Posts Tagged mobile

The Evolving Role of DevOps in Emerging Technologies

31970399_m

Growth of DevOps

The adoption of DevOps practices by global organizations has become mainstream, according to many recent industry studies. For instance, a late 2016 study, conducted by IDG Research for Unisys Corporation of global enterprise organizations, found 38 percent of respondents had already adopted DevOps, while another 29 percent were in the planning phase, and 17 percent in the evaluation stage. Adoption rates were even higher, 49 percent versus 38 percent, for larger organizations with 500 or more developers.

Another recent 2017 study by Red Gate Software, The State of Database DevOps, based on 1,000 global organizations, found 47 percent of the respondents had already adopted DevOps practices, with another 33 percent planning on adopting DevOps practices within the next 24 months. Similar to the Unisys study, prior adoption rates were considerably higher, 59 percent versus 47 percent, for larger organizations with over 1,000 employees.

Emerging Technologies

Although DevOps originated to meet the needs of Agile software development to release more frequently, DevOps is no longer just continuous integration and continuous delivery. As more organizations undergo a digital transformation and adopt disruptive technologies to drive business success, the role of DevOps continues to evolve and expand.

Emerging technology trends, such as Machine Learning, Artificial Intelligence (AI), and Internet of Things (IoT/IIoT), serve to both influence DevOps practices, as well as create the need for the application of DevOps practices to these emerging technologies. Let’s examine the impact of some of these emerging technology trends on DevOps in this brief, two-part post.

Mobile

Although mobile application development is certainly not new, DevOps practices around mobile continue to evolve as mobile becomes the primary application platform for many organizations. Mobile applications have unique development and operational requirements. Take for example UI functional testing. Whereas web application developers often test against a relatively small matrix of popular web browsers and operating systems (Desktop Browser Market Share – Net Application.com), mobile developers must test against a continuous outpouring of new mobile devices, both tablets and phones (Test on the right mobile devices – BroswerStack). The complexity of automating the testing of such a large number mobile devices has resulted in the growth of specialized cloud-based testing platforms, such as BrowserStack and SauceLabs.

Cloud

Similar to Mobile, the Cloud is certainly not new. However, as more firms move their IT operations to the Cloud, DevOps practices have had to adapt rapidly. The need to adjust is no more apparent than with Amazon Web Services. Currently, AWS lists no less than 18 categories of cloud offerings on their website, with each category containing several products and services. Categories include compute, storage, databases, networking, security, messaging, mobile, AI, IoT, and analytics.

In addition to products like compute, storage, and database, AWS now offers development, DevOps, and management tools, such as AWS OpsWorks and AWS CloudFormation. These products offer alternatives to traditional non-cloud CI/CD/RM workflows for deploying and managing complex application platforms on AWS. Learning the nuances of a growing list of AWS specific products and workflows, while simultaneously adapting your organization’s DevOps practices to them, has resulted in a whole new category of DevOps engineering specialization centered around AWS. Cloud-centric DevOps engineering specialization is also seen with other large cloud providers, such as Microsoft Azure and Google Cloud Platform.

Security

Call it DevSecOps, SecDevOps, SecOps, or Rugged DevOps, the intersection of DevOps and Security is bustling these days. As the complexity of modern application platforms grows, as well as the sophistication of threats from hackers and the requirements of government and industry compliance, security is no longer an afterthought or a process run in seeming isolation from software development and DevOps. In my recent experience, it is not uncommon to see IT security specialists actively participating on Agile development teams and embedded on DevOps and Platform teams.

Modern application platforms must be designed from day one to be bug-free, performant, compliant, and secure.

Security practices are now commonly part of the entire software development lifecycle, including enterprise architecture, software development, data governance, continuous testing, and infrastructure as code. Modern application platforms must be designed from day one to be bug-free, performant, compliant, and secure.

Take for example penetration (PEN) testing. Once a mostly manual process, done close to release time, evolving DevOps practices now allow testing for security vulnerabilities to applications and software-defined infrastructure to be done early and often in the software development lifecycle. Easily automatable and configurable cloud- and non-cloud-based tools like SonarQube, Veracode, QualysOWASP ZAP, and Chef Compliance, amongst others, are frequently incorporated into continuous integration workflows by development and DevOps teams. There is no longer an excuse for security vulnerabilities to be discovered just before release, or worse, in Production.

Modern Platforms

Along with the Cloud, modern application development trends, like the rise of the platform, microservices (or service-based architectures), containerization, NoSQL databases, and container orchestration, have likely provided the majority of fuel for the recent explosive growth of DevOps. Although innovative IT organizations have fostered these technologies for the past few years, their growth and relative maturity have risen sharply in the last 12 to 18 months.

No longer the stuff of Unicorns, platforms based on Evolutionary Architectures are being built and deployed by an increasing number of everyday organizations.

No longer the stuff of Unicorns, such as Amazon, Etsy, and Netflix, platforms based on Evolutionary Architectures are being built and deployed by an increasing number of everyday organizations. Although complexity continues to rise, the barrier to entry has been greatly reduced with technologies found across the SDLC, including  Node, Spring Boot, Docker, Consul, Terraform, and Kubernetes, amongst others.

As modern platforms become more commonplace, the DevOps practices around them continue to mature and become specialized. Imagine, with potentially hundreds of moving parts, building, testing, deploying, and actively managing a large-scale microservice-based application on a container orchestration platform requires highly-specialized knowledge. The ability to ‘do DevOps at scale’ is critical.

Legacy Systems

Legacy systems as an emerging technology trend in DevOps? As the race to build the ‘next generation’ of application platforms accelerates to meet the demands of the business and their customers, there is a growing need to support ‘last generation’ systems. Many IT organizations support multiple legacy systems, ranging in age from as short as five years old to more than 25 years old. These monolithic legacy systems, which often contain a company’s secret sauce, such as complex business algorithms and decision engines, are built on out-moded technology stacks, often lack vendor support, and require separate processes to build, test, deploy, and manage. Worse, the knowledge to maintain these systems is frequently only known to a shrinking group of IT resources. Who wants to work on the old system with so many bright and shiny toys being built?

As a cost-effective means to maintain these legacy systems, organizations are turning to modern DevOps practices. Although not possible to the same degree, depending on the legacy technology, practices include the use source control, various types of automated testing, automated provisioning, deployment and configuration of system components, and infrastructure automation (DevOps for legacy systems – Infosys white paper).

Not specifically a DevOps practice, organizations are also implementing content collaboration systems, like Atlassian Confluence and Microsoft SharePoint, to document legacy system architectures and manual processes, before the resources and their knowledge is lost.

To be Continued

In a future post, we will look additional emerging technologies and their impact on DevOps, including:

  • Big Data
  • Internet of Things (IoT/IIoT)
  • Artificial Intelligence (AI)
  • Machine Learning
  • COTS/SaaS

All opinions in this post are my own and not necessarily the views of my current employer or their clients.

 

Illustration Copyright: Andreus / 123RF Stock Photo

, , , , , , ,

Leave a comment

RESTful Mobile: Consuming Java EE RESTful Web Services Using jQuery Mobile

Use jQuery Mobile to build a mobile HTML website, capable of calling Jersey-specific Java EE RESTful web services and displaying JSONP in a mobile web browser.

Both NetBeans projects used in this post are available on DropBox. If you like DropBox, please use this link to sign up for a free 2 GB account. It will help me post more files to DropBox for future posts.

Background

In the previous two-part series, Returning JSONP from Java EE RESTful Web Services Using jQuery, Jersey, and GlassFish, we created a Jersey-specific RESTful web service from a database using EclipseLink (JPA 2.0 Reference Implementation), Jersey (JAX-RS Reference Implementation), JAXB, and Jackson Java JSON-processor. The service and associated entity class mapped to a copy of Microsoft SQL Server’s Adventure Works database. An HTML and jQuery-based client called the service, which returned a JSONP response payload. The JSON data it contained was formatted and displayed in a simple HTML table, in a web-browser.

Objectives

In this post, we will extend the previous example to the mobile platform. Using jQuery and jQuery Mobile JavaScript libraries, we will call two RESTful web services and display the resulting JSONP data using the common list/detail UX design pattern. We will display a list of Adventure Works employees. When the end-user clicks on an employee in the web-browser, a new page will display detailed demographic information about that employee.

Similar to the previous post, when the client website is accessed by the end-user in a mobile web browser, the client site’s HTML, CSS, and JavaScript files are downloaded and cached on the end-users machine. The JavaScript file, using jQuery and Ajax, makes a call to the RESTful web service, which returns JSON (or, JSONP in this case). This simulates a typical cross-domain situation where a client needs to consume RESTful web services from a remote source. This is not allowed by the same origin policy, but overcome by returning JSONP to the client, which wraps the JSON payload in a function call.

We will extend both the ‘JerseyRESTfulServices’ and ‘JerseyRESTfulClient’ projects we built in the last series of posts. Here are the high-level steps we will walk-through in this post:

  1. Create a second view (virtual table) in the Adventure Works database;
  2. Create a second entity class that maps to the new database view;
  3. Modify the existing entity class, adding JAXB and Jackson JSON annotations;
  4. Create a second Jersey-specific RESTful web service from the new entity using Jersey and Jackson;
  5. Modify the existing Jersey-specific RESTful web service, adding one new methods;
  6. Modify the web.xml file to allow us to use natural JSON notation;
  7. Implement a JAXBContext resolver to serialize the JSON using natural JSON notation;
  8. Create a simple list/detail two-page mobile HTML5 website using jQuery Mobile;
  9. Use jQuery, Ajax, and CSS to call, parse, and display the JSONP returned by the service.

RESTful Web Services Project

When we are done, the final RESTful web services projects will look like the screen-grab, below. It will contain (2) entity classes, (2) RESTful web service classes, (1) JAXBContext resolver class, and the web.xml configuration file:

JerseyRESTfulServices Project View in NetBeans

JerseyRESTfulServices Project View in NetBeans

1: Create the Second Database View
Create a new database view, vEmployeeNames, in the Adventure Works database:

USE [AdventureWorks]
GO

SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO

CREATE VIEW [HumanResources].[vEmployeeNames]
AS
SELECT TOP (100) PERCENT BusinessEntityID, REPLACE(RTRIM(LastName 
     + COALESCE (' ' + Suffix + '', N'') + COALESCE (', ' + FirstName + ' ', N'') 
     + COALESCE (MiddleName + ' ', N'')), '  ', ' ') AS FullName
FROM Person.Person
WHERE (PersonType = 'EM')
ORDER BY FullName
GO

2: Create the Second Entity
Add the new VEmployeeNames.java entity class, mapped to the vEmployeeNames database view, using NetBeans’ ‘Entity Classes from Database…’ wizard. Then, modify the class to match the code below.

package entities;

import java.io.Serializable;
import javax.persistence.Basic;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.NamedQueries;
import javax.persistence.NamedQuery;
import javax.persistence.Table;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;
import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlType;

@Entity
@Table(name = "vEmployeeNames", catalog = "AdventureWorks", schema = "HumanResources")
@XmlRootElement(name = "vEmployeeNames")
@NamedQueries({
    @NamedQuery(name = "VEmployeeNames.findAll", query = "SELECT v FROM VEmployeeNames v"),
    @NamedQuery(name = "VEmployeeNames.findByBusinessEntityID", query = "SELECT v FROM VEmployeeNames v WHERE v.businessEntityID = :businessEntityID"),
    @NamedQuery(name = "VEmployeeNames.findByFullName", query = "SELECT v FROM VEmployeeNames v WHERE v.fullName = :fullName")})
public class VEmployeeNames implements Serializable {

    private static final long serialVersionUID = 1L;
    @Basic(optional = false)
    @NotNull
    @Id
    @Column(name = "BusinessEntityID")
    private int businessEntityID;
    @Basic(optional = false)
    @NotNull
    @Size(min = 1, max = 102)
    @Column(name = "FullName")
    private String fullName;

    public VEmployeeNames() {
    }

    public int getBusinessEntityID() {
        return businessEntityID;
    }

    public void setBusinessEntityID(int businessEntityID) {
        this.businessEntityID = businessEntityID;
    }

    public String getFullName() {
        return fullName;
    }

    public void setFullName(String fullName) {
        this.fullName = fullName;
    }
}

3: Modify the Existing Entity
Modify the existing VEmployee.java entity class to use JAXB and Jackson JSON Annotations as shown below (class code abridged). Note the addition of the @XmlType(propOrder = { "businessEntityID"... }) to the class, the @JsonProperty(value = ...) tags to each member variable, and the @Id tag to the businessEntityID, which serves as the entity’s primary key. We will see the advantages of the first two annotations later in the post when we return the JSON to the client.

package entities;

import java.io.Serializable;
import javax.persistence.Basic;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.NamedQueries;
import javax.persistence.NamedQuery;
import javax.persistence.Table;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;
import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlType;
import org.codehaus.jackson.annotate.JsonProperty;

@Entity
@Table(name = "vEmployee", catalog = "AdventureWorks", schema = "HumanResources")
@XmlRootElement
@NamedQueries({
    @NamedQuery(name = "VEmployee.findAll", query = "SELECT v FROM VEmployee v"),
    ...})
    @XmlType(propOrder = {
    "businessEntityID",
    "title",
    "firstName",
    "middleName",
    "lastName",
    "suffix",
    "jobTitle",
    "phoneNumberType",
    "phoneNumber",
    "emailAddress",
    "emailPromotion",
    "addressLine1",
    "addressLine2",
    "city",
    "stateProvinceName",
    "postalCode",
    "countryRegionName",
    "additionalContactInfo"
})
public class VEmployee implements Serializable {

    private static final long serialVersionUID = 1L;
    @Basic(optional = false)
    @NotNull
    @Id
    @JsonProperty(value = "Employee ID")
    private int businessEntityID;
    @Size(max = 8)
    @JsonProperty(value = "Title")
    private String title;
    @Basic(optional = false)
    @NotNull
    @Size(min = 1, max = 50)
    @JsonProperty(value = "First Name")
    private String firstName;
    @Size(max = 50)
    @JsonProperty(value = "Middle Name")
    private String middleName;
    @Basic(optional = false)
    @NotNull
    @Size(min = 1, max = 50)
    @JsonProperty(value = "Last Name")
    private String lastName;
    @Size(max = 10)
    @JsonProperty(value = "Suffix")
    private String suffix;
    @Basic(optional = false)
    @NotNull
    @Size(min = 1, max = 50)
    @JsonProperty(value = "Job Title")
    private String jobTitle;
    @Size(max = 25)
    @JsonProperty(value = "Phone Number")
    private String phoneNumber;
    @Size(max = 50)
    @JsonProperty(value = "Phone Number Type")
    private String phoneNumberType;
    @Size(max = 50)
    @JsonProperty(value = "Email Address")
    private String emailAddress;
    @Basic(optional = false)
    @NotNull
    @JsonProperty(value = "Email Promotion")
    private int emailPromotion;
    @Basic(optional = false)
    @NotNull
    @Size(min = 1, max = 60)
    @JsonProperty(value = "Address Line 1")
    private String addressLine1;
    @Size(max = 60)
    @JsonProperty(value = "Address Line 2")
    private String addressLine2;
    @Basic(optional = false)
    @NotNull
    @Size(min = 1, max = 30)
    @JsonProperty(value = "City")
    private String city;
    @Basic(optional = false)
    @NotNull
    @Size(min = 1, max = 50)
    @JsonProperty(value = "State or Province Name")
    private String stateProvinceName;
    @Basic(optional = false)
    @NotNull
    @Size(min = 1, max = 15)
    @JsonProperty(value = "Postal Code")
    private String postalCode;
    @Basic(optional = false)
    @NotNull
    @Size(min = 1, max = 50)
    @JsonProperty(value = "Country or Region Name")
    private String countryRegionName;
    @Size(max = 2147483647)
    @JsonProperty(value = "Additional Contact Info")
    private String additionalContactInfo;

    public VEmployee() {
    }
    ...
}

4: Create the New RESTful Web Service
Add the new VEmployeeNamesFacadeREST.java RESTful web service class using NetBean’s ‘RESTful Web Services from Entity Classes…’ wizard. Then, modify the new class, adding the new findAllJSONP() method shown below (class code abridged). This method call the same super.findAll() method from the parent AbstractFacade.java class as the default findAll({id}) method. However, the findAllJSONP() method returns JSONP instead of XML or JSON, as findAll({id}) does. This is done by passing the results of super.findAll() to a new instance of Jersey’s JSONWithPadding() class (com.sun.jersey.api.json.JSONWithPadding).

package service;

import com.sun.jersey.api.json.JSONWithPadding;
import entities.VEmployeeNames;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.persistence.criteria.CriteriaBuilder;
import javax.persistence.criteria.CriteriaQuery;
import javax.persistence.criteria.Root;
import javax.ws.rs.Consumes;
import javax.ws.rs.DELETE;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.PUT;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.QueryParam;
import javax.ws.rs.core.GenericEntity;

@Stateless
@Path("entities.vemployeenames")
public class VEmployeeNamesFacadeREST extends AbstractFacade<VEmployeeNames> {
    ...
    @GET
    @Path("jsonp")
    @Produces({"application/javascript"})
    public JSONWithPadding findAllJSONP(@QueryParam("callback") String callback) {
        CriteriaBuilder cb = getEntityManager().getCriteriaBuilder();
        CriteriaQuery cq = cb.createQuery();
        Root empRoot = cq.from(VEmployeeNames.class);
        cq.select(empRoot);
        cq.orderBy(cb.asc(empRoot.get("fullName")));
        javax.persistence.Query q = getEntityManager().createQuery(cq);

        List<VEmployeeNames> employees = q.getResultList();
        return new JSONWithPadding(
                new GenericEntity<Collection<VEmployeeNames>>(employees) {
                }, callback);
    }
    ...
}

5: Modify the Existing Service
Modify the existing VEmployeeFacadeREST.java RESTful web service class, adding the findJSONP() method shown below (class code abridged). This method calls the same super.find({id}) in the AbstractFacade.java parent class as the default find({id}) method, but returns JSONP instead of XML or JSON. As with the previous service class above, this is done by passing the results to a new instance of Jersey’s JSONWithPadding() class (com.sun.jersey.api.json.JSONWithPadding). There are no changes required to the default AbstractFacade.java class.

package service;

import com.sun.jersey.api.json.JSONWithPadding;
import entities.VEmployee;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.persistence.criteria.CriteriaBuilder;
import javax.persistence.criteria.CriteriaQuery;
import javax.persistence.criteria.Root;
import javax.ws.rs.Consumes;
import javax.ws.rs.DELETE;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.PUT;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.QueryParam;
import javax.ws.rs.core.GenericEntity;

@Stateless
@Path("entities.vemployee")
public class VEmployeeFacadeREST extends AbstractFacade<VEmployee> {
    ...
    @GET
    @Path("{id}/jsonp")
    @Produces({"application/javascript"})
    public JSONWithPadding findJSONP(@PathParam("id") Integer id,
            @QueryParam("callback") String callback) {
        List<VEmployee> employees = new ArrayList<VEmployee>();
        employees.add(super.find(id));
        return new JSONWithPadding(
                new GenericEntity<Collection<VEmployee>>(employees) {
                }, callback);
    }
    ...
}

6: Allow POJO JSON Support
Add the JSONConfiguration.FEATURE_POJO_MAPPING servlet init parameter to web.xml, as shown below (xml abridged). According to the Jersey website, this will allow us to use POJO support, the easiest way to convert our Java Objects to JSON. It is based on the Jackson library.

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">
    <servlet>
        <servlet-name>ServletAdaptor</servlet-name>
        <servlet-class>com.sun.jersey.spi.container.servlet.ServletContainer</servlet-class>
        <init-param>
            <description>Multiple packages, separated by semicolon(;), can be specified in param-value</description>
            <param-name>com.sun.jersey.config.property.packages</param-name>
            <param-value>service</param-value>
        </init-param>
        <init-param>
            <param-name>com.sun.jersey.api.json.POJOMappingFeature</param-name>
            <param-value>true</param-value>
        </init-param>
        ...

7: Implement a JAXBContext Resolver
Create the VEmployeeFacadeREST.java JAXBContext resolver class, shown below. This allows us to serialize the JSON using natural JSON notation. A good explanation of the use of a JAXBContext resolver can be found on the Jersey website.

package config;

import com.sun.jersey.api.json.JSONConfiguration;
import com.sun.jersey.api.json.JSONJAXBContext;
import javax.ws.rs.ext.ContextResolver;
import javax.ws.rs.ext.Provider;
import javax.xml.bind.JAXBContext;

@Provider
public class JAXBContextResolver implements ContextResolver<JAXBContext> {

    JAXBContext jaxbContext;
    private Class[] types = {entities.VEmployee.class, entities.VEmployeeNames.class};

    public JAXBContextResolver() throws Exception {
        this.jaxbContext =
                new JSONJAXBContext(JSONConfiguration.natural().build(), types);
    }

    @Override
    public JAXBContext getContext(Class<?> objectType) {
        for (Class type : types) {
            if (type == objectType) {
                return jaxbContext;
            }
        }
        return null;
    }
}

What is Natural JSON Notation?
According to the Jersey website, “with natural notation, Jersey will automatically figure out how individual items need to be processed, so that you do not need to do any kind of manual configuration. Java arrays and lists are mapped into JSON arrays, even for single-element cases. Java numbers and booleans are correctly mapped into JSON numbers and booleans, and you do not need to bother with XML attributes, as in JSON, they keep the original names.

What does that mean? Better yet, what does that look like? Here is an example of an employee record, first as plain old JAXB JSON in a JSONP wrapper:

callback({"vEmployee":{"businessEntityID":"211","firstName":"Hazem","middleName":"E","lastName":"Abolrous","jobTitle":"Quality Assurance Manager","phoneNumberType":"Work","phoneNumber":"869-555-0125","emailAddress":"hazem0@adventure-works.com","emailPromotion":"0","addressLine1":"5050 Mt. Wilson Way","city":"Kenmore","stateProvinceName":"Washington","postalCode":"98028","countryRegionName":"United States"}})

And second, JSON wrapped in JSONP, using Jersey’s natural notation. Note the differences in the way the parent vEmployee node, numbers, and nulls are handled in natural JSON notation.

callback([{"Employee ID":211,"Title":null,"First Name":"Hazem","Middle Name":"E","Last Name":"Abolrous","Suffix":null,"Job Title":"Quality Assurance Manager","Phone Number Type":"Work","Phone Number":"869-555-0125","Email Address":"hazem0@adventure-works.com","Email Promotion":0,"Address Line 1":"5050 Mt. Wilson Way","Address Line 2":null,"City":"Kenmore","State or Province Name":"Washington","Postal Code":"98028","Country or Region Name":"United States","Additional Contact Info":null}])

Mobile Client Project

When we are done with the mobile client, the final RESTful web services mobile client NetBeans projects should look like the screen-grab, below. Note the inclusion of jQuery Mobile 1.2.0. You will need to download the library and associated components, and install them in the project. I chose to keep them in a separate folder since there were several files included with the library. This example requires a few new features introduced in jQuery Mobile 1.2.0. Make sure to get this version or later.

JerseyRESTfulClient Project View in NetBeans

JerseyRESTfulClient Project View in NetBeans

8: Create a List/Detail Mobile HTML Site
The process to display the data from the Adventure Works database in the mobile web browser is identical to the process used in the last series of posts. We are still using jQuery with Ajax, calling the same services, but with a few new methods. The biggest change is the use of jQuery Mobile to display the employee data. The jQuery Mobile library, especially with the release of 1.2.0, makes displaying data, quick and elegant. The library does all the hard work under the covers, with the features such as the listview control. We simply need to use jQuery and Ajax to retrieve the data and pass it to the control.

We will create three new files. They include the HTML, CSS, and JavaScript files. We add a ‘.m’ to the file names to differentiate them from the normal web browser files from the last post. As with the previous post, the HTML page and CSS file are minimal. The HTML page uses the jQuery Mobile multi-page template available on the jQuery Mobile website. Although it appears as two different web pages to the end-user, it is actually a single-page site.

Source code for employee.m.html:

<!DOCTYPE html>
<html>
    <head> 
        <title>Employee List</title> 
        <meta name="viewport" content="width=device-width, initial-scale=1"> 
        <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

        <link rel="stylesheet" href="jquery.mobile-1.2.0/jquery.mobile-1.2.0.min.css" />
        <link type="text/css" rel="stylesheet" href="employees.m.css" />

        <script src="jquery-1.8.2.min.js" type="text/javascript"></script>
        <script src="jquery.mobile-1.2.0/jquery.mobile-1.2.0.min.js" type="text/javascript"></script>
        <script src="employees.m.js" type="text/javascript"></script>
    </head> 
    <body> 
        <!-- Start of first page: #one -->
        <div data-role="page" id="one" data-theme="b">
            <div data-role="header" data-theme="b">
                <h1>Employee List</h1>
            </div><!-- /header -->
            <div data-role="content">	
                <div id="errorMessage"></div>
                <div class="ui-grid-solo">
                    <form>
                        <ul data-role="listview" data-filter="true" 
                            id="employeeList" data-theme="c" data-autodividers="true">
                        </ul>
                    </form>
                </div>
            </div><!-- /content -->
            <div data-role="footer" data-theme="b">
                <h4>Programmatic Ponderings, 2012</h4>
            </div><!-- /footer -->
        </div><!-- /page -->
        
        <!-- Start of second page: #two -->
        <div data-role="page" id="two" data-theme="c">
            <div data-role="header" data-theme="b">
                <a href="#one" data-icon="back">Return</a>
                <h1>Employee Detail</h1>
            </div><!-- /header -->
            <div data-role="content" data-theme="c">	
                <div id="employeeDetail"></div>
            </div><!-- /content -->
            <div data-role="footer" data-theme="b">
                <h4>Programmatic Ponderings, 2012</h4>
            </div><!-- /footer -->
        </div><!-- /page two -->
    </body>
</html>

Source code for employee.m.css:

#employeeList {
    clear:both;
}

#employeeDetail div {
    padding-top: 2px;
    white-space: nowrap;
}

.field {
    margin-bottom: 0px;
    font-size: smaller;
    color: #707070;
}

.value {
    font-weight: bolder;
    padding-bottom: 12px;
    border-bottom: 1px #d0d0d0 solid;
}

.ui-block-a{
    padding-left: 6px;
    padding-right: 6px;
}

.ui-grid-a{
    padding-bottom: 12px;
    padding-top: -6px;
}

8: Retrieve, Parse, and Display the Data
The mobile JavaScript file below is identical in many ways to the JavaScript file used in the last series of posts for a non-mobile browser. One useful change we have made is the addition of two arguments to the function that calls jQuery.Ajax(). The address of the service (URI) that the jQuery.Ajax() method requests, and the function that Ajax calls after successful completion, are both passed into the callService(Uri, successFunction) function as arguments. This allows us to reuse the Ajax method for different purposes. In this case, we call the function once to populate the Employee List with the full names of the employees. We call it again to populate the Employee Detail page with demographic information of a single employee chosen from the Employee List. Both calls are to different URIs representing the two different RESTful web services, which in turn are associated with the two different entities, which in turn are mapped to the two different database views.

callService = function (uri, successFunction) {
        $.ajax({
            cache: true,
            url: uri,
            data: "{}",
            type: "GET",
            contentType: "application/javascript",
            dataType: "jsonp",
            error: ajaxCallFailed,
            failure: ajaxCallFailed,
            success: successFunction
        });          
    };

The rest of the functions are self-explanatory. There are two calls to the jQuery Ajax method to return data from the service, two functions to parse and format the JSONP for display in the browser, and one jQuery method that adds click events to the Employee List. We perform a bit of string manipulation to imbed the employee id into the id property of each list item (li element. Later, when the end-user clicks on the employee name in the list, the employee id is extracted from the id property of the selected list item and passed back to the service to retrieve the employee detail. The HTML snippet below shows how a single employee row in the jQuery listview. Note the id property of the li element, id="empId_121", for employee id 121.

<li id="empId_121" class="ui-btn ui-btn-icon-right ui-li-has-arrow ui-li ui-btn-up-c" 
    data-corners="false" data-shadow="false" data-iconshadow="true" 
    data-wrapperels="div" data-icon="arrow-r" data-iconpos="right" data-theme="c">
    <div class="ui-btn-inner ui-li">
        <div class="ui-btn-text">
            <a class="ui-link-inherit" href="#">Ackerman, Pilar G</a>
        </div>
        <span class="ui-icon ui-icon-arrow-r ui-icon-shadow"> </span>
    </div>
</li>

To make this example work, you need to change the restfulWebServiceBaseUri variable to the server and port of the GlassFish domain running your RESTful web services. If you are testing the client locally on your mobile device, I suggest using the IP address for the GlassFish server versus a domain name, which your phone will be able to connect to in your local wireless environment. At least on the iPhone, there is no easy way to change the hosts file to provide local domain name resolution.

Source code for employee.m.js:

// ===========================================================================
// 
// Author: Gary A. Stafford
// Website: http://www.programmaticponderings.com
// Description: Call RESTful Web Services from mobile HTML pages
//              using jQuery mobile, Jersey, Jackson, and EclipseLink
// 
// ===========================================================================

// Immediate function
(function () {
    "use strict";
    
    var restfulWebServiceBaseUri, employeeListFindAllUri, employeeByIdUri,
    callService, ajaxCallFailed,
    getEmployeeById, displayEmployeeList, displayEmployeeDetail;
    
    // Base URI of RESTful web service
    restfulWebServiceBaseUri = "http://your_server_name_or_ip:8080/JerseyRESTfulServices/webresources/";
    
    // URI maps to service.VEmployeeNamesFacadeREST.findAllJSONP
    employeeListFindAllUri = restfulWebServiceBaseUri + "entities.vemployeenames/jsonp";
        
    // URI maps to service.VEmployeeFacadeREST.findJSONP
    employeeByIdUri = restfulWebServiceBaseUri + "entities.vemployee/{id}/jsonp";
    
    
    // Execute after the page one dom is fully loaded
    $(".one").ready(function () {        
        // Retrieve employee list
        callService(employeeListFindAllUri, displayEmployeeList);
        
        // Attach onclick event to each row of employee list on page one
        $("#employeeList").on("click", "li", function(event){
            getEmployeeById($(this).attr("id").split("empId_").pop());
        });
    });
      
    // Call a service URI and return JSONP to a function
    callService = function (Uri, successFunction) {
        $.ajax({
            cache: true,
            url: Uri,
            data: "{}",
            type: "GET",
            contentType: "application/javascript",
            dataType: "jsonp",
            error: ajaxCallFailed,
            failure: ajaxCallFailed,
            success: successFunction
        });          
    };
    
    // Called if ajax call fails
    ajaxCallFailed = function (jqXHR, textStatus) { 
        console.log("Error: " + textStatus);
        console.log(jqXHR);
        $("form").css("visibility", "hidden");
        $("#errorMessage").empty().
        append("Sorry, there was an error.").
        css("color", "red");
    };
    
    // Display employee list on page one
    displayEmployeeList = function (employee) {
        var employeeList = "";
                
        $.each(employee, function(index, employee) {
            employeeList = employeeList.concat(
                "<li id=empId_" + employee.businessEntityID.toString() + ">" + 
                "<a href='#'>" + 
                employee.fullName.toString() + "</a></li>");
        });
        
        $('#employeeList').empty();
        $('#employeeList').append(employeeList).listview("refresh", true);
    };
    
    // Display employee detail on page two
    displayEmployeeDetail = function(employee) {
        $.mobile.loading( 'show', {
            text: '',
            textVisible: false,
            theme: 'a',
            html: ""
            
        });
        window.location = "#two";
        var employeeDetail = "";
                
        $.each(employee, function(key, value) {
            $.each(value, function(key, value) {
                if(!value) {
                    value = "&nbsp;";
                }
                
                employeeDetail = employeeDetail.concat(
                    "<div class='detail'>" +
                    "<div class='field'>" + key + "</div>" +
                    "<div class='value'>" + value + "</div>" +
                    "</div>");   
            });
        });
        
        $("#employeeDetail").empty().append(employeeDetail);
    };
    
    // Retrieve employee detail based on employee id
    getEmployeeById = function (employeeID) {
        callService(employeeByIdUri.replace("{id}", employeeID), displayEmployeeDetail);
    };
} ());

The Final Result

Viewed in Google’s Chrome for Mobile web browser on iOS 6, the previous project’s Employee List looks pretty bland and un-mobile like:

Previous Project as Viewed in Google Chrome Mobile Browser

Previous Project as Viewed in Google Chrome for Mobile Web Browser

However, with a little jQuery Mobile magic you get a simple yet effective and highly functional mobile web presentation. Seen below on page one, the Employee List is displayed in Safari on an iPhone 4 with iOS 6. It features some of the new capabilities of jQuery Mobile 1.2.0’s improved listview, including autodividers.

Employee List

Employee List

Here again is the Employee List using the jQuery Mobile 1.2.0’s improved listview search filter bar:

Employee List - Filtered

Employee List – Filtered

Here is the Employee Detail on page 2. Note the order and names of the fields. Remember previously when we annotated the VEmployeeNames.java entity with the @XmlType(propOrder = {"businessEntityID", ...}) to the class and the @JsonProperty(value = ...) tags to each member variable. This is the results of those efforts; our JSON is delivered pre-sorted and titled the way we want. No need to handle those functions on the client-side. This allows the client to be loosely-coupled to the data. The client simply displays whichever key/value pairs are delivered in the JSONP response payload.

Employee Detail

Employee Detail

Employee Detail - Bottom

Employee Detail – Bottom

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

4 Comments