-docker.git +refs/heads/*:refs/remotes/origin/*
> git config --local --remove-section credential # timeout=10
> git rev-parse refs/remotes/origin/master^{commit} # timeout=10
> git rev-parse refs/remotes/origin/origin/master^{commit} # timeout=10
Checking out Revision f473249f0f70290b75cb320909af1f57cdaf2aa5 (refs/remotes/origin/master)
> git config core.sparsecheckout # timeout=10
> git checkout -f f473249f0f70290b75cb320909af1f57cdaf2aa5
> git rev-list f473249f0f70290b75cb320909af1f57cdaf2aa5 # timeout=10
[workspace] $ /bin/sh -xe /tmp/hudson8587699987350884629.sh

+ docker -v
Docker version 1.7.0, build 0baf609
+ docker-compose -v
docker-compose version: 1.3.1
CPython version: 2.7.9
OpenSSL version: OpenSSL 1.0.1e 11 Feb 2013
+ docker-machine -v
docker-machine version 0.3.0 (0a251fe)

+ docker-machine stop test
+ docker-machine rm test
Successfully removed test

+ docker-machine create --driver virtualbox test
Creating VirtualBox VM...
Creating SSH key...
Starting VirtualBox VM...
Starting VM...
To see how to connect Docker to this machine, run: docker-machine env test
+ docker-machine env test
+ eval export DOCKER_TLS_VERIFY="1"
export DOCKER_HOST="tcp://192.168.99.100:2376"
export DOCKER_CERT_PATH="/var/lib/jenkins/.docker/machine/machines/test"
export DOCKER_MACHINE_NAME="test"
# Run this command to configure your shell:
# eval "$(docker-machine env test)"
+ export DOCKER_TLS_VERIFY=1
+ export DOCKER_HOST=tcp://192.168.99.100:2376
+ export DOCKER_CERT_PATH=/var/lib/jenkins/.docker/machine/machines/test
+ export DOCKER_MACHINE_NAME=test
+ docker-compose -p jenkins up -d
Pulling mongoValet (mongo:latest)...
latest: Pulling from mongo

...Abridged output...

+ docker-machine ls
NAME   ACTIVE   DRIVER       STATE     URL                         SWARM
test   *        virtualbox   Running   tcp://192.168.99.100:2376
+ docker images
REPOSITORY                         TAG                 IMAGE ID            CREATED             VIRTUAL SIZE
jenkins_vehicle                    latest              fdd7f9d02ff7        2 seconds ago       837.1 MB
jenkins_valet                      latest              8a592e0fe69a        4 seconds ago       837.1 MB
jenkins_maintenance                latest              5a4a44e136e5        5 seconds ago       837.1 MB
jenkins_authentication             latest              e521e067a701        7 seconds ago       838.7 MB
jenkins_nginx                      latest              085d183df8b4        25 minutes ago      132.8 MB
java                               8u45-jdk            1f80eb0f8128        12 days ago         816.4 MB
nginx                              latest              319d2015d149        12 days ago         132.8 MB
mongo                              latest              66b43e3cae49        12 days ago         260.8 MB
hopsoft/graphite-statsd            latest              b03e373279e8        4 weeks ago         740 MB
cpuguy83/docker-grand-ambassador   latest              c635b1699f78        5 months ago        525.7 MB

+ docker ps -a
CONTAINER ID        IMAGE                              COMMAND                CREATED             STATUS              PORTS                                      NAMES
4ea39fa187bf        jenkins_vehicle                    "java -classpath .:c   2 seconds ago       Up 1 seconds        8581/tcp                                   jenkins_vehicle_1
b248a836546b        mongo:latest                       "/entrypoint.sh mong   3 seconds ago       Up 3 seconds        27017/tcp                                  jenkins_mongoVehicle_1
0c94e6409afc        jenkins_valet                      "java -classpath .:c   4 seconds ago       Up 3 seconds        8585/tcp                                   jenkins_valet_1
657f8432004b        jenkins_maintenance                "java -classpath .:c   5 seconds ago       Up 5 seconds        8583/tcp                                   jenkins_maintenance_1
8ff6de1208e3        jenkins_authentication             "java -classpath .:c   7 seconds ago       Up 6 seconds        8587/tcp                                   jenkins_authentication_1
c799d5f34a1c        hopsoft/graphite-statsd:latest     "/sbin/my_init"        12 minutes ago      Up 12 minutes       2003/tcp, 8125/udp, 0.0.0.0:8500->80/tcp   jenkins_graphite_1
040872881b25        jenkins_nginx                      "nginx -g 'daemon of   25 minutes ago      Up 25 minutes       0.0.0.0:80->80/tcp, 443/tcp                jenkins_nginx_1
c6a2dc726abc        mongo:latest                       "/entrypoint.sh mong   26 minutes ago      Up 26 minutes       27017/tcp                                  jenkins_mongoAuthentication_1
db22a44239f4        mongo:latest                       "/entrypoint.sh mong   26 minutes ago      Up 26 minutes       27017/tcp                                  jenkins_mongoMaintenance_1
d5fd655474ba        cpuguy83/docker-grand-ambassador   "/usr/bin/grand-amba   26 minutes ago      Up 26 minutes                                                  jenkins_ambassador_1
2b46bd6f8cfb        mongo:latest                       "/entrypoint.sh mong   31 minutes ago      Up 31 minutes       27017/tcp                                  jenkins_mongoValet_1

+ sleep 30

+ docker-machine ip test
+ sh tests.sh 192.168.99.100

--- Integration Tests ---

hostname: 192.168.99.100
application: Test API Client 1435585062
secret: NGM5OTI5ODAxMTZ
make: Test
model: Foo

TEST: GET request should return 'true' in the response body
http://192.168.99.100/vehicles/utils/ping.json
% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
Dload  Upload   Total   Spent    Left  Speed

0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0
100     4    0     4    0     0     26      0 --:--:-- --:--:-- --:--:--    25
100     4    0     4    0     0     26      0 --:--:-- --:--:-- --:--:--    25
RESULT: pass

TEST: POST request should return a new client in the response body with an 'id'
http://192.168.99.100/clients
% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
Dload  Upload   Total   Spent    Left  Speed

0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0
100   399    0   315  100    84    847    225 --:--:-- --:--:-- --:--:--   849
RESULT: pass

SETUP: Get the new client's apiKey for next test
http://192.168.99.100/clients
% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
Dload  Upload   Total   Spent    Left  Speed

0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0
100   399    0   315  100    84  20482   5461 --:--:-- --:--:-- --:--:-- 21000
apiKey: sv1CA9NdhmXh72NrGKBN3Abb

TEST: GET request should return a new jwt in the response body
http://192.168.99.100/jwts?apiKey=sv1CA9NdhmXh72NrGKBN3Abb&secret=NGM5OTI5ODAxMTZ
% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
Dload  Upload   Total   Spent    Left  Speed

0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0
100   222    0   222    0     0    686      0 --:--:-- --:--:-- --:--:--   687
RESULT: pass

SETUP: Get a new jwt using the new client for the next test
http://192.168.99.100/jwts?apiKey=sv1CA9NdhmXh72NrGKBN3Abb&secret=NGM5OTI5ODAxMTZ
% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
Dload  Upload   Total   Spent    Left  Speed

0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0
100   222    0   222    0     0  16843      0 --:--:-- --:--:-- --:--:-- 17076
jwt: eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJhcGkudmlydHVhbC12ZWhpY2xlcy5jb20iLCJhcGlLZXkiOiJzdjFDQTlOZGhtWGg3Mk5yR0tCTjNBYmIiLCJleHAiOjE0MzU2MjEwNjMsImFpdCI6MTQzNTU4NTA2M30.WVlhIhUcTz6bt3iMVr6MWCPIDd6P0aDZHl_iUd6AgrM

TEST: POST request should return a new vehicle in the response body with an 'id'
http://192.168.99.100/vehicles
% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
Dload  Upload   Total   Spent    Left  Speed

0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0
100   123    0     0  100   123      0    612 --:--:-- --:--:-- --:--:--   611
100   419    0   296  100   123    649    270 --:--:-- --:--:-- --:--:--   649
RESULT: pass

SETUP: Get id from new vehicle for the next test
http://192.168.99.100/vehicles?filter=make::Test|model::Foo&limit=1
% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
Dload  Upload   Total   Spent    Left  Speed

0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0
100   377    0   377    0     0   5564      0 --:--:-- --:--:-- --:--:--  5626
vehicle id: 55914a28e4b04658471dc03a

TEST: GET request should return a vehicle in the response body with the requested 'id'
http://192.168.99.100/vehicles/55914a28e4b04658471dc03a
% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
Dload  Upload   Total   Spent    Left  Speed

0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0
100   296    0   296    0     0   7051      0 --:--:-- --:--:-- --:--:--  7219
RESULT: pass

TEST: POST request should return a new maintenance record in the response body with an 'id'
http://192.168.99.100/maintenances
% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
Dload  Upload   Total   Spent    Left  Speed

0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0
100   565    0   376  100   189    506    254 --:--:-- --:--:-- --:--:--   506
100   565    0   376  100   189    506    254 --:--:-- --:--:-- --:--:--   506
RESULT: pass

TEST: POST request should return a new valet transaction in the response body with an 'id'
http://192.168.99.100/valets
% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
Dload  Upload   Total   Spent    Left  Speed

0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0
100   561    0   368  100   193    514    269 --:--:-- --:--:-- --:--:--   514
RESULT: pass

+ docker-machine stop test
+ docker-machine rm test
Successfully removed test

Finished: SUCCESS

Graphite and Statsd

If you’ve chose to build the Virtual-Vehicles Docker project outside of Jenkins CI, then in addition running the test script and using applications like Postman to test the Virtual-Vehicles RESTful API, you may also use Graphite and StatsD. RestExpress comes fully configured out of the box with Graphite integration, through the Metrics plugin. The Virtual-Vehicles RESTful API example is configured to use port 8500 to access the Graphite UI. The Virtual-Vehicles RESTful API example uses the hopsoft/graphite-statsd Docker image to build the Graphite/StatsD Docker container.

Graphite Dashboard

The Complete Process

The below diagram show the entire Virtual-Vehicles continuous integration and delivery process, start to finish, using Docker, Docker Hub, Docker Machine, Docker Compose, Jenkins CI, Maven, RestExpress, and VirtualBox.

Docker Machine Full Process

, , , , , , , , , , , , , ,

6 Comments

Continuous Integration and Delivery of Microservices using Jenkins CI, Maven, and Docker Compose

Continuously build, test, package and deploy a microservices-based, multi-container, Java EE application using Jenkins CI, Maven, Docker, and Docker Compose

IntroDockerCompose

Previous Posts

In the previous 3-part series, Building a Microservices-based REST API with RestExpress, Java EE, and MongoDB, we developed a set of Java EE-based microservices, which formed the Virtual-Vehicles REST API. In Part One of this series, we introduced the concepts of a RESTful API and microservices, using the vehicle-themed Virtual-Vehicles REST API example. In Part Two, we gained a basic understanding of how RestExpress works to build microservices, and discovered how to get the microservices example up and running. Lastly, in Part Three, we explored how to use tools such as Postman, along with the API documentation, to test our microservices.

Introduction

In this post, we will demonstrate how to use Jenkins CI, Maven, and Docker Compose to take our set of microservices all the way from source control on GitHub, to a fully tested and running set of integrated and orchestrated Docker containers. We will build and test the microservices, Docker images, and Docker containers. We will deploy the containers and perform integration tests to ensure the services are functioning as expected, within the containers. The milestones in our process will be:

  1. Continuous Integration: Using Jenkins CI and Maven, automatically compile, test, and package the individual microservices
  2. Deployment: Using Jenkins, automatically deploy the build artifacts to the new Virtual-Vehicles Docker project
  3. Containerization: Using Jenkins and Docker Compose, automatically build the Docker images and containers from the build artifacts and a set of Dockerfiles
  4. Integration Testing: Using Jenkins, perform automated integration tests on the containerized services
  5. Tear Down: Using Jenkins, automatically stop and remove the containers and images

For brevity, we will deploy the containers directly to the Jenkins CI Server, where they were built. In an upcoming post, I will demonstrate how to use the recently released Docker Machine to host the containers within an isolated VM.

Note: All code for this post is available on GitHub, release version v1.0.0 on the ‘master’ branch (after running git clone …, run a ‘git checkout tags/v1.0.0’ command).

Build the Microservices

In order to host the Virtual-Vehicles microservices, we must first compile the source code and produce build artifacts. In the case of the Virtual-Vehicles example, the build artifacts are a JAR file and at least one environment-specific properties file. In Part Two of our previous series, we compiled and produced JAR files for our microservices from the command line using Maven.

Build and Deploy

To automatically build our Maven-based microservices project in this post, we will use Jenkins CI and the Jenkins Maven Project Plugin. The Virtual-Vehicles microservices are bundled together into what Maven considers a multi-module project, which is defined by a parent POM referring to one or more sub-modules. Using the concept of project inheritance, Jenkins will compile each of the four microservices from the project’s single parent POM file. Note the four modules at the end of the pom.xml below, corresponding to each microservice.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <name>Virtual-Vehicles API</name>
    <description>Virtual-Vehicles API
        https://maven.apache.org/guides/introduction/introduction-to-the-pom.html#Example_3
    </description>
    <url>https://github.com/garystafford/virtual-vehicle-demo</url>
    <groupId>com.example</groupId>
    <artifactId>Virtual-Vehicles-API</artifactId>
    <version>1</version>
    <packaging>pom</packaging>

    <modules>
        <module>Maintenance</module>
        <module>Valet</module>
        <module>Vehicle</module>
        <module>Authentication</module>
    </modules>
</project>

Below is the view of the four individual Maven modules, within the single Jenkins Maven job.

Maven Modules In Jenkins

Each microservice module contains a Maven POM files. The POM files use the Apache Maven Compiler Plugin to compile code, and the Apache Maven Shade Plugin to create ‘uber-jars’ from the compiled code. The Shade plugin provides the capability to package the artifact in an uber-jar, including its dependencies. This will allow us to independently host the service in its own container, without external dependencies. Lastly, using the Apache Maven Resources Plugin, Maven will copy the environment properties files from the source directory to the ‘target’ directory, which contains the JAR file. To accomplish these Maven tasks, all Jenkins needs to do is a series of Maven life-cycle goals: ‘clean install package validate‘.

Once the code is compiled and packaged into uber-jars, Jenkins uses the Artifact Deployer Plugin to deploy the build artifacts from Jenkins’ workspace to a remote location. In our example, we will copy the artifacts to a second GitHub project, from which we will containerize our microservices.

Shown below are the two Jenkins jobs. The first one compiles, packages, and deploys the build artifacts. The second job containerizes the services, databases, and monitoring application.

Jenkins CI Main Page

Shown below are two screen grabs showing how we clone the Virtual-Vehicles GitHub repository and build the project using the main parent pom.xml file. Building the parent POM, in-turn builds all the microservice modules, using their POM files.

Build and Deploy Config 1

Build and Deploy Config 2

Deploy Build Artifacts

Once we have successfully compiled, tested (if we had unit tests with RestExpress), and packages the build artifacts as uber-jars, we deploy each set of build artifacts to a subfolder within the Virtual-Vehicles Docker GitHub project, using Jenkins’ Artifact Deployer Plugin. Shown below is the deployment configuration for just the Vehicles microservice. This deployment pattern is repeated for each service, within the Jenkins job configuration.

Build and Deploy Config 3

The Jenkins’ Artifact Deployer Plugin also provides the convenient ability to view and to redeploy the artifacts. Below, you see a list of the microservice artifacts deployed to the Docker project by Jenkins.

Build and Deploy Results

Build and Compose the Containers

IntroDockerCompose

The second Jenkins job clones the Virtual-Vehicles Docker GitHub repository.

Docker Compose Config 1

The second Jenkins job executes commands from the shell prompt. The first commands use the Docker CLI to removes any existing images and containers, which might have been left over from previous job failures. The second commands use the Docker Compose CLI to execute the project’s Docker Compose YAML file. The YAML file directs Docker Compose to pull and build the required Docker images, and to build and configure the Docker containers.

Docker Compose Config 2

# remove all images and containers from this build
docker ps -a --no-trunc  | grep 'jenkins' \
| awk '{print $1}' | xargs -r --no-run-if-empty docker stop && \
docker ps -a --no-trunc  | grep 'jenkins' \
| awk '{print $1}' | xargs -r --no-run-if-empty docker rm && \
docker images --no-trunc | grep 'jenkins' \
| awk '{print $3}' | xargs -r --no-run-if-empty docker rmi
# set DOCKER_HOST environment variable
export DOCKER_HOST=tcp://localhost:4243

# record installed version of Docker and Maven with each build
mvn --version && \
docker --version && \
docker-compose --version

# use docker-compose to build new images and containers
docker-compose -p jenkins up -d

# list virtual-vehicles related images
docker images | grep 'jenkins' | awk '{print $0}'

# list all containers
docker ps -a | grep 'jenkins\|mongo_\|graphite' | awk '{print $0}'
########################################################################
#
# title:       Docker Compose YAML file for Virtual-Vehicles Project
# author:      Gary A. Stafford (https://programmaticponderings.com)
# url:         https://github.com/garystafford/virtual-vehicles-docker  
# description: Builds (4) images, pulls (2) images, and builds (9) containers,
#              for the Virtual-Vehicles Java microservices example REST API
# to run:      docker-compose -p virtualvehicles up -d
#
########################################################################

graphite:
  image: hopsoft/graphite-statsd:latest
  ports:
   - "8481:80"

mongoAuthentication:
  image: mongo:latest

mongoValet:
  image: mongo:latest

mongoMaintenance:
  image: mongo:latest

mongoVehicle:
  image: mongo:latest

authentication:
  build: authentication/
  ports:
   - "8587:8587"
  links:
   - graphite
   - mongoAuthentication

valet:
  build: valet/
  ports:
   - "8585:8585"
  links:
   - graphite
   - mongoValet
   - authentication

maintenance:
  build: maintenance/
  ports:
   - "8583:8583"
  links:
   - graphite
   - mongoMaintenance
   - authentication

vehicle:
  build: vehicle/
  ports:
   - "8581:8581"
  links:
   - graphite
   - mongoVehicle
   - authentication

Running the docker-compose.yaml file, produces the following images:

REPOSITORY                TAG        IMAGE ID
==========                ===        ========
jenkins_vehicle           latest     a6ea4dfe7cf5
jenkins_valet             latest     162d3102d43c
jenkins_maintenance       latest     0b6f530cc968
jenkins_authentication    latest     45b50487155e

And, these containers:

CONTAINER ID     IMAGE                              NAME
============     =====                              ====
2b4d5a918f1f     jenkins_vehicle                    jenkins_vehicle_1
492fbd88d267     mongo:latest                       jenkins_mongoVehicle_1
01f410bb1133     jenkins_valet                      jenkins_valet_1
6a63a664c335     jenkins_maintenance                jenkins_maintenance_1
00babf484cf7     jenkins_authentication             jenkins_authentication_1
548a31034c1e     hopsoft/graphite-statsd:latest     jenkins_graphite_1
cdc18bbb51b4     mongo:latest                       jenkins_mongoAuthentication_1
6be5c0558e92     mongo:latest                       jenkins_mongoMaintenance_1
8b71d50a4b4d     mongo:latest                       jenkins_mongoValet_1

Integration Testing

Once the containers have been successfully built and configured, we run a series of integration tests to confirm the services are up and running. We refer to these tests as integration tests because they test the interaction of multiple components. Integration tests were covered in the last post, Building a Microservices-based REST API with RestExpress, Java EE, and MongoDB: Part 3.

Note the short pause I have inserted before running the tests. Docker Compose does an excellent job of accounting for the required start-up order of the containers to avoid race conditions (see my previous post). However, depending on the speed of the host box, there is still a start-up period for the container’s processes to be up, running, and ready to receive traffic. Apache Log4j 2 and MongoDB startup, in particular, take extra time. I’ve seen the containers take as long as 1-2 minutes on a slow box to fully start. Without the pause, the tests fail with various errors, since the container’s processes are not all running.

Docker Compose Config 3

sleep 15
sh tests.sh -v

The bash-based tests below just scratch the surface as a complete set of integration tests. However, they demonstrate an effective multi-stage testing pattern for handling the complex nature of RESTful service request requirements. The tests build upon each other. After setting up some variables, the tests register a new API client. Then, they use the new client’s API key to obtain a JWT. The tests then use the JWT to authenticate themselves, and create a new vehicle. Finally, they use the new vehicle’s id and the JWT to verify the existence for the new vehicle.

Although some may consider using bash to test somewhat primitive, the script demonstrates the effectiveness of bash’s curl, grep, sed, awk, along with regular expressions, to test our RESTful services.

#!/bin/sh

########################################################################
#
# title:       Virtual-Vehicles Project Integration Tests
# author:      Gary A. Stafford (https://programmaticponderings.com)
# url:         https://github.com/garystafford/virtual-vehicles-docker  
# description: Performs integration tests on the Virtual-Vehicles
#              microservices
# to run:      sh tests.sh -v
#
########################################################################

echo --- Integration Tests ---

### VARIABLES ###
hostname="localhost"
application="Test API Client $(date +%s)" # randomized
secret="$(date +%s | sha256sum | base64 | head -c 15)" # randomized

echo hostname: ${hostname}
echo application: ${application}
echo secret: ${secret}


### TESTS ###
echo "TEST: GET request should return 'true' in the response body"
url="http://${hostname}:8581/vehicles/utils/ping.json"
echo ${url}
curl -X GET -H 'Accept: application/json; charset=UTF-8' \
--url "${url}" \
| grep true > /dev/null
[ "$?" -ne 0 ] && echo "RESULT: fail" && exit 1
echo "RESULT: pass"


echo "TEST: POST request should return a new client in the response body with an 'id'"
url="http://${hostname}:8587/clients"
echo ${url}
curl -X POST -H "Cache-Control: no-cache" -d "{
    \"application\": \"${application}\",
    \"secret\": \"${secret}\"
}" --url "${url}" \
| grep '"id":"[a-zA-Z0-9]\{24\}"' > /dev/null
[ "$?" -ne 0 ] && echo "RESULT: fail" && exit 1
echo "RESULT: pass"


echo "SETUP: Get the new client's apiKey for next test"
url="http://${hostname}:8587/clients"
echo ${url}
apiKey=$(curl -X POST -H "Cache-Control: no-cache" -d "{
    \"application\": \"${application}\",
    \"secret\": \"${secret}\"
}" --url "${url}" \
| grep -o '"apiKey":"[a-zA-Z0-9]\{24\}"' \
| grep -o '[a-zA-Z0-9]\{24\}' \
| sed -e 's/^"//'  -e 's/"$//')
echo apiKey: ${apiKey}
echo

echo "TEST: GET request should return a new jwt in the response body"
url="http://${hostname}:8587/jwts?apiKey=${apiKey}&secret=${secret}"
echo ${url}
curl -X GET -H "Cache-Control: no-cache" \
--url "${url}" \
| grep '[a-zA-Z0-9_-]\{1,\}\.[a-zA-Z0-9_-]\{1,\}\.[a-zA-Z0-9_-]\{1,\}' > /dev/null
[ "$?" -ne 0 ] && echo "RESULT: fail" && exit 1
echo "RESULT: pass"


echo "SETUP: Get a new jwt using the new client for the next test"
url="http://${hostname}:8587/jwts?apiKey=${apiKey}&secret=${secret}"
echo ${url}
jwt=$(curl -X GET -H "Cache-Control: no-cache" \
--url "${url}" \
| grep '[a-zA-Z0-9_-]\{1,\}\.[a-zA-Z0-9_-]\{1,\}\.[a-zA-Z0-9_-]\{1,\}' \
| sed -e 's/^"//'  -e 's/"$//')
echo jwt: ${jwt}


echo "TEST: POST request should return a new vehicle in the response body with an 'id'"
url="http://${hostname}:8581/vehicles"
echo ${url}
curl -X POST -H "Cache-Control: no-cache" \
-H "Authorization: Bearer ${jwt}" \
-d '{
    "year": 2015,
    "make": "Test",
    "model": "Foo",
    "color": "White",
    "type": "Sedan",
    "mileage": 250
}' --url "${url}" \
| grep '"id":"[a-zA-Z0-9]\{24\}"' > /dev/null
[ "$?" -ne 0 ] && echo "RESULT: fail" && exit 1
echo "RESULT: pass"


echo "SETUP: Get id from new vehicle for the next test"
url="http://${hostname}:8581/vehicles?filter=make::Test|model::Foo&limit=1"
echo ${url}
id=$(curl -X GET -H "Cache-Control: no-cache" \
-H "Authorization: Bearer ${jwt}" \
--url "${url}" \
| grep '"id":"[a-zA-Z0-9]\{24\}"' \
| grep -o '[a-zA-Z0-9]\{24\}' \
| tail -1 \
| sed -e 's/^"//'  -e 's/"$//')
echo vehicle id: ${id}


echo "TEST: GET request should return a vehicle in the response body with the requested 'id'"
url="http://${hostname}:8581/vehicles/${id}"
echo ${url}
curl -X GET -H "Cache-Control: no-cache" \
-H "Authorization: Bearer ${jwt}" \
--url "${url}" \
| grep '"id":"[a-zA-Z0-9]\{24\}"' > /dev/null
[ "$?" -ne 0 ] && echo "RESULT: fail" && exit 1
echo "RESULT: pass"

Since our tests are just a bash script, they can also be ran separately from the command line, as in the screen grab below. The output, except for the colored text, is identical to what appears in the Jenkins console output.

Running Integration Tests

Tear Down

Once the integration tests have completed, we ‘tear down’ the project by removing the Virtual-Vehicle images and containers. We simply repeat the first commands we ran at the start of the Jenkins build phase. You could choose to remove the tear down step, and use this job as a way to simply build and start your multi-container application.

# remove all images and containers from this build
docker ps -a --no-trunc  | grep 'jenkins' \
| awk '{print $1}' | xargs -r --no-run-if-empty docker stop && \
docker ps -a --no-trunc  | grep 'jenkins' \
| awk '{print $1}' | xargs -r --no-run-if-empty docker rm && \
docker images --no-trunc | grep 'jenkins' \
| awk '{print $3}' | xargs -r --no-run-if-empty docker rmi

The Complete Process

The below diagram show the entire process, start to finish.

Full Process

, , , , , , , , , , , , ,

18 Comments

Building a Microservices-based REST API with RestExpress, Java EE, and MongoDB: Part 3

Develop a well-architected and well-documented REST API, built on a tightly integrated collection of Java EE-based microservices.

Virtual-Vehicles Architecture

Note: All code available on GitHub. For the version of the code that matches the details in this blog post, check out the master branch, v1.0.0 tag (after running git clone …, run a git checkout tags/v1.0.0 command).

Previous Posts

In Part One of this series, we introduced the microservices-based Virtual-Vehicles REST API example. The vehicle-themed Virtual-Vehicles microservices offers a comprehensive set of functionality, through a REST API, to application developers. In Part Two, we installed a copy of the Virtual-Vehicles project from GitHub. In Part Two, we also gained a basic understanding of how RestExpress works. Finally, we discovered how to get the Virtual-Vehicles microservices up and running.

Part Three

In part three of this series, we will take the Virtual-Vehicles for a test drive (get it? maybe it was funnier the first time…). There are several tools we can use to test the Virtual-Vehicles API. One of my favorite tools is Postman.  We will explore how to use Postman, along with the Virtual-Vehicles API documentation, to test the Virtual-Vehicles microservice’s endpoints, which compose the Virtual-Vehicles API.

Testing the API

There are three categories of tools available to test RESTful APIs, which are GUI-based applications, command line tools, and testing frameworks. Postman, Advanced REST ClientREST Console, and SmartBear’s SoapUI and SoapUI NG Pro, are examples of GUI-based applications, designed specifically to test RESTful APIs. cURL and GNU Wget are two examples of command line tools, which among other capabilities, can test APIs. Lastly, JUnit is an example of a testing framework that can be used to test a RESTful API. Surprisingly, JUnit is not only designed to manage unit tests. Each category of testing tools has their pros and cons, depending on your testing needs. We will explore all of these categories in this post as we test the Virtual-Vehicles REST API.

JUnit

JUnit is probably the best known of all Java unit testing frameworks. JUnit’s website describes JUnit as ‘a simple, open source framework to write and run repeatable tests. It is an instance of the xUnit architecture for unit testing frameworks.’ Most Java developers turn to JUnit for unit testing. However, JUnit is capable of other forms of testing, including integration testing. In his post, ‘Unit Testing with JUnit – Tutorial’, Lars Vogel states ‘an integration test has the target to test the behavior of a component or the integration between a set of components. The term functional test is sometimes used as a synonym for integration test. This kind of tests allow you to translate your user stories into a test suite, i.e., the test would resemble an expected user interaction with the application.’

Testing the Virtual-Vehicles RESTful API’s operations with JUnit would be considered integration (functional) testing. At a minimum, to complete requests, we call one microservice, which in turn authenticates the JWT by calling another microservice. If authenticated, the first microservice makes a request to its MongoDB database. As Vogel stated, whereas a unit test targets a small unit of code, such as a method, the request/response operation is integration between a set of components. testing an API call requires several dependencies.

The simplest example of testing the Virtual-Vehicles API with JUnit, would be to test an HTTP GET request to return a single instance of a vehicle. The code below demonstrates how this might be done. Notice the request depends on helper methods (not included, for brevity). To request the vehicle, assuming we already have a registered client, we need a valid JWT. We also need a valid vehicle ObjectId. To obtain these two pieces of data, we call helper methods, which in turn makes the necessary request to retrieve a JWT and vehicle ObjectId.

/**
* Test of HTTP GET to read a single vehicle.
*/
@Test
public void testVehicleRead() {
String responseBody = "";
String output;
Boolean result = true;
Boolean expResult = true;
try {
URL url = new URL(getBaseUrlAndPort() + "/vehicles/" + getVehicleObjectId());
HttpURLConnection conn = (HttpURLConnection) url.openConnection();
conn.setRequestMethod("GET");
conn.setRequestProperty("Authorization", "Bearer " + getJwt());
conn.setRequestProperty("Accept", "application/json");
if (conn.getResponseCode() != 200) {
// if not 200 response code then fail test
result = false;
}
BufferedReader br = new BufferedReader(new InputStreamReader(
(conn.getInputStream())));
while ((output = br.readLine()) != null) {
responseBody = output;
}
if (responseBody.length() < 1) {
// if response body is empty then fail test
result = false;
}
conn.disconnect();
} catch (IOException e) {
// if MalformedURLException, ConnectException, etc. then fail test
result = false;
}
assertEquals(expResult, result);
}

Below are the results of the above test, run in NetBeans IDE, using the built-in support for JUnit.

JUnit Test Results

JUnit can also be run from the command line using the Maven goal, surefire:test:

mvn -q -Dtest=com.example.vehicle.objectid.VehicleControllerIT surefire:test

Running JUnit from Command Line

cURL

One of the best-known command line tools for calling for all types of operations centered around calling a URL is cURL. According to their website, ‘curl is a command line tool and library for transferring data with URL syntax, supporting…HTTP, HTTPS…curl supports SSL certificates, HTTP POST, HTTP PUT, FTP uploading, HTTP form based upload, proxies, HTTP/2, cookies, user+password authentication (Basic, Plain, Digest, CRAM-MD5, NTLM, Negotiate, and Kerberos), file transfer resume, proxy tunneling and more.’ I prefer the website’s  briefer description, cURL ‘groks those URLs’.

Using cURL, we could make an HTTP PUT request to the Vehicle microservice’s /vehicles/{oid}.{format} endpoint. With cURL, we have the ability to add the JWT-based Authorization header and the raw request body, containing the modified vehicle object. Below is an example of that cURL command, which can be run from a terminal prompt.

curl --url 'http://virtual-vehicles.com:8581/vehicles/557310cfec7291b25cd3a1c2' \
-X PUT \
-H 'Pragma: no-cache' \
-H 'Cache-Control: no-cache' \
-H 'Accept: application/json; charset=UTF-8' \
-H 'Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJ2aXJ0dWFsLXZlaGljbGVzLmNvbSIsImFwaUtleSI6IlJncjg0YzF6VkdtMFd1N25kWjd5UGNURSIsImV4cCI6MTQzMzY2ODEwNywiYWl0IjoxNDMzNjMyMTA3fQ.xglaKWufcj4TZtMXW3DLa9uy5JB_FJHxxtk_iF1WT6U' \
--data-binary $'{ "year": 2015, "make": "Chevrolet", "model": "Corvette Stingray", "color": "White", "type": "Coupe", "mileage": 902, "createdAt": "2015-05-09T22:36:04.808Z" }' \
--compressed

The response body contains the expected modified vehicle object in JSON-format, along with a 201 Created response status.

cURL  HTTP PUT Vehicle

The cURL commands may be incorporated into many types of automated testing processes. These might be as simple as a bash script. The script could a series of automated tests, including the following: register an API client, use the API key to create a JWT, use the JWT to create a new vehicle, use the new vehicle’s ObjectId to modify that same vehicle, delete that vehicle, confirm the vehicle is removed using the count operation and returns a test results report to the user.

cURL Commands from Chrome
Quick tip, instead of hand-coding complex cURL commands, containing form data, URL parameters, and Headers, use Chrome. First, open the Chrome Developer Tools (f12). Next, using the Postman – REST Client for Chrome, available in the Chrome App Store, execute your HTTP request. Finally, in the ‘Network’ tab of the Developers tools, find and right-click on the request and select ‘Copy as cURL’. You have a complete cURL command equivalent of your Postman request, which you can paste directly into the command line or insert into a script. Below is an example of using the Postman – REST Client for Chrome to generate a cURL command.

Using Postman in Chrome to get cURL

curl --url 'http://virtual-vehicles.com:8581/vehicles/554e8bd4c830093007d8b949' \
-X PUT \
-H 'Pragma: no-cache' \
-H 'Origin: chrome-extension://fdmmgilgnpjigdojojpjoooidkmcomcm' \
-H 'Accept-Encoding: gzip, deflate, sdch' \
-H 'Accept-Language: en-US,en;q=0.8' \
-H 'CSP: active' \
-H 'Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJ2aXJ0dWFsLXZlaGljbGVzLmNvbSIsImFwaUtleSI6IlBUMklPSWRaRzZoU0VEZGR1c2h6U04xRyIsImV4cCI6MTQzMzU2MDg5NiwiYWl0IjoxNDMzNTI0ODk2fQ.4q6EMuxE0vS43zILjE6e1tYrb5ulCe69-1QTFLYGbFU' \
-H 'Content-Type: text/plain;charset=UTF-8' \
-H 'Accept: */*' \
-H 'User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/43.0.2357.81 Safari/537.36' \
-H 'Cache-Control: no-cache' \
-H 'Connection: keep-alive' \
-H 'X-FirePHP-Version: 0.0.6' \
--data-binary $'{ "year": 2015, "make": "Chevrolet", "model": "Corvette Stingray", "color": "White", "type": "Coupe", "mileage": 902, "createdAt": "2015-05-09T22:36:04.808Z" }' \
--compressed

The generated command is a bit verbose. Compare this command to the cURL command, earlier.

Wget

Similar to cURL, GNU Wget provides the ability to call the Virtual-Vehicles API’s endpoints. According to their website, ‘GNU Wget is a free software package for retrieving files using HTTP, HTTPS and FTP, the most widely-used Internet protocols. It is a non-interactive command line tool, so it may easily be called from scripts, cron jobs, terminals without X-Windows support, etc.’ Again, like cURL, we can run Wget commands from the command line or incorporate them into scripted testing processes. The Wget website contains excellent documentation.

Using Wget, we could make the same HTTP PUT request to the Vehicle microservice /vehicles/{oid}.{format} endpoint. Like cURL, we have the ability to add the JWT-based Authorization header and the raw request body, containing the modified vehicle object.

wget -O - 'http://virtual-vehicles.com:8581/vehicles/557310cfec7291b25cd3a1c2' \
--method=PUT \
--header='Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJ2aXJ0dWFsLXZlaGljbGVzLmNvbSIsImFwaUtleSI6IlJncjg0YzF6VkdtMFd1N25kWjd5UGNURSIsImV4cCI6MTQzMzY2ODEwNywiYWl0IjoxNDMzNjMyMTA3fQ.xglaKWufcj4TZtMXW3DLa9uy5JB_FJHxxtk_iF1WT6U' \
--header='Content-Type: text/plain;charset=UTF-8' \
--header='Accept: application/json' \
--body-data=$'{ "year": 2015, "make": "Chevrolet", "model": "Corvette Stingray", "color": "White", "type": "Coupe", "mileage": 902, "createdAt": "2015-05-09T22:36:04.808Z" }'

The response body contains the expected modified vehicle object in JSON-format, along with a 201 Created response status.

Wget HTTP PUT Vehicle

cURL Bash Testing

We can combine cURL and Wget with several of the tools bash provides, to develop fairly complex integration tests. The bash-based script below just scratches the surface as a complete set of integration tests. However, the tests demonstrate an efficient multi-stage test approach to handling the complex nature of RESTful service request requirements. The tests build upon each other.

After setting up some variables and doing a quick health check on one service, the tests register a new API client by calling the Authentication service. Next, they use the new client’s API key to obtain a JWT. The tests then use the JWT to authenticate themselves and create a new vehicle. Finally, they use the new vehicle’s id and the JWT to verify the existence for the new vehicle.

Although some may consider using bash to test somewhat primitive, the following script demonstrates the effectiveness of bash’s  curl, grep, sed, awk, along with regular expressions, to test our RESTful services. Note how we grep certain values from the response, such as the new client’s API key, and then use that value as a parameter for the following test request, such as to obtain a JWT.

#!/bin/sh
########################################################################
#
# title: Virtual-Vehicles Project Integration Tests
# author: Gary A. Stafford (https://programmaticponderings.com)
# url: https://github.com/garystafford/virtual-vehicles-docker
# description: Performs integration tests on the Virtual-Vehicles
# microservices
# to run: sh tests_color.sh -v
#
########################################################################
echo --- Integration Tests ---
### VARIABLES ###
hostname="localhost"
application="Test API Client $(date +%s)" # randomized
secret="$(date +%s | sha256sum | base64 | head -c 15)" # randomized
echo hostname: ${hostname}
echo application: ${application}
echo secret: ${secret}
### TESTS ###
echo "TEST: GET request should return 'true' in the response body"
url="http://${hostname}:8581/vehicles/utils/ping.json"
echo ${url}
curl -X GET -H 'Accept: application/json; charset=UTF-8' \
--url "${url}" \
| grep true > /dev/null
[ "$?" -ne 0 ] && echo "RESULT: fail" && exit 1
echo "RESULT: pass"
echo "TEST: POST request should return a new client in the response body with an 'id'"
url="http://${hostname}:8587/clients"
echo ${url}
curl -X POST -H "Cache-Control: no-cache" -d "{
\"application\": \"${application}\",
\"secret\": \"${secret}\"
}" --url "${url}" \
| grep '"id":"[a-zA-Z0-9]\{24\}"' > /dev/null
[ "$?" -ne 0 ] && echo "RESULT: fail" && exit 1
echo "RESULT: pass"
echo "SETUP: Get the new client's apiKey for next test"
url="http://${hostname}:8587/clients"
echo ${url}
apiKey=$(curl -X POST -H "Cache-Control: no-cache" -d "{
\"application\": \"${application}\",
\"secret\": \"${secret}\"
}" --url "${url}" \
| grep -o '"apiKey":"[a-zA-Z0-9]\{24\}"' \
| grep -o '[a-zA-Z0-9]\{24\}' \
| sed -e 's/^"//' -e 's/"$//')
echo apiKey: ${apiKey}
echo
echo "TEST: GET request should return a new jwt in the response body"
url="http://${hostname}:8587/jwts?apiKey=${apiKey}&secret=${secret}"
echo ${url}
curl -X GET -H "Cache-Control: no-cache" \
--url "${url}" \
| grep '[a-zA-Z0-9_-]\{1,\}\.[a-zA-Z0-9_-]\{1,\}\.[a-zA-Z0-9_-]\{1,\}' > /dev/null
[ "$?" -ne 0 ] && echo "RESULT: fail" && exit 1
echo "RESULT: pass"
echo "SETUP: Get a new jwt using the new client for the next test"
url="http://${hostname}:8587/jwts?apiKey=${apiKey}&secret=${secret}"
echo ${url}
jwt=$(curl -X GET -H "Cache-Control: no-cache" \
--url "${url}" \
| grep '[a-zA-Z0-9_-]\{1,\}\.[a-zA-Z0-9_-]\{1,\}\.[a-zA-Z0-9_-]\{1,\}' \
| sed -e 's/^"//' -e 's/"$//')
echo jwt: ${jwt}
echo "TEST: POST request should return a new vehicle in the response body with an 'id'"
url="http://${hostname}:8581/vehicles"
echo ${url}
curl -X POST -H "Cache-Control: no-cache" \
-H "Authorization: Bearer ${jwt}" \
-d '{
"year": 2015,
"make": "Test",
"model": "Foo",
"color": "White",
"type": "Sedan",
"mileage": 250
}' --url "${url}" \
| grep '"id":"[a-zA-Z0-9]\{24\}"' > /dev/null
[ "$?" -ne 0 ] && echo "RESULT: fail" && exit 1
echo "RESULT: pass"
echo "SETUP: Get id from new vehicle for the next test"
url="http://${hostname}:8581/vehicles?filter=make::Test|model::Foo&limit=1"
echo ${url}
id=$(curl -X GET -H "Cache-Control: no-cache" \
-H "Authorization: Bearer ${jwt}" \
--url "${url}" \
| grep '"id":"[a-zA-Z0-9]\{24\}"' \
| grep -o '[a-zA-Z0-9]\{24\}' \
| tail -1 \
| sed -e 's/^"//' -e 's/"$//')
echo vehicle id: ${id}
echo "TEST: GET request should return a vehicle in the response body with the requested 'id'"
url="http://${hostname}:8581/vehicles/${id}"
echo ${url}
curl -X GET -H "Cache-Control: no-cache" \
-H "Authorization: Bearer ${jwt}" \
--url "${url}" \
| grep '"id":"[a-zA-Z0-9]\{24\}"' > /dev/null
[ "$?" -ne 0 ] && echo "RESULT: fail" && exit 1
echo "RESULT: pass"

Since these tests are just a bash script, they can from the command line, or easily called from a continuous integration tool, Such as Jenkins CI or Hudson.

Running Integration Tests

Postman

Postman, like several similar tools, is an application designed specifically for test API endpoints. The Postman website describes Postman as tool that allows you to ‘build, test, and document your APIs faster.’  There are two versions of Postman in the Chrome Web Store. They are Postman – REST Client, the in-browser extension, which we mentioned above, and Postman, the standalone application. There is also Postman Interceptor, which helps you send requests that use browser cookies through the Postman application.

Postman and similar applications, have add-ons and extensions to extend their features. In particular, Postman, which is free, offers the Jetpacks paid extension. Jetpacks add the ability to ‘write and run tests inside Postman, extract data from responses, chain requests together and test requests with thousands of variations’. Jetpacks allow you to move beyond basic one-off API request-based testing, to automated regression and performance testing.

Using Postman
Let’s use the same HTTP PUT example we used with cURL and Wget, and see how we would perform the same task with Postman. In the first screen grab below, you can see all elements of the HTTP request, including the RESTful API’s URL, URI including the vehicle’s ObjectId (/vehicles/{ObjectId}.{format}), HTTP method (PUT), Authorization Header with JWT (Bearer), and the raw request body. The raw request body contains a JSON representation of the vehicle we want to update. Note how Postman saves the request in history so we can easily replay it later.

Postman HTTP PUT of Vehicle

In the next screen-grab, we see the response to the HTTP PUT request. Note the response body, response status, timing, and response headers.

Postman HTTP POST of Vehicle Response

Looking at the response body in Postman, you easily see the how RestExpress demonstrates the RESTful principle we discussed in Part Two of the series, HATEOAS (Hypermedia as the Engine of Application State). Note the link to this vehicle’s ‘self’ href) and the entire vehicles collection (‘up’ href).

Postman Collections
A great feature of Postman with Jetpacks is Collections. Collections are sets of requests, which can be saved, recalled, and shared. The Collection Runner runs requests in a collection, in the order in which you set them. Ordered collections are ideal for the Virtual-Vehicles API. The screen grab below shows a collection of requests, arranged in the order we would execute them to test the Virtual-Vehicles API, as it applies to specifically to vehicle CRUD operations:

  1. Execute HTTP POST request to register the new API client, passing the application name and a shared secret in the request
    Receive the new client’s API key in response
  2. Execute HTTP GET to request, passing the new client’s API key and the shared secret in the request
    Receive the new JWT in response
  3. Execute HTTP POST request to create a new vehicle, passing the JWT in the header for authentication (used for all following requests)
    Receive the new vehicle object in response
  4. Execute HTTP PUT request to modify the new vehicle, using the vehicle’s ObjectId
    Receive the modified vehicle object in response
  5. Execute HTTP GET to request the modified vehicle, to confirm it exists in the expected state
    Receive the vehicle object in response
  6. Execute HTTP DELETE request to delete the new vehicle, using the vehicle’s ObjectId
  7. Execute HTTP GET to request the new vehicle and to confirm it has been removed
    Receive a 404 Not Found status response, as expected

Postman Ordered Series of REST Calls

Using saved collections for testing the Virtual-Vehicles API is a real-time saving. However, the collections cannot easily be re-run without hand-editing or some advanced scripting. In the simple example above, we hard-coded a JWT and vehicle ObjectId in the requests. Unfortunately, the JWT has an expiration of only 10 hours by default. More immediately, the ObjectId is unique. The earlier collection test run created, then deleted, the vehicle with that ObjectId.

Negative Testing
You may also perform negative testing with Postman. For example, do you receive the expected response when you don’t include the Authorization Header with JWT in a request (401 Unauthorized status)? When you include a JWT, which has expired (401 Unauthorized status)? When you request a vehicle, whose ObjectId is incorrect or is not found in the database (400 Bad Request status)? Do you receive the expected response when you call an actual service, but an endpoint that doesn’t exist (405 Method Not Allowed)?

Negative Testing in Postman

Postman Test Automation

In addition to manually viewing the HTTP response, to verify the results of a request, Postman allows you to write and run automated tests for each request. According to their website, a ‘Postman test is essentially JavaScript code which sets values for the special tests object. You can set a descriptive key for an element in the object and then say if it’s true or false’. This allows you to write a set of response validation tests for each request.

Below is a quick example of testing the same HTTP POST request, used to create the new API client, above. In this example, we:

  1. Test that the Content-Type response header is present
  2. Test that the HTTP POST successfully returned a 201 status code
  3. Test that the new client’s API key was returned in the response body
  4. Test that the response time was less than 200ms

Postman Test Editor Example

Reviewing Postman’s ‘Tests’ tab, above, observe the four tests have run successfully. Using the Postman’s testing feature, you can create even more advanced tests, eliminating the need to manually validate responses.

This post demonstrates a small subset of the features Postman and other similar applications provide for testing RESTful API. The tools and processes you use to test your RESTful API will depend on the stage of development and testing you are in, as well as the existing technology stacks you build, and on which you host your services.

, , , , , , , , , , , , ,

1 Comment

Building a Microservices-based REST API with RestExpress, Java EE, and MongoDB: Part 2

Develop a well-architected and well-documented REST API, built on a tightly integrated collection of Java EE-based microservices.

Virtual-Vehicles Architecture

Note: All code available on GitHub. For the version of the code that matches the details in this blog post, check out the master branch, v1.0.0 tag (after running git clone …, run a ‘git checkout tags/v1.0.0’ command).

Previous Post

In Part One of this series, we introduced the microservices-based Virtual-Vehicles REST API example. The vehicle-themed Virtual-Vehicles microservices offers a comprehensive set of functionality, through a REST API, to application developers. The developers, in turn, will use the Virtual-Vehicles REST API’s functionality to build applications and games for their end-users.

In Part One, we also decided on the proper amount and responsibility of each microservice. We also determined the functionality of each microservice to meet the hypothetical functional and nonfunctional requirements of Virtual-Vehicles. To review, the four microservices we are building, are as follows:

Virtual-Vehicles REST API Resources

Microservice Purpose (Business Capability) Functions
Authentication
Manage API clients and
JWT authentication
  • Create a new API client (public)
  • Read, filter, sort, count, paginate API clients (admin)
  • Read a single API client (public)
  • Update an existing API client (public)
  • Delete an existing API client (admin)
  • Create new JWT (public)
  • Validate a JWT (internal)
  • Service health ping (admin)
Vehicle
Manage virtual vehicles
  • Create a new vehicle (public)
  • Read, filter, sort, count, paginate vehicles (admin)
  • Read a single vehicle (public)
  • Update an existing vehicle (public)
  • Delete an existing vehicle (admin)
  • Validate a JWT (internal)
  • Service health ping (admin)
Maintenance
Manage maintenance on vehicles
  • Create a new maintenance record (public)
  • Read, filter, sort, count, paginate maintenance records (admin)
  • Read a single maintenance record (public)
  • Update an existing maintenance record (public)
  • Delete an existing maintenance record (admin)
  • Validate a JWT (internal)
  • Service health ping (admin)
Valet Parking
Manage a valet service to park for vehicles
  • Create a new valet parking transaction (public)
  • Read, filter, sort, count, paginate valet parking transactions (admin)
  • Read a single valet parking transaction (public)
  • Update an existing valet parking transaction (public)
  • Delete an existing valet parking transaction (admin)
  • Validate a JWT (internal)
  • Service health ping (admin)

To review, the first five functions for each service are all basic CRUD operations: create (POST), read (GET), readAll (GET), update (PUT), delete (DELETE). The readAll function also has find, count, and pagination functionality using query parameters. Unfortunately, RestExpress does not support PATCH for updates. However, I have updated RestExpress’ PUT HTTP methods to return the modified object in the response body instead of the nothing (status of 201 Created vs. 200 OK). See StackOverflow for an explanation.

All services also have an internal authenticateJwt function, to authenticate the JWT, passed in the HTTP request header, before performing any operation. Additionally, all services have a basic health-check function, ping (GET). There are only a few other functions required for our Virtual-Vehicles example, such as for creating JWTs.

 Part Two Introduction

In Part Two, we will build our four Virtual-Vehicles microservices. Recall from our first post, we will be using RestExpress. RestExpress composes best-of-breed open-source tools to enable quickly creating RESTful microservices that embrace industry best practices. Those best-of-breed tools include Java EE, Maven, MongoDB, and Netty, among others.

In this post, we will accomplish the following:

  • Create a default microservice project in NetBeans using RestExpress MongoDB Maven Archetype
  • Understand the basic structure of a default RestExpress microservice project
  • Review the changes made to the default RestExpress microservice project to create the Virtual-Vehicles example
  • Compile and run the individual microservices directly from NetBeans

I used NetBeans IDE 8.0.2 on Linux Ubuntu 14.10 to build the microservices. You may also follow along in other IDE’s, such as Eclipse or IntelliJ, on Mac or Windows. We won’t cover installing MongoDB, Maven, and Java. I’ll assume if your building enterprise applications, you have the basics covered.

Using the RestExpress MongoDB Maven Archetype

All the code for this project is available on GitHub. However, to understand RestExpress, you should go through the exercise of scaffolding a new microservice using the RestExpress MongoDB Maven Archetype. You will also be able to use this default microservice project to compare and contrast to the modified versions, used in the Virtual-Vehicles example. The screen grabs below demonstrate how to create a new microservice project using the RestExpress MongoDB Maven Archetype. At the time of this post, the archetype version was restexpress-mongodb version 1.15.

New Maven Project from Archetype Step 1

New Maven Project from Archetype Step 2

New Maven Project from Archetype Step 2

Default Project Architecture

Reviewing the two screen grabs below (Project tab), note the key components of the RestExpress MongoDB Maven project, which we just created:

  • Base Package (com.example.vehicle)
    • Configuration class reads in environment properties (see Files tab) and instantiates controllers
    • Constants class contains project constants
    • Relationships class defines linking resource which aids service discoverability (HATEOAS)
    • Main executable class
    • Routes class defines the routes (endpoints) exposed by the service and the corresponding controller class
  • Model/Controllers Packages (com.example.vehicle.objectid and .uuid)
    • Entity class defines the data entity – a Vehicle in this case
    • Controller class contains the methods executed when the route (endpoint) is called
    • Repository class defines the connection details to MongoDB
    • Service class contains the calls to the persistence layer, validation, and business logic
  • Serialization Package (com.example.vehicle.serialization)
    • XML and JSON serialization classes
    • Object ID and UUID serialization and deserialization classes

New Maven Project from Archetype Project View

New Maven Project from Archetype Projects View

Again, I strongly recommend reviewing each of these package’s classes. To understand the core functionality of RestExpress, you must understand the relationships between RestExpress microservice’s Route, Controller, Service, Repository, Relationships, and Entity classes. In addition to reviewing the default Maven project, there are limited materials available on the Internet. I would recommend the RestExpress Website on GitHub, RestExpress Google Group Forum, and the YouTube 3-part video series, Instant REST Services with RESTExpress.

Unit Tests?
Disappointingly, the current RestExpress MongoDB Maven Archetype sample project does not come with sample JUnit unit tests. I am tempted to start writing my own unit tests if I decided to continue to use the RestExpress microservices framework for future projects.

Properties Files

Also included in the default RestExpress MongoDB Maven project is a Java properties file (environment.properties). This properties file is displayed in the Files tab, as shown below. The default properties file is located in the ‘dev’ environment config folder. Later, we will create an additional properties file for our production environment.

Default Properties File

Ports
Within the ‘dev’ environment, each microservice is configured to start on separate ports  (i.e. port = 8581). Feel free to change the service’s port mappings if they conflict with previously configured components running on your system. Be careful when changing the Authentication service’s port, 8587, since this port is also mapped in all other microservices using the authentication.port property (authentication.port = 8587). Make sure you change both properties, if you change Authentication service’s port mapping.

Base URL
Also, in the properties files is the base.url property. This property defines the URL the microservice’s endpoints will be expecting calls from, and making internal calls between services. In our post’s example, this property in the ‘dev’ environment is set to localhost (base.url = http://localhost). You could map an alternate hostname from your hosts file (/etc/hosts). We will do this in a later post, in our ‘prod’ environment, mapping the base.url property to Virtual-Vehicles (base.url = http://virtual-vehicles.com). In the ‘dev’ environment properties file, MongoDB is also mapped to localhost (i.e. mongodb.uri = mongodb://virtual-vehicles.com:27017/virtual_vehicle).

Metrics Plugin and Graphite
RestExpress also uses the properties file to hold configuration properties for Metrics Plugin and Graphite. The Metrics Plugin and Graphite are both first class citizens of RestExpress. Below is the copy of the Vehicles service environment.properties file for the ‘dev’ environment. Note, the Metrics Plugin and Graphite are both disabled in the ‘dev’ environment.

# Default is 8081
port = 8581
# Port used to call Authentication service endpoints
authentication.port = 8587
# The size of the executor thread pool
# (that can handle blocking back-end processing).
executor.threadPool.size = 20
# A MongoDB URI/Connection string
# see: http://docs.mongodb.org/manual/reference/connection-string/
mongodb.uri = mongodb://localhost:27017/virtual_vehicle
# The base URL, used as a prefix for links returned in data
base.url = http://localhost
#Configuration for the MetricsPlugin/Graphite
metrics.isEnabled = false
#metrics.machineName =
metrics.prefix = web1.example.com
metrics.graphite.isEnabled = false
metrics.graphite.host = graphite.example.com
metrics.graphite.port = 2003
metrics.graphite.publishSeconds = 60

Choosing a Data Identification Method

RestExpress offers two identification models for managing data, the MongoDB ObjectId and a Universally Unique Identifier (UUID). MongoDB uses an ObjectId to identify uniquely a document within a collection. The ObjectId is a special 12-byte BSON type that guarantees uniqueness of the document within the collection. Alternately, you can use the UUID identification model. The UUID identification model in RestExpress uses a UUID, instead of a MongoDB ObjectId. The UUID also contains createdAt and updatedAt properties that are automatically maintained by the persistence layer. You may stick with ObjectId, as we will in the Virtual-Vehicles example, or choose the UUID. If you use multiple database engines for your projects, using UUID will give you a universal identification method.

Project Modifications

Many small code changes differentiate our Virtual-Vehicles microservices from the default RestExpress Maven Archetype project. Most changes are superficial; nothing changed about how RestExpress functions. Changes between the screen grabs above, showing the default project, and the screen grabs below, showing the final Virtual-Vehicles microservices, include:

  • Remove all packages, classes, and code references to the UUID identification methods (example uses ObjectId)
  • Rename several classes for convenience (dropped use of word ‘Entity’)
  • Add the Utilities (com.example.utilities) and Authentication (com.example.authenticate) packages

Final Virtual-Vehicles Microservices Projects

Final Virtual-Vehicles Microservices Projects

MongoDB

Following a key principle of microservices mentioned in the first post, Decentralized Data Management, each microservice will have its own instance of a MongoDB database associated with it. The below diagram shows each service and its corresponding database, collection, and fields.

Virtual-Vehicles Database Diagram
From the MongoDB shell, we can observe the individual instances of the four microservice’s databases.

MongoDB Virtual-Vehicles Databases

In the case of the Vehicle microservice, the associated MongoDB database is virtual_vehicle. This database contains a single collection, vehicles. While the properties file defines the database name, the Vehicles entity class defines the collection name, using the org.mongodb.morphia.annotations classes annotation functionality.

@Entity("vehicles")
public class Vehicle
extends AbstractMongodbEntity
implements Linkable {
private int year;
private String make;
private String model;
private String color;
private String type;
private int mileage;
// abridged...
view raw Vehicle.java hosted with ❤ by GitHub

Looking at the virtual_vehicle database in the MongoDB shell, we see that the sample document’s fields correspond to the Vehicle entity classes properties.

MongoDB vehicles Document
Each of the microservice’s MongoDB databases are configured in the environments.properties file, using the mongodb.uri property. In the ‘dev’ environment we use localhost as our host URL (i.e. mongodb.uri = mongodb://localhost:27017/virtual_vehicle).

Authentication and JSON Web Tokens

The three microservices, Vehicle, Valet, and Maintenance, are almost identical. However, the Authentication microservice is unique. This service is called by each of the other three services, as well as also being called directly. The Authentication service provides a very basic level of authentication using JSON Web Tokens (JWT), pronounced ‘jot‘.

Why do we want authentication? We want to confirm that the requester using the Virtual-Vehicles REST API is the actual registered API client they are who they claim to be. JWT allows us to achieve this requirement with minimal effort.

According to jwt.io, ‘a JSON Web Token is a compact URL-safe means of representing claims to be transferred between two parties. The claims in a JWT are encoded as a JSON object that is digitally signed using JSON Web Signature (JWS).‘ I recommend reviewing the JWT draft standard to fully understand the structure, creation, and use of JWTs.

Virtual-Vehicles Authentication Process
There are different approaches to implementing JWT. In our Virtual-Vehicles REST API example, we use the following process for JWT authentication:

  1. Register the new API client by supplying the application name and a shared secret (one time only)
  2. Receive an API key in response (one time only)
  3. Obtain a JWT using the API key and the shared secret (each user session or renew when the previous JWT expires)
  4. Include the JWT in each API call

In our example, we are passing four JSON fields in our set of claims. Those fields are the issuer (‘iss’), API key, expiration (‘exp’), and the time the JWT was issued (‘ait’). Both the ‘iss’ and the ‘exp’ claims are defined in the Authentication service’s environment.properties file (jwt.expire.length and jwt.issuer).

Expiration and Issued date/time use the JWT standard recommended “Seconds Since the Epoch“.  The default expiration for a Virtual-Vehicles JWT is set to an arbitrary 10 hours from the time the JWT was issued (jwt.expire.length = 36000). That amount, 36,000, is equivalent to 10 hours x 60 minutes/hour x 60 seconds/minute.

Decoding a JWT
Using the jwt.io site’s JT Debugger tool, I have decoded a sample JWT issued by the Virtual-Vehicles REST API, generated by the Authentication service. Observe the three parts of the JWT, the JOSE Header, Claims Set, and the JSON Web Signature (JWS).

Decoded JWT

The JWT’s header indicates that our JWT is a JWS that is MACed using the HMAC SHA-256 algorithm. The shared secret, passed by the API client, represents the HMAC secret cryptographic key. The secret is used in combination with the cryptographic hash function to calculate the message authentication code (MAC). In the example below, note how the API client’s shared secret is used to validate our JWT’s JWS.

Sequence Diagrams of Authentication Process
Below are three sequence diagrams, which detail the following processes: API client registration process, obtaining a new JWT, and a REST call being authenticated using the JWT. The end-user of the API self-registers their application using the Authentication service and receives back an API key. The API key is unique to that client.

Register API Client (Authentication Service)

The end-user application then uses the API key and the shared secret to receive a JWT from the Authentication service.

Requesting a JWT (Authentication Service)After receiving the JWT, the end-user application passes the JWT in the header of each API request. The JWT is validated by calling the Authentication service. If the JWT is valid, the request is fulfilled. If not valid, a ‘401 Unauthorized’ status is returned.

API Call with JWT Passed in Header (Vehicle Service)JWT Validation
The JWT draft standard recommends how to validate a JWT. Our Virtual-Vehicles Authentication microservice uses many of those criteria to validate the JWT, which include:

  1. API Key – Retrieve API client’s shared secret from MongoDB, using API key contained in JWT’s claims set (secret is returned; therefore API key is valid)
  2. Algorithm – confirm the algorithm (‘alg’), found in the JWT Header, which used to encode JWT, was ‘HS256’ (HMAC SHA-256)
  3. Valid JWS – Use the client’s shared secret from #1 above, decode HMAC SHA-256 encrypted JWS
  4. Expiration – confirm JWT is not expired (‘exp’)

Inter-Service Communications

By default, the RestExpress Archetype project does not offer an example of communications between microservices. Service-to-service communications for microservices is most often done using the same HTTP-based REST calls used to by our Virtual-Vehicles REST API. Alternately, a message broker, such as RabbitMQ, Kafka, ActiveMQ, or Kestrel, is often used. Both methods of communicating between microservices, referred to as ‘inter-service communication mechanisms’ by InfoQ, have their pros and cons. The InfoQ website has an excellent microservices post, which discusses the topic of service-to-service communication.

For the Virtual-Vehicles microservices example, we will use HTTP-based REST calls for inter-service communications. The primary service-to-service communications in our example, is between the three microservices, Vehicle, Valet, and Maintenance, and the Authentication microservice. The three services validate the JWT passed in each request to a CRUD operation, by calling the Authentication service and passing the JWT, as shown in the sequence diagram, above. Validation is done using an HTTP GET request to the Authentication service’s .../jwts/{jwt} endpoint. The Authentication service’s method, called by this endpoint, minus some logging and error handling, looks like the following:

public boolean authenticateJwt(Request request, String baseUrlAndAuthPort) {
String jwt, output, valid = "";
try {
jwt = (request.getHeader("Authorization").split(" "))[1];
} catch (NullPointerException | ArrayIndexOutOfBoundsException e) {
return false;
}
try {
URL url = new URL(baseUrlAndAuthPort + "/jwts/" + jwt);
HttpURLConnection conn = (HttpURLConnection) url.openConnection();
conn.setRequestMethod("GET");
conn.setRequestProperty("Accept", "application/json");
if (conn.getResponseCode() != 200) {
return false;
}
BufferedReader br = new BufferedReader(new InputStreamReader(
(conn.getInputStream())));
while ((output = br.readLine()) != null) {
valid = output;
}
conn.disconnect();
} catch (IOException e) {
return false;
}
return Boolean.parseBoolean(valid);
}

Primarily, we are using the java.net and java.io packages, along with the org.restexpress.Request class to build and send our HTTP request to the Authentication service. Alternately, you could use just the org.restexpress package to construct request and handle the response. This same basic method structure shown above can be used to create unit tests for your service’s endpoints.

Health Ping

Each of the Virtual-Vehicles microservices contain a DiagnosticController in the .utilities package. In our example, we have created a ping() method. This simple method, called through the .../utils/ping endpoint, should return a 200 OK status and a boolean value of ‘true’, indicating the microservice is running and reachable. This route’s associated method could not be simpler:

public void ping(Request request, Response response) {
response.setResponseStatus(HttpResponseStatus.OK);
response.setResponseCode(200);
response.setBody(true);
}

The ping health check can even be accessed with a simple curl command, curl localhost:8581/vehicles/utils/ping.

In a real-world application, we would add additional health checks to all services, providing additional insight into the health and performance of each microservice, as well as the service’s dependencies.

API Documentation

A well written RESTful API will not require extensive documentation to understand the API’s operations. Endpoints will be discoverable through linking (see Response Body links section in below example). API documentation should provide HTTP method, required headers and URL parameters, expected response body and response status, and so forth.

An API should be documented before any code is written, similar to TDD. The API documentation is the result of a clear understanding of requirements. The API documentation should make the coding even easier since the documentation serves as a further refinement of the requirements. The requirements are an architectural plan for the microservice’s code structure.

Sample Documentation
Below, is a sample of the Virtual-Vehicles REST API documentation. It details the function responsible for creating a new API client. The documentation provides a brief description of the function, the operation’s endpoint (URI), HTTP method, request parameters, expected response body, expected response status, and even a view of the MongoDB collection’s document for a new API client.

Virtual-Vehicles API Guide

You can download a PDF version of the Virtual-Vehicles RESTful API documentation on GitHub or review the source document on Google Docs. It contains general notes about the API, and details about every one of the API’s operations.

Running the Individual Microservices

For development and testing purposes, the easiest way to start the microservices is in NetBeans using the Run command. The Run command executes the Maven exec goal. Based on the DEFAULT_ENVIRONMENT constant in the org.restexpress.util Environment class, RestExpress will use the ‘dev’ environment’s environment.properties file, in the project’s /config/dev directory.

Alternately, you can use the RestExpress project’s recommended command from a terminal prompt to start each microservice from its root directory (mvn exec:java -Dexec.mainClass=test.Main -Dexec.args="dev"). You can also use this command to switch from the ‘dev’ to ‘prod’ environment properties (-Dexec.args="prod").

You may use a variety of commands to confirm all the microservices are running. I prefer something basic like sudo netstat -tulpn | grep 858[0-9]. This will find all the ports within the ‘dev’ port range. For more in-depth info, you can use a command like ps -aux | grep com.example | grep -v grep

Microservices Running

Part Three: Testing our Services

We now have a copy of the Virtual-Vehicles project pulled from GitHub, a basic understanding of how RestExpress works, and our four microservices running on different ports. In Part Three of this series, we will take them for a drive (get it?). There are many ways to test our service’s endpoints. One of my favorite tools is Postman. we will explore how to use several tools, including Postman, and our API documentation, to test our microservice’s endpoints.

Postman Preview

, , , , , , , , , , , , ,

5 Comments

Building a Microservices-based REST API with RestExpress, Java EE, and MongoDB: Part 1

Develop a well-architected and well-documented REST API, built on a tightly integrated collection of Java EE-based microservices.

Generic API Architecture

Microservices

Microservices are a popular and growing trend in software development. According to Wikipedia, microservices are “a software architecture style, in which complex applications are composed of small, independent processes communicating with each other using language-agnostic APIs. These services are small, highly decoupled and focus on doing a small task.

Martin Fowler and James Lewis (ThoughtWorks) have done an exemplary job capturing the essence of microservice architecture in their March 2014 post, microservices. Fowler has also discussed these principles in several presentations, including the January 2015 goto; Conference, Keynote: Microservices by Martin Fowler.

Additionally, noted technical consultant and speaker, Adrian Cockcroft (Battery Ventures), has made significant contributions to the definition of microservices, such as in his December 2014 dockercon14 | eu presentation, State of the Art in Microservices.

Lastly, Zhamak Dehghani (ThoughtWorks), delivered an in-depth discussion of microservices, including customer perspectives, in her October 2014 presentation, Real-World Microservices: Lessons from the Frontline.

Some of the major characteristics of microservices and REST cited by these experts, include:

  • Organized Around Business Capabilities
  • Single Responsibility
  • Loose Coupling / High Cohesion
  • Smart Endpoints and Dumb Pipes
  • Decentralized Data Management
  • Hypermedia as the Engine of Application State (HATEOAS)

As we develop this post’s example, I will demonstrate how all of the above characteristics are implemented.

REST API

A REST API is the mash-up of two common software concepts, Representational State Transfer (REST) and an application programming interface (API). Although even Wikipedia doesn’t have an exact definition of a REST API, they come close to their discussion of REST. According to Wikipedia“Web service APIs that adhere to the REST architectural constraints are called RESTful APIs. HTTP-based RESTful APIs are defined with these aspects: base URI, an Internet media type for the data, standard HTTP methods, hypertext links to a reference state, and hypertext links to reference related resources.

An important nuance and differentiator from SOA-based APIs, RESTful APIs do not require XML-based Web service protocols (SOAP and WSDL) to support their interfaces (Wikipedia).

The author of the WebConcepts channel does an excellent job capturing the essence of REST APIs in REST API concepts and examples. Two additional presentations I strongly recommend are REST+JSON API Design – Best Practices for Developers and Designing a Beautiful REST+JSON API, both by Les Hazlewood, CTO of Stormpath. Stormpath is a leader in the commercial REST API space.

Microservices-Based REST API

A microservices-based REST API is a REST API, whose HTTP requests call an orchestrated collection or collections of language-agnostic and platform-agnostic microservices. The combination of these two trends, microservices, and a REST API, offers a simple, reliable, and scalable solution for providing flexible functionality to an end-user, in a technology-agnostic manner.

REST API Example

There is a fast-growing volume of reference materials describing the characteristics, benefits, and general architecture of microservices and REST APIs. However, in researching these topics, I have found a shortage of practical examples or tutorials on building microservices-based REST API solutions.

Undoubtedly, the complexity of even the simplest microservices-based solution limits the number of available cases. A minimally viable solution require planning, coding, testing, and documentation. The addition of cross-cutting features such as security, logging, monitoring, and orchestration, creates an enormous task to build a practical microservices-based example.

In the following series of posts, we will use many of the characteristics of a modern microservice architecture as described by Fowler, Lewis, Cockcroft, and Dehghani. We will combine these microservice characteristics with the best practices of good REST API design, as described by Hazlewood and WebConcepts, to build a minimally viable microservices-based REST API.

In a future post, we will create an application, which leverages the microservices-based solution, through the REST API. Additionally, we will demonstrate how to ensure high-availability of the individual microservices and data sources.

Vehicle for Learning

In a similar vein to the publicly available Twitter, Facebook, and Google REST APIs, we will build the Virtual-Vehicles REST API. The Virtual-Vehicles REST API will constitute a collection of vehicle-themed microservices. Collectively, the microservices will offer a comprehensive set of functionality to the end-user, an application developer. They, in turn, will use the functionality of the Virtual-Vehicles REST API to build applications and games for their end-users.

Technology Choices

There are a seemingly infinite number of technology choices for building microservices and REST APIs. Your choice of development languages, databases, application servers, third-party libraries, API gateway, logging, monitoring, automated testing, ORM or ODM, and even the IDE, all define your technology stack.

For the Virtual-Vehicles solution, we will use the following key technologies:

What is RestExpress?

According to their website, RestExpress, composes best-of-breed open-source tools to enable quickly creating RESTful microservices that embrace industry best practices. Built from the ground-up for container-less, microservice architectures, RestExpress is the easiest way to create RESTful APIs in Java. RestExpress is an extremely lightweight, fast, REST engine and API for Java. RestExpress is a thin wrapper on Netty IO HTTP handling. RestExpress lets you create performant, stand-alone REST APIs rapidly. RestExpress provides several Maven archetypes, which we will use as a basis for our microservices.

RestExpress will also drive our technology decisions to use Java EE, Maven, MongoDB, and Netty.

Virtual-Vehicles Microservices

Adhering to the first few microservice architectural principles listed above, organized around business capabilities, single responsibility, and high cohesion, we first must determine the proper number of microservices, and their individual responsibilities. In the case of our solution, we will break down Virtual-Vehicles’ business capabilities into the following microservices:

Virtual-Vehicles Services

Microservice Purpose (Business Capability)
Authentication Service Manage API clients and JWT authentication
Vehicle Service Manage virtual vehicles
Maintenance Service Manage maintenance on vehicles
Valet Parking Service Manage a valet service to park for vehicles
Sales Service Manage the buying and selling of vehicles
Registration Service Manage registration of vehicles to owners
Auction Service Manage a virtual car auction
Car Show Service Manage a virtual car show
Interaction Service Manage interaction of users with vehicles

For simplicity in this post’s example, we will only be exploring the (4) services shown above in bold.

This segmentation of service functionality is unlike what we might encounter in traditional monolithic, n-tier applications, and SOA-based architecture. Traditional applications were built around application-centric functionality or business’ organizational structure. Microservices, however, are client-centric and built around business capabilities.

REST API Functionality

The next decision we need to make is required functionality. What are the operational requirements of each business segment, represented by the microservices? Additionally, what are the nonfunctional requirements, such as monitoring, logging, and authentication. Requirements are translated into functionality, which is translated into the available resources exposed via the service’s RESTful endpoints.

For the Virtual-Vehicles microservices solution, based on a hypothetical set of business and non-functional requirements, we will expose the following resources. Collectively, they will compose the REST API:

Virtual-Vehicles REST API Resources

Microservice Purpose (Business Capability) Functions
Authentication Service Manage API clients and
JWT authentication
  • Create a new API client (public)
  • Read, filter, sort, count, paginate API clients (admin)
  • Read a single API client (public)
  • Update an existing API client (public)
  • Delete an existing API client (admin)
  • Create new JWT (public)
  • Validate a JWT (internal)
  • Service health ping (admin)
Vehicle Service Manage virtual vehicles
  • Create a new vehicle (public)
  • Read, filter, sort, count, paginate vehicles (admin)
  • Read a single vehicle (public)
  • Update an existing vehicle (public)
  • Delete an existing vehicle (admin)
  • Validate a JWT (internal)
  • Service health ping (admin)
Maintenance Service Manage maintenance on vehicles
  • Create a new maintenance record (public)
  • Read, filter, sort, count, paginate maintenance records (admin)
  • Read a single maintenance record (public)
  • Update an existing maintenance record (public)
  • Delete an existing maintenance record (admin)
  • Validate a JWT (internal)
  • Service health ping (admin)
Valet Parking Service Manage a valet service to park for vehicles
  • Create a new valet parking transaction (public)
  • Read, filter, sort, count, paginate valet parking transactions (admin)
  • Read a single valet parking transaction (public)
  • Update an existing valet parking transaction (public)
  • Delete an existing valet parking transaction (admin)
  • Validate a JWT (internal)
  • Service health ping (admin)

Reviewing the table above, note the first five functions for each service are all basic CRUD operations: create (POST), read (GET), readAll (GET), update (PUT), delete (DELETE). The readAll function also has find, count, and pagination functionality using query parameters.

All services also have an internal authenticateJwt function, to authenticate the JWT, passed in the HTTP request header, before performing any operation. Additionally, all services have a basic health-check function, ping (GET). There are only a few other functions required for our Virtual-Vehicles example, such as for creating JWTs.

I’ve labeled each function as to suggested user scope. Scopes include public, admin, and internal. As a consumer of the REST API, you may only want to expose certain functionality to your general end-user (public). Additional functionality may be reserved for an administrative user (admin) or only yourself as a developer (internal). Creating a new vehicle might be a common end-user feature. However, the ability to permanently delete one or more vehicles may be reserved for an admin-level user, or not exposed at all.

REST API Patterns

We will not spend a lot of time discussing patterns for building REST APIs. There are many useful materials available on the Internet regarding industry-standard patterns for REST API resource URI construction. The two presentations I recommend above by Les Hazlewood, CTO of Stormpath, are excellent. Also, Microservices.ioRestApiTutorial.com, swagger.io, and raml.org websites offer solid overviews of REST patterns and RESTful standards.

A common RESTful anti-pattern, which is hard to avoid as a OOP developer, is the temptation to use verbs versus nouns and method-like names, in resource URIs. Remember, we are not designing an end-user application. We are building an API, used by API consumers (application developers), to build a variety of platform and language-agnostic applications. Functions like paintCar, changeOil, or parkVehicle are not something the API should define. The Vehicle microservice exposes the update operation, which allows an application developer to change the car’s paint color in their paintCar method. Similarly, the valet service exposes the create operation, which allows the application developer to create a function to park the vehicle (or car, or truck, in a garage, or parking lot, etc.). A good REST API allows for maximum end-user flexibility.

Part Two

In Part Two, we will install a copy of the Virtual-Vehicles project from GitHub. In Part Two, we will gain a basic understanding of how RestExpress works. Finally, we will discover how to get the Virtual-Vehicles microservices up and running.

Virtual-Vehicles Architecture

, , , , , , , , , , , , ,

3 Comments

Updating Ubuntu Linux to the Latest JDK

Introduction

If you are Java Developer, new to the Linux environment, installing and configuring Java updates can be a bit daunting. In the following post, we will update a VirtualBox VM running Canonical’s popular Ubuntu Linux operating system. The VM currently contains an earlier version of Java. We will update the VM to the latest release of the Java.

All code for this post is available as Gists on GitHub.com, including a complete install script, explained at the end of this post.

Current Version of Java?

First, we will use the ‘update-alternatives –display java’ command to review all the versions of Java currently installed on the VM. We can have multiple copies installed, but only one will be configured and active. We can verify the active version using the ‘java -version’ command.

# preview java alternatives
update-alternatives --display java
# check current version of java
java -version
01 - Check Current Version of Java

Check Current Version of Java

In the above example, the 1.7.0_17 JDK version of Java is configured and active. That version is located in the ‘/usr/lib/jvm/jdk1.7.0_17’ subdirectory. There are two other Java versions also installed but not active, an Oracle 1.7.0_17 JRE version and an older 1.7.0_04 JDK version. These three versions are referred to as ‘alternatives’, thus the ‘alternatives’ command. By selecting an alternative version of Java, we control which java.exe binary executable file the system calls when the ‘java’ command is executed. In a many software development environments, you may need different versions of Java, depending on different client project’s level of technology.

Alternatives

According to About.com, alternatives ‘make it possible for several programs fulfilling the same or similar functions to be installed on a single system at the same time. A generic name in the filesystem is shared by all files providing interchangeable functionality. The alternatives system and the system administrator together determine which actual file is referenced by this generic name. The generic name is not a direct symbolic link to the selected alternative. Instead, it is a symbolic link to a name in the alternatives directory, which in turn is a symbolic link to the actual file referenced.’

We can see this system at work by changing to our ‘/usr/bin’ directory. This directory contains the majority of binary executables on the system. Executing an ‘ls -Al /usr/bin/* | grep -e java -e jar -e appletviewer -e mozilla-javaplugin.so’ command, we see that each Java executable is actually a symbolic link to the alternatives directory, not a binary executable file.

# view java-related executables
ls -Al /usr/bin/* | \
grep -e java -e jar -e jexec -e appletviewer -e mozilla-javaplugin.so
# view all the commands which support alternatives
update-alternatives --get-selections
# view all java-related executables which support alternatives
update-alternatives --get-selections | \
grep -e java -e jar -e jexec -e appletviewer -e mozilla-javaplugin.so
Java Symbolic Links to Alternatives Directory

Java Symbolic Links to Alternatives Directory

To find out all the commands which support alternatives, you can use the ‘update-alternatives –get-selections’ command. We can use a similar command to get just the Java commands, ‘update-alternatives –get-selections | grep -e java -e jar -e appletview -e mozilla-javaplugin.so’.

Java-Related Executable Alternatives

Java-Related Executable Alternatives (view after update)

Computer Architecture?

Next, we need to determine the computer processor architecture of the VM. The architecture determines which version of Java to download. The machine that hosts our VM may have a 64-bit architecture (also known as x86-64, x64, and amd64), while the VM might have a 32-bit architecture (also known as IA-32 or x86). Trying to install 64-bit versions of software onto 32-bit VMs is a common mistake.

The VM’s architecture was originally displayed with the ‘java -version’ command, above. To confirm the 64-bit architecture we can use either the ‘uname -a’ or ‘arch’ command.

# determine the processor architecture
uname -a
arch
02 - Find Your Processor Type

Find Your Processor’s Architecture

JRE or JDK?

One last decision. The Java Runtime Environment (JRE) purpose is to run Java applications. The JRE covers most end-user’s needs. The Java Development Kit (JDK) purpose is to develop Java applications. The JDK includes a complete JRE, plus tools for developing, debugging, and monitoring Java applications. As developers, we will choose to install the JDK.

Download Latest Version

In the above screen grab, you see our VM is running a 64-bit version of Ubuntu 12.04.3 LTS (Precise Pangolin). Therefore, we will download the most recent version of the 64-bit Linux JDK. We could choose either Oracle’s commercial version of Java or the OpenJDK version. According to Oracle, the ‘OpenJDK is an open-source implementation of the Java Platform, Standard Edition (Java SE) specifications’. We will choose the latest commercial version of Oracle’s JDK. At the time of this post, that is JDK 7u45 (aka 1.7.0_45-b18).

The Linux file formats available for download, are a .rpm (Red Hat Package Manager) file and a .tar.gz file (aka tarball). For this post, we will download the tarball, the ‘jdk-7u45-linux-x64.tar.gz’ file.

Current Java JDK Downloads

Current JDK Downloads

Extract Tarball

We will use the command ‘sudo tar -zxvf jdk-7u45-linux-x64.tar.gz -C /usr/lib/jvm’, to extract the files directly to the ‘/usr/lib/jvm’ folder. This folder contains all previously installed versions of Java. Once the tarball’s files are extracted, we should see a new directory containing the new version of Java, ‘jdk1.7.0_45’, in the ‘/usr/lib/jvm’ directory.

# extract new version of java from the downloaded tarball
cd ~/Downloads/Java
ls
sudo tar -zxvf jdk-7u45-linux-x64.tar.gz -C /usr/lib/jvm/
# change directories to the location of the extracted version of java
cd /usr/lib/jvm/
ls
04 - Versions of Java on the VM

Versions of Java on the VM

Installation

There are two configuration modes available in the alternatives system, manual and automatic mode. According to die.net‘when a link group is in manual mode, the alternatives system will not (automatically) make any changes to the system administrator’s settings’. When a link group is in automatic mode, the alternatives system ensures that the links in the group point to the highest priority alternatives appropriate for the group’.

We will first install and configure the new version of Java in manual mode. To install the new version of Java, we run ‘update-alternatives –install /usr/bin/java java /usr/lib/jvm/jdk1.7.0_45/jre/bin/java 4’. Note the last parameter, ‘4’, the priority. Why ‘4’? If we chose to use automatic mode, as we will a little later, we want our new Java version to have the highest numeric priority. In automatic mode, the system looks at the priority to determine which version of Java it will run. In the post’s first screen grab, note each of the three installed Java versions had different priorities: 1, 2, and 3. If we want to use automatic mode later, we must set a higher priority on our new version of Java, ‘4’ or greater. We will set it now as part of the install, so we can use it later in automatic mode.

Configuration

First, to configure (activate) the new Java version in alternatives manual mode, we will run ‘update-alternatives –config java’. We are prompted to choose from the list of alternatives for Java executables (java.exe), which has now grown from three to four choices. Choose the new JDK version of Java, which we just installed.

That’s it. The system has been instructed to use the version we selected as the Java alternative. Now, when we run the ‘java’ command, the system will access the newly configured JDK version. To verify, we rerun the ‘java -version’ command. The version of Java has changed since the first time we ran the command (see first screen grab).

# find a higher priority number
update-alternatives --display java
# install new version of java
sudo update-alternatives --install /usr/bin/java java \
/usr/lib/jvm/jdk1.7.0_45/jre/bin/java 4
# configure new version of java
update-alternatives --config java
# select the new version when prompted
05 - Install and Configure New Version of Java

Install and Configure New Version of Java

Now let’s switch to automatic mode. To switch to automatic mode, we use ‘update-alternatives –auto java’. Notice how the mode has changed in the screen grab below and our version with the highest priority is selected.

06c - Switching to Auto

Switching to Auto

Other Java Command Alternatives

We will repeat this process for the other Java-related executables. Many are part of the JDK Tools and Utilities. Java-related executables include the Javadoc Tool (javadoc), Java Web Start (javaws), Java Compiler (javac), and Java Archive Tool (jar), javap, javah, appletviewer, and the Java Plugin for Linux. Note if you are updating a headless VM, you would not have a web browser installed. Therefore it would not be necessary to configuring the mozilla-javaplugin.

# install and configure other java executable alternatives in manual mode
# install and update Java Web Start (javaws)
update-alternatives --display javaws
sudo update-alternatives --install /usr/bin/javaws javaws \
/usr/lib/jvm/jdk1.7.0_45/jre/bin/javaws 20000
update-alternatives --config javaws
# install and update Java Compiler (javac)
update-alternatives --display javac
sudo update-alternatives --install /usr/bin/javac javac \
/usr/lib/jvm/jdk1.7.0_45/bin/javac 20000
update-alternatives --config javac
# install and update Java Archive Tool (jar)
update-alternatives --display jar
sudo update-alternatives --install /usr/bin/jar jar \
/usr/lib/jvm/jdk1.7.0_45/bin/jar 20000
update-alternatives --config jar
# jar signing and verification tool (jarsigner)
update-alternatives --display jarsigner
sudo sudo update-alternatives --install /usr/bin/jarsigner jarsigner \
/usr/lib/jvm/jdk1.7.0_45/bin/jarsigner 20000
update-alternatives --config jarsigner
# install and update Java Archive Tool (javadoc)
update-alternatives --display javadoc
sudo update-alternatives --install /usr/bin/javadoc javadoc \
/usr/lib/jvm/jdk1.7.0_45/bin/javadoc 20000
update-alternatives --config javadoc
# install and update Java Plugin for Linux (mozilla-javaplugin.so)
update-alternatives --display mozilla-javaplugin.so
sudo update-alternatives --install \
/usr/lib/mozilla/plugins/libjavaplugin.so mozilla-javaplugin.so \
/usr/lib/jvm/jdk1.7.0_45/jre/lib/amd64/libnpjp2.so 20000
update-alternatives --config mozilla-javaplugin.so
# install and update Java disassembler (javap)
update-alternatives --display javap
sudo update-alternatives --install /usr/bin/javap javap \
/usr/lib/jvm/jdk1.7.0_45/bin/javap 20000
update-alternatives --config javap
# install and update file that creates C header files and C stub (javah)
update-alternatives --display javah
sudo update-alternatives --install /usr/bin/javah javah \
/usr/lib/jvm/jdk1.7.0_45/bin/javah 20000
update-alternatives --config javah
# jexec utility executes command inside the jail (jexec)
update-alternatives --display jexec
sudo update-alternatives --install /usr/bin/jexec jexec \
/usr/lib/jvm/jdk1.7.0_45/lib/jexec 20000
update-alternatives --config jexec
# install and update file to run applets without a web browser (appletviewer)
update-alternatives --display appletviewer
sudo update-alternatives --install /usr/bin/appletviewer appletviewer \
/usr/lib/jvm/jdk1.7.0_45/bin/appletviewer 20000
update-alternatives --config appletviewer
06b - Configure Java Plug-in for Linux

Configure Java Plug-in for Linux

Verify Java Version

Verify Java Version is Latest

JAVA_HOME

Many applications which need the JDK/JRE to run, look up the JAVA_HOME environment variable for the location of the Java compiler/interpreter. The most common approach is to hard-wire the JAVA_HOME variable to the current JDK directory. User the ‘sudo nano ~/.bashrc’ command to open the bashrc file. Add or modify the following line, ‘export JAVA_HOME=/usr/lib/jvm/jdk1.7.0_45’. Remember to also add the java executable path to the PATH variable, ‘export PATH=$PATH:$JAVA_HOME/bin’. Lastly, execute a ‘bash –login’ command for the changes to be visible in the current session.

Alternately, we could use a symbolic link to ‘default-java’. There are several good posts on the Internet on using the ‘default-java’ link.

# open bashrc
sudo nano ~/.bashrc
#add these lines to bashrc file
export JAVA_HOME=/usr/lib/jvm/jdk1.7.0_45
export PATH=$PATH:$JAVA_HOME/bin
# for the changes to be visible in the current session
bash --login

Complete Scripted Example

Below is a complete script to install or update the latest JDK on Ubuntu. Simply download the tarball to your home directory, along with the below script, available on GitHub. Execute the script with a ‘sh install_java_complete.sh’. All java executables will be installed and configured as alternatives in automatic mode. The JAVA_HOME and PATH environment variables will also be set.

#!/bin/bash
#################################################################
# author: Gary A. Stafford
# date: 2013-12-17
# source: http://www.programmaticponderings.com
# description: complete code for install and config on Ubuntu
# of jdk 1.7.0_45 in alteratives automatic mode
#################################################################
########## variables start ##########
# priority value
priority=20000
# path to binaries directory
binaries=/usr/bin
# path to libraries directory
libraries=/usr/lib
# path to new java version
javapath=$libraries/jvm/jdk1.7.0_45
# path to downloaded java version
java_download=~/jdk-7u45-linux-x64.tar.gz
########## variables end ##########
cd $libraries
[ -d jvm ] || sudo mkdir jvm
cd ~/
# change permissions on jvm subdirectory
sudo chmod +x $libraries/jvm/
# extract new version of java from the downloaded tarball
if [ -f $java_download ]; then
sudo tar -zxf $java_download -C $libraries/jvm
else
echo "Cannot locate Java download. Check 'java_download' variable."
echo 'Exiting script.'
exit 1
fi
# install and config java web start (java)
sudo update-alternatives --install $binaries/java java \
$javapath/jre/bin/java $priority
sudo update-alternatives --auto java
# install and config java web start (javaws)
sudo update-alternatives --install $binaries/javaws javaws \
$javapath/jre/bin/javaws $priority
sudo update-alternatives --auto javaws
# install and config java compiler (javac)
sudo update-alternatives --install $binaries/javac javac \
$javapath/bin/javac $priority
sudo update-alternatives --auto javac
# install and config java archive tool (jar)
sudo update-alternatives --install $binaries/jar jar \
$javapath/bin/jar $priority
sudo update-alternatives --auto jar
# jar signing and verification tool (jarsigner)
sudo update-alternatives --install $binaries/jarsigner jarsigner \
$javapath/bin/jarsigner $priority
sudo update-alternatives --auto jarsigner
# install and config java tool for generating api documentation in html (javadoc)
sudo update-alternatives --install $binaries/javadoc javadoc \
$javapath/bin/javadoc $priority
sudo update-alternatives --auto javadoc
# install and config java disassembler (javap)
sudo update-alternatives --install $binaries/javap javap \
$javapath/bin/javap $priority
sudo update-alternatives --auto javap
# install and config file that creates c header files and c stub (javah)
sudo update-alternatives --install $binaries/javah javah \
$javapath/bin/javah $priority
sudo update-alternatives --auto javah
# jexec utility executes command inside the jail (jexec)
sudo update-alternatives --install $binaries/jexec jexec \
$javapath/lib/jexec $priority
sudo update-alternatives --auto jexec
# install and config file to run applets without a web browser (appletviewer)
sudo update-alternatives --install $binaries/appletviewer appletviewer \
$javapath/bin/appletviewer $priority
sudo update-alternatives --auto appletviewer
# install and config java plugin for linux (mozilla-javaplugin.so)
if [ -f '$libraries/mozilla/plugins/libjavaplugin.so mozilla-javaplugin.so' ]; then
sudo update-alternatives --install \
$libraries/mozilla/plugins/libjavaplugin.so mozilla-javaplugin.so \
$javapath/jre/lib/amd64/libnpjp2.so $priority
sudo update-alternatives --auto mozilla-javaplugin.so
else
echo 'Mozilla Firefox not found. Java Plugin for Linux will not be installed.'
fi
echo
########## add JAVA_HOME start ##########
grep -q 'JAVA_HOME' ~/.bashrc
if [ $? -ne 0 ]; then
echo 'JAVA_HOME not found. Adding JAVA_HOME to ~/.bashrc'
echo >> ~/.bashrc
echo 'export JAVA_HOME=/usr/lib/jvm/jdk1.7.0_45' >> ~/.bashrc
echo 'export PATH=$JAVA_HOME/bin:$PATH' >> ~/.bashrc
else
echo 'JAVA_HOME found. No changes required to ~/.bashrc.'
fi
########## add JAVA_HOME start ##########
echo
echo '*** Java update script completed successfully ***'
echo
# confirm alternative for java-related executables
update-alternatives --get-selections | \
grep -e java -e jar -e jexec -e appletviewer -e mozilla-javaplugin.so
# confirm JAVA_HOME environment variable is set
echo "To confirm JAVA_HOME, execute 'bash --login' and then 'echo \$JAVA_HOME'"

Below is a test of the script on a fresh Vagrant VM of an Ubuntu Cloud Image of Ubuntu Server 13.10 (Saucy Salamander). Ubuntu Cloud Images are pre-installed disk images that have been customized by Ubuntu engineering to run on cloud-platforms such as Amazon EC2, Openstack, Windows, LXC, and Vagrant. The script was able to successfully install and configure the JDK, as well as the  JAVA_HOME and PATH environment variables.

Test New Install on Vagrant Ubuntu VM

Test New Install on Vagrant Ubuntu VM

Deleting Old Versions?

Before deciding to completely delete previously installed versions of Java from the ‘/usr/lib/jvm’ directory, ensure there are no links to those versions from OS and application configuration files. Many applications, such as NetBeans, eclipse, soapUI, and WebLogic Server, may contain their own Java configurations. If they don’t use the JAVA_HOME variable, they should be updated to reflect the current active Java version when possible.

Resources

Ubuntu Linux: Install Latest Oracle Java 7

update-alternatives(8) – Linux man page

Configuring different JDKs with alternatives

Ubuntu Documentation: Java

, , , , , , , , , , , ,

1 Comment

Spring Integration with Eclipse Using Maven

Integrate the Spring Framework into your next Eclipse-based project using Apache Maven. Learn how to install, configure, and integrate these three leading Java development tools. All source code for this post is available on GitHub.

 

Introduction

Although there is a growing adoption of Java EE 6 and CDI in recent years, Spring is still a well-entrenched, open-source framework for professional Java development. According to GoPivotal’s website, “The Spring Framework provides a comprehensive programming and configuration model for modern Java-based enterprise applications. Spring focuses on the ‘plumbing’ of enterprise applications so that teams can focus on application-level business logic, without unnecessary ties to specific deployment environments.”

Similar to Spring in terms of wide-spread adoption, Eclipse is leading Java IDE, competing with Oracle’s NetBeans and JetBrain’s IntelliJ. The use of Spring within Eclipse is very common. In the following post, I will demonstrate the ease of integrating Spring with Eclipse, using Maven.

Maven is a marketed as a project management tool, centralizing a project’s build, reporting and documentation. Conveniently, Maven is tightly integrated with Eclipse. We will use Maven for one of its best known features, dependency management. Maven will take care of downloading and managing the required Spring artifacts into our Eclipse-based project.

Note there are alternatives to integrating Spring into Eclipse, using Maven. You can download and add the Spring artifacts yourself, or go full-bore with GoPivotal’s Spring Tool Suite (STS). According to their website, STS is an Eclipse-based development environment, customized for developing Spring applications.

The steps covered in this post are as follows:

  1. Download and install Maven
  2. Download and install the Eclipse IDE
  3. Linking the installed version of Maven to Eclipse
  4. Creating a new sample Maven Project
  5. Adding Spring dependencies to the project
  6. Demonstrate a simple example of Spring Beans and ApplicationContext
  7. Modify the project to allow execution from an external command prompt

Installing Maven

Installing Maven is simple process, requiring minimal configuration:

  1. Download the latest version of Maven from the Apache Maven Project website. At the time of this post, Maven is at version 3.1.1.
  2. Assuming you are Windows, unzip the ‘apache-maven-3.1.1’ folder and place in your ‘Program Files’ directory.
  3. Add the path to Maven’s bin directory to your system’s ‘PATH’ Environmental Variable.
Adding Maven bin Directory to PATH Environmental Variable

Adding Maven bin Directory to PATH Environmental Variable

We can test our Maven installation by opening a new Command Prompt and issuing the ‘mvn -version’ command. The command should display the installed version of Maven, Maven home directory, and other required variables, like your machine’s current version of Java and its location. To learn other Maven commands, try ‘mvn -help’.

Checking Maven is Installed Correctly

Checking Maven is Installed Correctly

Installing Eclipse IDE

Installing Eclipse is even easier:

  1. Download the latest version of Eclipse from The Eclipse Foundation website. There are several versions of Eclipse available. I chose ‘Eclipse IDE for Java EE Developers’, currently Kepler Service Release 1.
  2. Similar to Maven, unzip the ‘eclipse’ folder and place in your ‘Program Files’ directory.
  3. For ease of access, I recommend pinning the main eclispe.exe file to your Start Menu.
Downloading Eclipse IDE for Java EE Developers

Downloading Eclipse IDE for Java EE Developers

Linking Maven to Eclipse

The latest version of Eclipse comes pre-loaded with the ‘M2E – Maven Integration for Eclipse’ plug-in. There is no additional software installs required to use Maven from within Eclipse. Eclipse also includes an embedded runtime version of Maven (currently 3.04). According to the Eclipse website wiki, the M2E plug-in uses the embedded runtime version of Maven when running Maven builder, importing projects and updating project configuration.

Latest Version of Eclipse Kepler SR1 with M2E Installed

Latest Version of Eclipse Kepler SR1 with M2E Installed

Although Eclipse contains an embedded version of Maven, we can configure M2E to use our own external Maven installation when launching Maven using Run as… -> M2 Maven actions. To configure Maven to use the version of Maven we just installed:

  1. Go to Windows -> Preferences -> Maven -> Installations window. Note the embedded version of Maven is the only one listed and active.
  2. Click Add… and select the Maven folder we installed in your Program Files directory. Click OK.
  3. Check the box for new installation we just added instead of the embedded version. Click OK.
Adding Installed Version of Maven to Eclipse

Adding Installed Version of Maven to Eclipse

Adding Installed Version of Maven to Eclipse

Adding Installed Version of Maven to Eclipse

Adding Installed Version of Maven to Eclipse

Adding Installed Version of Maven to Eclipse

Sample Maven Project

To show how to integrate Spring into a project using Maven, we will create a Maven Project in Eclipse using the Maven Quickstart Archetype template. The basic project will show the use of Spring Beans and an ApplicationContext IoC container. On a scale of 1 to 10, with 10 being the most complex Spring example, this project is barely a 1! However, it will demonstrate that Spring is working in Eclipse, with minimal effort thanks to Maven.

To create the project:

  1. File -> New Project -> Other…
  2. Search on ‘maven’ in the Wizards text box and select ‘Maven Project’.
  3. Select the Maven Quickstart Archetype.
  4. Specify the Archetype parameters.
Creating a New Maven Project - Using Wizard

Creating a New Maven Project – Using Wizard

Creating a New Maven Project - Project Location

Creating a New Maven Project – Project Location

Creating a New Maven Project - Choosing Archetype

Creating a New Maven Project – Choosing Archetype

Creating a New Maven Project - Archetype Parameters

Creating a New Maven Project – Archetype Parameters

Spring Dependencies

Once the Maven Quickstart project is created, we will add the required Spring dependencies using Maven:

  1. Open the Maven Project Object Model (POM) file and select the Dependencies tab.
  2. Use the The Central Repository website to find the Dependency Information for spring-core and Spring-context artifacts (jar files).
  3. Add… both Spring Dependencies to the pom.xml file.
  4. Right-click on the project and click Maven -> Update Project…
Adding Spring Dependencies to pom.xml - Dependencies Tab

Adding Spring Dependencies to pom.xml – Dependencies Tab

Adding Spring Dependencies to pom.xml - Artifact Details for spring-core

Adding Spring Dependencies to pom.xml – Artifact Details for spring-core

Adding Spring Dependencies to pom.xml - Adding spring-context

Adding Spring Dependencies to pom.xml – Adding spring-context

Adding Spring Dependencies to pom.xml - Spring Dependencies Added

Adding Spring Dependencies to pom.xml – Spring Dependencies Added

Adding Spring Dependencies to pom.xml - Dependencies Added to Project

Adding Spring Dependencies to pom.xml – Dependencies Added to Project

We now have a Maven-managed Eclipse project with our Spring dependencies included. Note the root of the file paths to the jar files in the Maven Dependencies project folder is the location of our Maven Repository. This is where all the dependent artifacts (jar files) are stored. In my case, the root is ‘C:\Users\{user}\.m2\repository’. The repository location is stored in Eclipse’s Maven User Setting’s Preferences (see below).

Project Object Model File (pom.xml):

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.blogpost.maven</groupId>
<artifactId>maven-spring</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>jar</packaging>
<name>maven-spring</name>
<url>http://maven.apache.org</url>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-core</artifactId>
<version>3.2.4.RELEASE</version>
</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-context</artifactId>
<version>3.2.4.RELEASE</version>
</dependency>
</dependencies>
<description>Project for blog post about the use of Spring with Eclipse and Maven.</description>
</project>
view raw pom.xml hosted with ❤ by GitHub

Location of Local Maven Repository

Local Maven Repository Location

Sample Code

Next add the supplied Code to the project. We will add two new java classes and a Spring configuration file. We will replace the contents of main App class with our sample code. Steps are as follows:

  1. Add the supplied Vehicle.java and MaintainVehicle.java class files to the project, in the same classpath as the App.java class.
  2. Add the supplied Beans.xml Spring configuration file to the project at the ‘src/main/java’ folder.
  3. Open the App.java class file and replace the contents with the supplied App.java class file.

The sample Spring application is based on vehicles. There are three Spring Beans defined in the xml-based Spring configuration file, representing three different vehicles. The main App class uses an ApplicationContext IoC Container to instantiate three Vehicle POJOs from the Spring Beans defined in the Beans.xml Spring configuration. The main class then instantiates an instance of the MaintainVehicle class, passes in the Vehicle objects and calls MaintainVehicle’s two methods.

Location of New Files in Project Explorer

Location of New Files in Project Explorer

Spring Configuration File (Beans.xml):

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">
<bean id="vehicle1" class="com.blogpost.maven.maven_spring.Vehicle">
<property name="make" value="Mercedes-Benz" />
<property name="model" value="ML550" />
<property name="year" value="2010" />
<property name="color" value="Silver" />
<property name="type" value="SUV" />
</bean>
<bean id="vehicle2" class="com.blogpost.maven.maven_spring.Vehicle">
<property name="make" value="Jaguar" />
<property name="model" value="F-Type" />
<property name="year" value="2013" />
<property name="color" value="Red" />
<property name="type" value="Convertible" />
</bean>
<bean id="vehicle3" class="com.blogpost.maven.maven_spring.Vehicle">
<property name="make" value="Suzuki" />
<property name="model" value="SVF 650" />
<property name="year" value="2012" />
<property name="color" value="Black" />
<property name="type" value="Motorcycle" />
</bean>
</beans>
view raw Beans.xml hosted with ❤ by GitHub

Main Method Class (App.java)

package com.blogpost.maven.maven_spring;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
public class App {
public static void main(String[] args) {
@SuppressWarnings("resource")
ApplicationContext context = new ClassPathXmlApplicationContext(
"Beans.xml");
MaintainVehicle maintain = new MaintainVehicle();
// vehicle1 bean
Vehicle obj1 = (Vehicle) context.getBean("vehicle1");
System.out.printf("I drive a %s.\n", obj1.getLongDescription());
System.out.printf("Is my %s tuned up? %s\n",
obj1.getShortDescription(), obj1.getServiced());
maintain.serviceVehicle(obj1);
System.out.printf("Is my %s tuned up, yet? %s\n\n", obj1.getMake(),
obj1.getServiced());
// vehicle2 bean
Vehicle obj2 = (Vehicle) context.getBean("vehicle2");
System.out.printf("My wife drives a %s.\n", obj2.getLongDescription());
System.out.printf("Is her %s clean? %s\n", obj2.getShortDescription(),
obj2.getWashed());
maintain.washVehicle(obj2);
System.out.printf("Is her %s clean, now? %s\n\n", obj2.getMake(),
obj2.getWashed());
// vehicle3 bean
Vehicle obj3 = (Vehicle) context.getBean("vehicle3");
System.out.printf("Our son drives his %s too fast!\n", obj3.getType()
.toLowerCase());
}
}
view raw App.java hosted with ❤ by GitHub

Running the Application

If successful, the application will output a series of messages to the Console. The first few messages in red are Spring-related messages, signifying Spring is working. The next messages in black are output by the application. The messages show that the three Spring Beans are successfully instantiated and passed to the MaintainVehicle object, where it’s methods were called. If the application would only buy me that Silver Mercedes!

Successful Console Output of Java Application

Successful Console Output of Java Application

Running the Application from a Command Prompt

All the source code for this project is available on GitHub. Note the pom.xml contains a some extra configuration information not shown above. The extra configuration information is not necessary for running the application from within Eclipse. However, if you want to run the application from an external Command Prompt, you will need the added configuration. This extra configuration ensures that the project is correctly packaged into a jar file, with all the necessary dependencies to run. Extra configuration includes an additional logging dependency, a resource reference to the Spring configuration file, one additional property, and three maven plug-in references for compiling and packaging the jar.

To run the java application from an external Command Prompt:

  1. Open a new Command Prompt
  2. Change current directory to the project’s root directory (local GitHub repository in my case)
  3. Run a ‘mvn compile’ command
  4. Run a ‘mvn package’ command (downloads dependencies and creates jar)
  5. Change the current directory to the project’s target sub-directory
  6. Run a ‘dir’ command. You should see the project’s jar file
  7. Run a ‘java -jar {name-of-jar-file.jar}’ command.

You should see the same messages output in Eclipse, earlier.

Running Application from External Command Prompt

Running Application from External Command Prompt

, , , , , , , , , , ,

10 Comments

Build a Continuous Deployment System with Maven, Hudson, WebLogic Server, and JUnit

Build an automated testing, continuous integration, and continuous deployment system, using Maven, Hudson, WebLogic Server, JUnit, and NetBeans. Developed with Oracle’s Pre-Built Enterprise Java Development VM. Download the complete source code from Dropbox and on GitHub.

System Diagram

Introduction

In this post, we will build a basic automated testing, continuous integration, and continuous deployment system, using Oracle’s Pre-Built Enterprise Java Development VM. The primary goal of the system is to automatically compile, test, and deploy a simple Java EE web application to a test environment. As this post will demonstrate, the key to a successful system is not a single application, but the effective integration of all the system’s applications into a well-coordinated and consistent workflow.

Building system such as this can be complex and time-consuming. However, Oracle’s Pre-Built Enterprise Java Development VM already has all the components we need. The Oracle VM includes NetBeans IDE for development, Apache Subversion for version control, Hudson Continuous Integration (CI) Server for build automation, JUnit and Hudson for unit test automation, and WebLogic Server for application hosting.

In addition, we will use Apache Maven, also included on the Oracle VM, to help manage our project’s dependencies, as well as the build and deployment process. Overlapping with some of Apache Ant’s build task functionality, Maven is a powerful cross-cutting tool for managing the modern software development projects. This post will only draw upon a small part of Maven’s functionality.

Demonstration Requirements

To save some time, we will use the same WebLogic Server (WLS) domain we built-in the last post, Deploying Applications to WebLogic Server on Oracle’s Pre-Built Development VM. We will also use code from the sample Hello World Java EE web project from that post. If you haven’t already done so, work through the last post’s example, first.

Here is a quick list of requirements for this demonstration:

  • Oracle VM
    • Oracle’s Pre-Built Enterprise Java Development VM running on current version of Oracle VM VirtualBox (mine: 4.2.12)
    • Oracle VM’s has the latest system updates installed (see earlier post for directions)
    • WLS domain from last post created and running in Oracle VM
    • Credentials supplied with Oracle VM for Hudson (username and password)
  • Window’s Development Machine
    • Current version of Apache Maven installed and configured (mine: 3.0.5)
    • Current version of NetBeans IDE installed and configured (mine: 7.3)
    • Optional: Current version of WebLogic Server installed and configured
    • All environmental variables properly configured for Maven, Java, WLS, etc. (MW_HOME, M2, etc.)

The Process

The steps involved in this post’s demonstration are as follows:

  1. Install the WebLogic Maven Plugin into the Oracle VM’s Maven Repositories, as well as the Development machine
  2. Create a new Maven Web Application Project in NetBeans
  3. Copy the classes from the Hello World project in the last post to new project
  4. Create a properties file to store Maven configuration values for the project
  5. Add the Maven Properties Plugin to the Project’s POM file
  6. Add the WebLogic Maven Plugin to project’s POM file
  7. Add JUnit tests and JUnit dependencies to project
  8. Add a WebLogic Descriptor to the project
  9. Enable Tunneling on the new WLS domain from the last post
  10. Build, test, and deploy the project locally in NetBeans
  11. Add project to Subversion
  12. Optional: Upgrade existing Hudson 2.2.0 and plugins on the Oracle VM latest 3.x version
  13. Create and configure new Hudson CI job for the project
  14. Build the Hudson job to compile, test, and deploy project to WLS

WebLogic Maven Plugin

First, we need to install the WebLogic Maven Plugin (‘weblogic-maven-plugin’) onto both the Development machine’s local Maven Repository and the Oracle VM’s Maven Repository. Installing the plugin will allow us to deploy our sample application from NetBeans and Hudson, using Maven. The weblogic-maven-plugin, a JAR file, is not part of the Maven repository by default. According to Oracle, ‘WebLogic Server provides support for Maven through the provisioning of plug-ins that enable you to perform various operations on WebLogic Server from within a Maven environment. As of this release, there are two separate plug-ins available.’ In this post, we will use the weblogic-maven-plugin, as opposed to the wls-maven-plugin. Again, according to Oracle, the weblogic-maven-plugin “delivered in WebLogic Server 11g Release 1, provides support for deployment operations.”

The best way to understand the plugin install process is by reading the Using the WebLogic Development Maven Plug-In section of the Oracle Fusion Middleware documentation on Developing Applications for Oracle WebLogic Server. It goes into detail on how to install and configure the plugin.

In a nutshell, below is a list of the commands I executed to install the weblogic-maven-plugin version 12.1.1.0 on both my Windows development machine and on my Oracle VM. If you do not have WebLogic Server installed on your development machine, and therefore no access to the plugin, install it into the Maven Repository on the Oracle VM first, then copy the jar file to the development machine and follow the normal install process from that point forward.

On Windows Development Machine:

Installing weblogic-maven-plugin onto Dev Maven Repository

Installing weblogic-maven-plugin on a Windows Machine

cd %MW_HOME%/wlserver/server/lib
java -jar wljarbuilder.jar -profile weblogic-maven-plugin
mkdir c:\tmp
copy weblogic-maven-plugin.jar c:\tmp
cd c:\tmp
jar xvf c:\tmp\weblogic-maven-plugin.jar META-INF/maven/com.oracle.weblogic/weblogic-maven-plugin/pom.xml
mvn install:install-file -DpomFile=META-INF/maven/com.oracle.weblogic/weblogic-maven-plugin/pom.xml -Dfile=c:\tmp\weblogic-maven-plugin.jar

On the Oracle VM:

Installing WebLogic Maven Plugin into Oracle VM Maven Repository

Installing WebLogic Maven Plugin into the Oracle VM

cd $MW_HOME/wlserver_12.1/server/lib
java -jar wljarbuilder.jar -profile weblogic-maven-plugin
mkdir /home/oracle/tmp
cp weblogic-maven-plugin.jar /home/oracle/tmp
cd /home/oracle/tmp
jar xvf weblogic-maven-plugin.jar META-INF/maven/com.oracle.weblogic/weblogic-maven-plugin/pom.xml
mvn install:install-file -DpomFile=META-INF/maven/com.oracle.weblogic/weblogic-maven-plugin/pom.xml -Dfile=weblogic-maven-plugin.jar

To test the success of your plugin installation, you can run the following maven command on Windows or Linux:

mvn help:describe -Dplugin=com.oracle.weblogic:weblogic-maven-plugin

Sample Maven Web Application

Using NetBeans on your development machine, create a new Maven Web Application. For those of you familiar with Maven, the NetBeans’ Maven Web Application project is based on the ‘webapp-javaee6:1.5’ Archetype. NetBeans creates the project by executing a ‘archetype:generate’ Maven Goal. This is seen in the ‘Output’ tab after the project is created.

01a - Choose the Maven Web Application Project Type

1a – Choose the Maven Web Application Project Type

01b - Name and Location of New Project

1b – Name and Location of New Project

By default you may have Tomcat and GlassFish as installed options on your system. Unfortunately, NetBeans currently does not have the ability to configure a remote connection to the WLS instance running on the Oracle VM, as I understand. You do not need an instance of WLS installed on your development machine since we are going to use the copy on the Oracle VM. We will use Maven to deploy the project to WLS on the Oracle VM, later in the post.

01c - Default Server and Java Settings

1c – Default Server and Java Settings

1d - New Maven Project in NetBeans

1d – New Maven Project in NetBeans

Next, copy the two java class files from the previous blog post’s Hello World project to the new project’s source package. Alternately, download a zipped copy this post’s complete sample code from Dropbox or on GitHub.

02a - Copy Two Class Files from Previous Project

2a – Copy Two Class Files from Previous Project

Because we are copying a RESTful web service to our new project, NetBeans will prompt us for some REST resource configuration options. To keep this new example simple, choose the first option and uncheck the Jersey option.

02b - REST Resource Configuration

2b – REST Resource Configuration

02c - New Project with Files Copied from Previous Project

2c – New Project with Files Copied from Previous Project

JUnit Tests

Next, create a set of JUnit tests for each class by right-clicking on both classes and selecting ‘Tools’ -> ‘Create Tests’.

03a - Create JUnit Tests for Both Class Files

3a – Create JUnit Tests for Both Class Files

03b - Choose JUnit Version 4.x

3b – Choose JUnit Version 4.x

03c - New Project with Test Classes and JUnit Test Dependencies

3c – New Project with Test Classes and JUnit Test Dependencies

We will use the test classes and dependencies NetBeans just added to the project. However, we will not use the actual JUnit tests themselves that NetBeans created. To properly set-up the default JUnit tests to work with an embedded version of WLS is well beyond the scope of this post.

Overwrite the contents of the class file with the code provided from Dropbox. I have replaced the default JUnit tests with simpler versions for this demonstration. Build the file to make sure all the JUnit tests all pass.

03d - Project Successfully Built with New JUnit Tests

3d – Project Successfully Built with New JUnit Tests

Project Properties

Next, add a new Properties file to the project, entitled ‘maven.properties’.

04a - Add Properties File to Project

4a – Add Properties File to Project

04b - Add Properties File to Project

4b – Add Properties File to Project

Add the following key/value pairs to the properties file. These key/value pairs are referenced will be referenced the POM.xml by the weblogic-maven-plugin, added in the next step. Placing the configuration values into a Properties file is not necessary for this post. However, if you wish to deploy to multiple environments, moving environmentally-specific configurations into separate properties files, using Maven Build Profiles, and/or using frameworks such as Spring, are all best practices.

Java Properties File (maven.properties):

# weblogic-maven-plugin configuration values for Oracle VM environment
wls.adminurl=t3://192.168.1.88:7031
wls.user=weblogic
wls.password=welcome1
wls.upload=true
wls.remote=false
wls.verbose=true
wls.middlewareHome=/labs/wls1211
wls.name=HelloWorldMaven

Maven Plugins and the POM File

Next, add the WLS Maven Plugin (‘weblogic-maven-plugin’) and the Maven Properties Plugin (‘properties-maven-plugin’) to the end of the project’s Maven POM.xml file. The Maven Properties Plugin, part of the Mojo Project, allows us to substitute configuration values in the Maven POM file from a properties file. According to codehaus,org, who hosts the Mojo Project, ‘It’s main use-case is loading properties from files instead of declaring them in pom.xml, something that comes in handy when dealing with different environments.’

Project Object Model File (pom.xml):

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.blogpost</groupId>
<artifactId>HelloWorldMaven</artifactId>
<version>1.0</version>
<packaging>war</packaging>
<name>HelloWorldMaven</name>
<properties>
<endorsed.dir>${project.build.directory}/endorsed</endorsed.dir>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.10</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>javax</groupId>
<artifactId>javaee-web-api</artifactId>
<version>6.0</version>
<scope>provided</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.1</version>
<configuration>
<source>1.6</source>
<target>1.6</target>
<compilerArguments>
<endorseddirs>${endorsed.dir}</endorseddirs>
</compilerArguments>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-war-plugin</artifactId>
<version>2.4</version>
<configuration>
<failOnMissingWebXml>false</failOnMissingWebXml>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-dependency-plugin</artifactId>
<version>2.8</version>
<executions>
<execution>
<phase>validate</phase>
<goals>
<goal>copy</goal>
</goals>
<configuration>
<outputDirectory>${endorsed.dir}</outputDirectory>
<silent>true</silent>
<artifactItems>
<artifactItem>
<groupId>javax</groupId>
<artifactId>javaee-endorsed-api</artifactId>
<version>6.0</version>
<type>jar</type>
</artifactItem>
</artifactItems>
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>properties-maven-plugin</artifactId>
<version>1.0-alpha-2</version>
<executions>
<execution>
<phase>initialize</phase>
<goals>
<goal>read-project-properties</goal>
</goals>
<configuration>
<files>
<file>maven_wls_local.properties</file>
</files>
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>com.oracle.weblogic</groupId>
<artifactId>weblogic-maven-plugin</artifactId>
<version>12.1.1.0</version>
<configuration>
<adminurl>${wls.adminurl}</adminurl>
<user>${wls.user}</user>
<password>${wls.password}</password>
<upload>${wls.upload}</upload>
<action>deploy</action>
<remote>${wls.remote}</remote>
<verbose>${wls.verbose}</verbose>
<source>${project.build.directory}/${project.build.finalName}.${project.packaging}</source>
<name>${wls.name}</name>
</configuration>
<executions>
<execution>
<phase>install</phase>
<goals>
<goal>deploy</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
view raw pom.xml hosted with ❤ by GitHub

WebLogic Deployment Descriptor

A WebLogic Deployment Descriptor file is the last item we need to add to the new Maven Web Application project. NetBeans has descriptors for multiple servers, including Tomcat (context.xml), GlassFish (application.xml), and WebLogic (weblogic.xml). They provide a convenient location to store specific server properties, used during the deployment of the project.

06a - Add New WebLogic Descriptor

6a – Add New WebLogic Descriptor

06b - Add New WebLogic Descriptor

6b – Add New WebLogic Descriptor

Add the ‘context-root’ tag. The value will be the name of our project, ‘HelloWorldMaven’, as shown below. According to Oracle, “the context-root element defines the context root of this standalone Web application.” The context-root of the application will form part of the URL we enter to display our application, later.

06c - Add Context Root Element to Descriptor

6c – Add Context Root Element to Descriptor

Make sure to the WebLogic descriptor file (‘weblogic.xml’) is placed in the WEB-INF folder. If not, the descriptor’s properties will not be read. If the descriptor is not read, the context-root of the deployed application will default to the project’s WAR file’s name. Instead of ‘HelloWorldMaven’ as the context-root, you would see ‘HelloWorldMaven-1.0-SNAPSHOT’.

06d - Move WebLogic Descriptor into WEB-INF Folder

6d – Move WebLogic Descriptor into WEB-INF Folder

Enable Tunneling

Before we compile, test, and deploy our project, we need to make a small change to WLS. In order to deploy our project remotely to the Oracle VM’s WLS, using the WebLogic Maven Plugin, we must enable tunneling on our WLS domain. According to Oracle, the ‘Enable Tunneling’ option “Specifies whether tunneling for the T3, T3S, HTTP, HTTPS, IIOP, and IIOPS protocols should be enabled for this server.” To enable tunneling, from the WLS Administration Console, select the ‘AdminServer’ Server, ‘Protocols’ tab, ‘General’ sub-tab.

Enabling Tunneling on WLS for HTTP Deployments

Enabling Tunneling on WLS for HTTP Deployments

Build and Test the Project

Right-click and select ‘Build’, ‘Clean and Build’, or ‘Build with Dependencies’. NetBeans executes a ‘mvn install’ command. This command initiates a series of Maven Goals. The goals, visible NetBean’s Output window, include ‘dependency:copy’, ‘properties:read-project-properties’, ‘compiler:compile’, ‘surefire:test’, and so forth. They move the project’s code through the Maven Build Lifecycle. Most goals are self-explanatory by their title.

The last Maven Goal to execute, if the other goals have succeeded, is the ‘weblogic:deploy’ goal. This goal deploys the project to the Oracle VM’s WLS domain we configured in our project. Recall in the POM file, we configured the weblogic-maven-plugin to call the ‘deploy’ goal whenever ‘install’, referred to as Execution Phase by Maven, is executed. If all goals complete without error, you have just compiled, tested, and deployed your first Maven web application to a remote WLS domain. Later, we will have Hudson do it for us, automatically.

06e - Successful Build of Project

6e – Successful Build of Project

Executing Maven Goals in NetBeans

A small aside, if you wish to run alternate Maven goals in NetBeans, right-click on the project and select ‘Custom’ -> ‘Goals…’. Alternately, click on the lighter green arrows (‘Re-run with different parameters’), adjacent to the ‘Output’ tab.

For example, in the ‘Run Maven’ pop-up, replace ‘install’ with ‘surefire:test’ or simply ‘test’. This will compile the project and run the JUnit tests. There are many Maven goals that can be ran this way. Use the Control key and Space Bar key combination in the Maven Goals text box to display a pop-up list of available goals.

07a - Executing the Maven test Goal

7a – Executing Other Maven Goals

07a - JUnit Test Results using Maven test Goal

7a – JUnit Test Results using Maven ‘test’ Goal

Subversion

Now that our project is complete and tested, we will commit the project to Subversion (SVN). We will commit a copy of our source code to SVN, installed on the Oracle VM, for safe-keeping. Having our source code in SVN also allows Hudson to retrieve a copy. Hudson will then compile, test, and deploy the project to WLS.

The Repository URL, User, and Password are all supplied in the Oracle VM information, along with the other URLs and credentials.

08a - Add Project to Subversion Repository

8a – Add Project to Subversion Repository

08b - Subversion Repository Folder for Project

8b – Subversion Repository Folder for Project

When you import you project for the first time, you will see more files than are displayed below. I had already imported part of the project earlier while creating this post. Therefore most of my files were already managed by Subversion.

08c - List of Files Imported into Subversion

8c – List of Files Imported into Subversion (you will see more)

08d - Project Successfully Imported into Subversion

08d – Project Successfully Imported into Subversion

Upgrading Hudson CI Server

The Oracle VM comes with Hudson pre-installed in it’s own WLS domain, ‘hudson-ci_dev’, running on port 5001. Start the domain from within the VM by double-clicking the ‘WLS 12c – Hudson CI 5001’ icon on the desktop, or by executing the domain’s WLS start-up script from a terminal window:

/labs/wls1211/user_projects/domains/hudson-ci_dev/startWebLogic.sh

Once started, the WLS Administration Console 12c is accessible at the following URL. User your VM’s IP address or ‘localhost’ if you are within the VM.

http://[your_vm_ip_address]:5001/console/login/LoginForm.jsp

The Oracle VM comes loaded with Hudson version 2.2.0. I strongly suggest is updating Hudson to the latest version (3.0.1 at the time of this post). To upgrade, download, deploy, and started a new 3.0.1 version in the same domain on the same ‘AdminServer’ Server. I was able to do this remotely, from my development machine, using the browser-based Hudson Dashboard and WLS Administration Console. There is no need to do any of the installation from within the VM, itself.

When the upgrade is complete, stop the 2.2.0 deployment currently running in the WLS domain.

Hudson 3.0.1 Deployed to WLS Domain on VM

Hudson 3.0.1 Deployed to WLS Domain on VM

The new version of Hudson is accessible from the following URL (adjust the URL your exact version of Hudson):

http://[your_vm_ip_address]:5001/hudson-3.0.1/

It’s also important to update all the Hudson plugins. Hudson makes this easy with the Hudson Plugin Manager, accessible via the Manage Hudson’ option.

View of Hudson 3.0.1 Running on WLS with All Plugins Updated

View of Hudson 3.0.1 Running on WLS with All Plugins Updated

Note on the top of the Manage Hudson page, there is a warning about the server’s container not using UTF-8 to decode URLs. You can follow this post, if you want to resolve the issue by configuring Hudson differently. I did not worry about it for this post.

Building a Hudson Job

We are ready to configure Hudson to build, test, and deploy our Maven Web Application project. Return to the ‘Hudson Dashboard’, select ‘New Job’, and then ‘Build a new free-style software job’. This will open the ‘Job Configurations’ for the new job.

01 - Creating New Hudson Free-Style Software Job

1 – Creating New Hudson Free-Style Software Job

02 -Default Job Configurations

2 -Default Job Configurations

Start by configuring the ‘Source Code Management’ section. The Subversion Repository URL is the same as the one you used in NetBeans to commit the code. To avoid the access error seen below, you must provide the Subversion credentials to Hudson, just as you did in NetBeans.

03 -Subversion SCM Configuration

3 -Subversion SCM Configuration

04 - Subversion SCM Authentication

4 – Subversion SCM Authentication

05 -Subversion SCM Configuration Authenticated

5 -Subversion SCM Configuration Authenticated

Next, configure the Maven 3 Goals. I chose the ‘clean’ and ‘install’ goals. Using ‘clean’ insures the project is compiled each time by deleting the output of the build directory.

Optionally, you can configure Hudson to publish the JUnit test results as shown below. Be sure to save your configuration.

06 -Maven 3 and JUnit Configurations

6 -Maven 3 and JUnit Configurations

Start a build of the new Hudson Job, by clicking ‘Build Now’. If your Hudson job’s configurations are correct, and the new WLS domain is running, you should have a clean build. This means the project compiled without error, all tests passed, and the web application’s WAR file was deployed successfully to the new WLS domain within the Oracle VM.

07 -Job Built Successfully Using Configurations

7 -Job Built Successfully Using Configurations

08 - Test Results from Build

8 – Test Results from Build

WebLogic Server

To view the newly deployed Maven Web Application, log into the WebLogic Server Administration Console for the new domain. In my case, the new domain was running on port 7031, so the URL would be:

http://[your_vm_ip_address]:7031/console/login/LoginForm.jsp

You should see the deployment, in an ‘Active’ state, as shown below.

09a - HelloWorldMaven Deployed to WLS from Hudson Build

9a – Project Deployed to WLS from Hudson Build

09b - Project Context Root Set by WebLogic Descriptor File

9b – Project’s Context Root Set by WebLogic Descriptor File

09c - Projects Servlet Path Set by web.xml File

9c – Project’s Servlet Paths

To test the deployment, open a new browser tab and go to the URL of the Servlet. In this case the URL would be:

http://[your_vm_ip_address]:7031/HelloWorldMaven/resources/helloWorld

You should see the original phrase from the previous project displayed, ‘Hello WebLogic Server!’.

10 - HelloWorldMaven Web Application Running in Browser

10 – Project’s Web Application Running in Browser

To further test the system, make a simple change to the project in NetBeans. I changed the name variable’s default value from ‘WebLogic Server’ to ‘Hudson, Maven, and WLS’. Commit the change to SVN.

11 - Make a Code Change to Project and Commit to Subversion

11 – Make a Code Change to Project and Commit to Subversion

Return to Hudson and run a new build of the job.

12 - Rebuild Project with Changes in Hudson

12 – Rebuild Project with Changes in Hudson

After the build completes, refresh the sample Web Application’s browser window. You should see the new text string displayed. Your code change was just re-compiled, re-tested, and re-deployed by Hudson.

13 - HelloWorldMaven Deployed to WLS Showing Code Change

13 – Project Showing Code Change

True Continuous Deployment

Although Hudson is now doing a lot of the work for us, the system still is not fully automated. We are still manually building our Hudson Job, in order to deploy our application. If you want true continuous integration and deployment, you need to trust the system to automatically deploy the project, based on certain criteria.

SCM polling with Hudson is one way to demonstrate continuous deployment. In ‘Job Configurations’, turn on ‘Poll SCM’ and enter Unix cron-like value(s) in the ‘Schedule’ text box. In the example below, I have indicated a polling frequency every hour (‘@hourly’). Every hour, Hudson will look for committed changes to the project in Subversion. If changes are found, Hudson w retrieves the source code, compiles, and tests. If the project compiles and passes all tests, it is deployed to WLS.

SCM Polling Interval

SCM Polling Interval

There are less resource-intense methods to react to changes than SCM polling. Push-notifications from the repository is alternate, more preferable method.

Additionally, you should configure messaging in Hudson to notify team members of new deployments and the changes they contain. You should also implement a good deployment versioning strategy, for tracking purposes. Knowing the version of deployed artifacts is critical for accurate change management and defect tracking.

Helpful Links

Maven Plug-In Goals

Maven Build Lifecycle

Configuring and Using the WebLogic Maven Plug-In for Deployment

Jenkins: Building a Software Project

Kohsuke Kawaguchi: Polling must die: triggering Jenkins builds from a git hook

, , , , , , , , , , , , , , , , , , , , , ,

6 Comments

Java RESTful Web Services Using MySQL Server, EclipseLink, and Jersey

Demonstrates the development of Java RESTful Web Services using MySQL Server, EclipseLink (JPA) and Jersey (JAX-RS). Built using NetBeans and hosted on GlassFish. Both the Java Library and RESTful Service NetBeans’ projects, demonstrated in this post, are now available on GitHub.
 
MySQL Diagram

Introduction

When implementing a Relational Database Management System (RDBMS), many enterprise software developers tend to favor Oracle 11g or Microsoft SQL Server relational databases, depending on their technology stack. However, there are several excellent alternative relational databases, including MySQL. In fact, MySQL is the world’s most popular open source database software, according to Oracle.

MySQL is available on over 20 platforms and operating systems including Linux, Unix, Mac and Windows, according to the MySQL website. Like Oracle and Microsoft’s flagship RDBMS, MySQL Server comes in at least four flavors, ranging from the free Community Edition, demonstrated here, to a full-featured, enterprise-level Cluster Carrier Grade Edition. Support for MySQL, like Oracle and Microsoft, extends beyond just technical support. MySQL provides JDBC, ODBC, .NET drivers for Java and .NET development, as well as other languages. MySQL is supported by many popular IDE’s, including MySQL’s own RDBMS IDE, MySQL Workbench. Lastly, like Oracle and Microsoft, MySQL provides extensive documentation, tutorials, and even sample databases, built using recommended architectural patterns.

In this post, we will use JDBC to map JPA entity classes to tables and views within a MySQL database. We will then build RESTful web services, EJB classes, which communicate with MySQL through the entities. We will separate the JPA entities into a Java Class Library. The class library will be referenced by the RESTful web services. The RESTful web services, part of a Java Web Application, will be deployed to GlassFish, where they are accessed with HTTP methods and tested.

Installation and Configuration

If you’ve worked with Microsoft SQL Server or particularly Oracle 11g, you’ll have a minimal learning curve with MySQL. Basic installation, configuration, and integration within your Java applications is like Oracle and Microsoft. Start by downloading and installing the latest versions of MySQL Server, MySQL Workbench, MySQL JDBC Connector/J Driver, and MySQL Sakila sample database. If on Linux, you could use the command line, or a native application management application, like Synaptic Package Manager, to perform most of the installations. To get the latest software and installation and configuration recommendations, I prefer to download and install them myself from the MySQL web site. All links are included at the end of this post.

For reference when following this post, I have installed MySQL Server 5.5.x on 64-bit Ubuntu 12.10 LTS, running within a Windows version of Oracle VM VirtualBox. I will be using the latest Linux version of NetBeans IDE 7.3 to develop the demonstration project. I will host the project on Oracle’s GlassFish Open Source Application Server 3.1.2.2, running on Ubuntu. Lastly, I will be referring to the latest JDK 1.7, in NetBeans, for the project.

MySQL Demo User Account

Once MySQL is installed and running, I suggest adding a new MySQL demo user account, to the Sakila database for this demonstration, using MySQL Workbench. For security, you should limit the user account to just those permissions necessary for this demonstration, as detailed in the following screen-grabs. You can also add the user from the command line, if you are familiar with administering MySQL in that way.

MySQL Workbench IDE

MySQL Workbench IDE

Configuring Demo User Login

Configuring Demo User Login

Configuring Demo User Administrative Roles

Configuring Demo User Administrative Roles

Configuring Demo User Account Limits

Configuring Demo User Account Limits

Configuring Demo User Schema Privileges

Configuring Demo User Schema Privileges

New MySQL Database Connection

To begin development in NetBeans, first create a new JDBC database connection to the MySQL Sakila database. In the Services tab, right-click on the Databases item and select New Connection… Use the new demo user account for the connection.

Note in the first screen-grab below, that instead of using the default NetBeans JDBC MySQL Connector/J driver version, I have downloaded and replaced it with the most current version, 5.1.24. This is not necessary, but I like to use the latest drivers to avoid problems.

New Connection Wizard - MySQL Driver

Locating the Driver in the New Connection Wizard

Make sure to test your connection before finishing, using the ‘Test’ button. It’s frustrating to track down database connection issues once you start coding and testing.

New Connection Wizard - Customize Connection

Customize the Connection in the New Connection Wizard

New Connection Wizard - Database Schema

Sakila Database Doesn’t Contain Additional Schema

Choosing a Name for the Connection

Choosing a Name for the Connection

New Database Connection for demoUser

New Database Connection for MySQL Sakila Database

New Java Class Library

Similar to an earlier post, create new Java Class Library project in NetBeans. Select New Project -> Java -> Java Class Library. This library will eventually contain the JPA entity classes, mapped to tables and views in the MySQL Sakila database. Following standard n-tier design principles, I prefer separate the data access layer (DAL) from the service layer. You can then reuse the data access layer for other types of data-consumers, such as SOAP-based services.

Create New Java Class Library Project

Create New Java Class Library Project

Naming New Java Class Library

Naming New Java Class Library

Entity Classes from Database

Next, we will add entity classes to our project, mapped to several of the MySQL Sakila database’s tables and views. Right-click on the project and select New -> Entity Classes from Database… In the next window, choose the database connection we made before. NetBeans will then load all the available tables and views from the Sakila database. Next, select ‘actor_info(view)’, ‘film_actor’, and ‘film_list(view)’. Three related tables will also be added automatically by NetBeans. Not the warning at the bottom of the window about the need to specify Entity IDs. We will address this next.

Choosing Database Tables and Views

Choosing Database Tables and Views

Entity Class Options

Entity Class Options

Entity Mapping Options

Entity Mapping Options

When selecting ‘Entity Classes from Database…’, NetBeans adds the ‘EclipseLink (JPA 2.0)’ global library to the project. This library contains three jars, including EclipseLink 2.3.x, Java Persistence API (JPA) 2.0.x, and state model API for JPQL queries. There is a newer EclipseLink 2.4.x library available from their web site.  The 2.4.x version has many new features. You can download and replace NetBeans’ EclipseLink (JPA 2.0) library by creating a new EclipseLink 2.4.x library, if you want to give its new features, like JPA-RS, a try. It is not necessary for this demonstration, however.

New Java Class Project with Entities

Java Class Project with JPA Entity Classes

Adding Entity IDs to Views

To eliminate warnings displayed when we built the entities, Entity ID’s must be designated for the two database views we selected, ‘actor_info(view)’ and ‘film_list(view)’. Database views (virtual tables), do not have a primary key defined, which NetBeans requires for the entity classes. NetBeans will guide you through adding the ID, if you click on the error icon shown below.

Adding Id to ActorInfo Entity

Adding and Entity ID to ActorInfo Entity

Id Added to Entity Class

Entity ID Added to Entity Class

ActorInfo.java Entity Class contents:

package com.mysql.entities;
import java.io.Serializable;
import javax.persistence.Basic;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Lob;
import javax.persistence.NamedQueries;
import javax.persistence.NamedQuery;
import javax.persistence.Table;
import javax.xml.bind.annotation.XmlRootElement;
@Entity
@Table(name = "actor_info")
@XmlRootElement
@NamedQueries({
@NamedQuery(name = "ActorInfo.findAll", query = "SELECT a FROM ActorInfo a"),
@NamedQuery(name = "ActorInfo.findByActorId", query = "SELECT a FROM ActorInfo a WHERE a.actorId = :actorId"),
@NamedQuery(name = "ActorInfo.findByFirstName", query = "SELECT a FROM ActorInfo a WHERE a.firstName = :firstName"),
@NamedQuery(name = "ActorInfo.findByLastName", query = "SELECT a FROM ActorInfo a WHERE a.lastName = :lastName")})
public class ActorInfo implements Serializable {
private static final long serialVersionUID = 1L;
@Basic(optional = false)
@Column(name = "actor_id")
@Id
private short actorId;
@Basic(optional = false)
@Column(name = "first_name")
private String firstName;
@Basic(optional = false)
@Column(name = "last_name")
private String lastName;
@Lob
@Column(name = "film_info")
private String filmInfo;
public ActorInfo() {
}
public short getActorId() {
return actorId;
}
public void setActorId(short actorId) {
this.actorId = actorId;
}
public String getFirstName() {
return firstName;
}
public void setFirstName(String firstName) {
this.firstName = firstName;
}
public String getLastName() {
return lastName;
}
public void setLastName(String lastName) {
this.lastName = lastName;
}
public String getFilmInfo() {
return filmInfo;
}
public void setFilmInfo(String filmInfo) {
this.filmInfo = filmInfo;
}
}
view raw ActorInfo.java hosted with ❤ by GitHub

New Java Web Application

Next, we will create the RESTful Web Services. Each service will be mapped to one of the corresponding JPA entity we just created in the Java class library project. Select New Project -> Java Web -> Web Application.

New Web Application Project

New Web Application Project

Naming New Web Application

Naming New Web Application

Configuring Server and Settings

Configuring Server and Settings

Configuring Frameworks

Configuring Frameworks

New Java Web Application Project

New Java Web Application Project

RESTful Web Services from Entity Classes

Before we will build the RESTful web services, we need to add a reference to the previous Java class library project, containing the JPA entity classes. In the Java web application’s properties dialog window, under Categories -> Libraries -> Compile, add a link to the Java class library project’s .jar file.

Adding MySQL Entity Class Library

Adding MySQL Entity Class Library

Next, right-click on the project and select New -> RESTful Web Services from Entity Classes…

Adding RESTful Web Service from Entities

Adding RESTful Web Service from Entity Classes

In the preceding dialogue window, add all the ‘Available Entity Classes’ to the ‘Selected Entity Classes’ column.

Choosing Entity Classes

Choosing Entity Classes

Chosen Entity Classes

Chosen Entity Classes

After clicking next, you will prompted to configure the Persistence Unit and the Persistence Unit’s Data Source. Please refer to my earlier post for more information on the Persistence Unit. This data source will also be used by GlassFish, once the project is deployed, to connect to the Sakila MySQL database. The Persistence Unit will use the JNDI name to reference the data source.

Creating Data Source for Persistence Unit

Creating Data Source for Persistence Unit

Creating Data Source and JNDI Name

Creating Data Source and JNDI Name

Creating Persistence Unit

Creating Persistence Unit

Persistence Unit (persistence.xml) contents:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
<persistence-unit name="MySQLDemoServicePU" transaction-type="JTA">
<jta-data-source>jdbc/mysql_sakila</jta-data-source>
<class>com.mysql.entities.Actor</class>
<class>com.mysql.entities.ActorInfo</class>
<class>com.mysql.entities.Film</class>
<class>com.mysql.entities.FilmActor</class>
<class>com.mysql.entities.Language</class>
<exclude-unlisted-classes>true</exclude-unlisted-classes>
<properties/>
</persistence-unit>
</persistence>
view raw persistence.xml hosted with ❤ by GitHub
Generating Classes Using Jersey Options

Generating Classes Using Jersey Options

New Java Web Application with RESTful Web Services

Java Web Application with RESTful Web Services

As part of constructing the RESTful Web Services, notice NetBeans has added several Jersey (JAX-RS) libraries to the project. These libraries also reference Jackson (JSON Processor), Jettison (JSON StAX), MOXy (JAXB), and Grizzly (NIO) APIs.

Libraries Loaded by NetBeans to Java Web Application

Libraries Loaded by NetBeans to Java Web Application

Creating RESTful Web Services Test

Finally, we will test the RESTful Web Services, and indirectly the underlying entity classes mapped to the MySQL Sakila database. NetBeans makes this easy. To begin, right-click on the ‘RESTful Web Services’ folder in the Java web application project and select ‘Test RESTful Web Services’. NetBeans will automatically generate all the necessary files and links to test each of the RESTful web services’ operations.

As part of creating the tests, NetBeans will deploy the web application to GlassFish. When configuring the tests in the ‘Configure REST Test Client’ dialog window, make sure to use the second option, ‘Web Test Client in Project’. The first option only works with Microsoft’s Internet Explorer, an odd choice for a Java-based application running on Linux.

Configuring the REST Test Client

Configuring the REST Test Client

Highlighted below in red are the components NetBeans will install on the GlassFish application server. They include the RESTful web services application, a .war file. Each of the RESTful web service are Stateless Session Beans, installed as part of the application. In deployment also includes a JDBC Resource and a JDBC Connection Pool, which connects the application to the MySQL Sakila database. The Resource is automatically associated with the Connection Pool.

RESTful Web Services Deployed to GlassFish Server

RESTful Web Services Deployed to GlassFish Server

After creating the necessary files and deploying the application, NetBeans will open a web browser. allowing you can test the services. Each of the RESTful web services is available to test by clicking on the links in the left-hand navigation menu. NetBeans has generated a few default operations, including ‘{id}’, ‘{from/to}’, and ‘count’, each mapped to separate methods in the service classes. Also notice you can choose to display the results of the service calls in multiple formats, including XML, JSON, and plain text.

Testing RESTful Web Services from NetBeans

Testing RESTful Web Services from NetBeans Using Chrome

We can also test the RESTful Web Services by calling the service URLs, directly. Below, is the results of a my call to the Actor service’s URL, from a separate Windows client machine.

Calling the RESTful Web Services Directly

Calling the RESTful Web Services Directly

You can also use applications like Fiddler, cURL, Firefox with Firebug, and Google Chrome’s Advanced REST Client and REST Console to test the services. Below, I used Fiddler to call the Actor service, again. Note the response contains a JSON payload, not XML. With Jersey, you can request and receive JSON from the services without additional programming.

Fiddler2 Request Example

Fiddler2 Request Example

Conclusion

Using these services, you can build any number of server-side and client-side data-driven applications. The service layer is platform agnostic, accessible from any web-browser, mobile device, or native desktop application, on Windows, Linux, and Apple.

Links

MySQL Server: http://www.mysql.com/downloads/mysql

MySQL Connector/J JDBC driver for MySQL: http://dev.mysql.com/downloads/connector/j

MySQL Workbench: http://www.mysql.com/downloads/workbench

MySQL Sakila Sample Database: http://dev.mysql.com/doc/sakila/en/sakila-installation.html

NetBeans IDE: http://www.netbeans.org

EclipseLink: http://projects.eclipse.org/projects/rt.eclipselink

, , , , , , , , , , , , , ,

10 Comments

Discover All Properties Available to an Apache Ant Target

Ever waste time searching for a certain property you need to build an Ant target? Here’s a quick tip to save you some time – echoproperties. According to The Apache Ant Project website, the echoproperties task ” displays all the current properties (or a subset of them specified by a nested <propertyset>) in the project. The output can be sent to a file if desired. This task can be used as a somewhat contrived means of returning data from an <ant> invocation, but is really for debugging build files.”

Recently, I was working on a new Java Web Application Project in NetBeans IDE 7.2.1. I wanted to build an Ant target to automate the deployment of the project’s .war file to GlassFish. To do so, I needed to identify properties that could return 1) the project’s name, 2) the path to the project’s .war file, and 3) the path to GlassFish’s asadmin utility. Calling the echoproperties task from within the Ant target below, from within my open project, returned a list of over 90 property key/value pairs.