Posts Tagged Presto
Video Demonstration: Ahana Cloud for Presto on AWS using Apache Hive and AWS Glue
Using Ahana Cloud for Presto to perform analytics on AWS using both Apache Hive and AWS Glue as metastores
Introduction
The following series of five videos are an extended version of the demonstration featured in the October 2021 webinar, Build an Open Data Lake on AWS with Presto. An on-demand copy of the live webinar is available on Ahana.io, featuring Dipti Borkar (Ahana Co-Founder and CPO) and I.
In the demonstration, we will build a data lake on AWS using a combination of Ahana Cloud for Presto, Apache Hive, Apache Superset, Amazon S3, AWS Glue, and Amazon Athena. We then analyze the data in Apache Superset using Ahana Cloud for Presto.

Demonstration
The demonstration is divided into five YouTube videos (playlist):
Source Code
All source code for this post and the previous posts in this series are open-sourced and located on GitHub. In the webinar and the videos, the Apache Hive and AWS Glue data catalog tables contain an _athena
or _presto
suffix. For clarity, in the source code, I have changed those to indicate the metastore they are associated with, _hive
or _glue
, since either set of tables can be queried Presto. Additionally, in the webinar and the videos, the raw data files were uploaded to Amazon S3 in uncompressed CSV format; this is unnecessary. The CTAS
SQL statements both expect GZIP-compressed CSV files. To save time and cost, upload the compressed files, as they are, to Amazon S3.
The following files are used in the demonstration:
README.md
: Instructions for demoahana_demo_glue_artists.sql
: AWS Glue SQL statementsahana_demo_glue_artworks.sql
: AWS Glue SQL statementsahana_demo_hive.sql
: Apache Hive SQL statementsjoins.sql
: Simple SQL join statementsuperset_charts.sql
: SQL statements for Superset chartsmoma_public_artists.txt.gz
: Compressed raw artists datamoma_public_artworks.txt.gz
: Compressed raw artworks data
This blog represents my own viewpoints and not of my employer, Amazon Web Services (AWS). All product names, logos, and brands are the property of their respective owners.
Getting Started with Presto Federated Queries using Ahana’s PrestoDB Sandbox on AWS
Posted by Gary A. Stafford in AWS, Big Data, Software Development, SQL on September 3, 2020
Introduction
According to The Presto Foundation, Presto (aka PrestoDB), not to be confused with PrestoSQL, is an open-source, distributed, ANSI SQL compliant query engine. Presto is designed to run interactive ad-hoc analytic queries against data sources of all sizes ranging from gigabytes to petabytes. Presto is used in production at an immense scale by many well-known organizations, including Facebook, Twitter, Uber, Alibaba, Airbnb, Netflix, Pinterest, Atlassian, Nasdaq, and more.
In the following post, we will gain a better understanding of Presto’s ability to execute federated queries, which join multiple disparate data sources without having to move the data. Additionally, we will explore Apache Hive, the Hive Metastore, Hive partitioned tables, and the Apache Parquet file format.
Presto on AWS
There are several options for Presto on AWS. AWS recommends Amazon EMR and Amazon Athena. Presto comes pre-installed on EMR 5.0.0 and later. The Athena query engine is a derivation of Presto 0.172 and does not support all of Presto’s native features. However, Athena has many comparable features and deep integrations with other AWS services. If you need full, fine-grain control, you could deploy and manage Presto, yourself, on Amazon EC2, Amazon ECS, or Amazon EKS. Lastly, you may decide to purchase a Presto distribution with commercial support from an AWS Partner, such as Ahana or Starburst. If your organization needs 24x7x365 production-grade support from experienced Presto engineers, this is an excellent choice.
Federated Queries
In a modern Enterprise, it is rare to find all data living in a monolithic datastore. Given the multitude of available data sources, internal and external to an organization, and the growing number of purpose-built databases, analytics engines must be able to join and aggregate data across many sources efficiently. AWS defines a federated query as a capability that ‘enables data analysts, engineers, and data scientists to execute SQL queries across data stored in relational, non-relational, object, and custom data sources.’
Presto allows querying data where it lives, including Apache Hive, Thrift, Kafka, Kudu, and Cassandra, Elasticsearch, and MongoDB. In fact, there are currently 24 different Presto data source connectors available. With Presto, we can write queries that join multiple disparate data sources, without moving the data. Below is a simple example of a Presto federated query statement that correlates a customer’s credit rating with their age and gender. The query federates two different data sources, a PostgreSQL database table, postgresql.public.customer
, and an Apache Hive Metastore table, hive.default.customer_demographics
, whose underlying data resides in Amazon S3.
Ahana
The Linux Foundation’s Presto Foundation member, Ahana, was founded as the first company focused on bringing PrestoDB-based ad hoc analytics offerings to market and working to foster growth and evangelize the Presto community. Ahana’s mission is to simplify ad hoc analytics for organizations of all shapes and sizes. Ahana has been successful in raising seed funding, led by GV (formerly Google Ventures). Ahana’s founders have a wealth of previous experience in tech companies, including Alluxio, Kinetica, Couchbase, IBM, Apple, Splunk, and Teradata.
PrestoDB Sandbox
This post will use Ahana’s PrestoDB Sandbox, an Amazon Linux 2, AMI-based solution available on AWS Marketplace, to execute Presto federated queries.

Ahana’s PrestoDB Sandbox AMI allows you to easily get started with Presto to query data wherever your data resides. This AMI configures a single EC2 instance Sandbox to be both the Presto Coordinator and a Presto Worker. It comes with an Apache Hive Metastore backed by PostgreSQL bundled in. In addition, the following catalogs are bundled in to try, test, and prototype with Presto:
- JMX: useful for monitoring and debugging Presto
- Memory: stores data and metadata in RAM, which is discarded when Presto restarts
- TPC-DS: provides a set of schemas to support the TPC Benchmark DS
- TPC-H: provides a set of schemas to support the TPC Benchmark H
Apache Hive
In this demonstration, we will use Apache Hive and an Apache Hive Metastore backed by PostgreSQL. Apache Hive is data warehouse software that facilitates reading, writing, and managing large datasets residing in distributed storage using SQL. The structure can be projected onto data already in storage. A command-line tool and JDBC driver are provided to connect users to Hive. The Metastore provides two essential features of a data warehouse: data abstraction and data discovery. Hive accomplishes both features by providing a metadata repository that is tightly integrated with the Hive query processing system so that data and metadata are in sync.
Getting Started
To get started creating federated queries with Presto, we first need to create and configure our AWS environment, as shown below.

Subscribe to Ahana’s PrestoDB Sandbox
To start, subscribe to Ahana’s PrestoDB Sandbox on AWS Marketplace. Make sure you are aware of the costs involved. The AWS current pricing for the default, Linux-based r5.xlarge on-demand EC2 instance hosted in US East (N. Virginia) is USD 0.252 per hour. For the demonstration, since performance is not an issue, you could try a smaller EC2 instance, such as r5.large instance costs USD 0.126 per hour.

The configuration process will lead you through the creation of an EC2 instance based on Ahana’s PrestoDB Sandbox AMI.

I chose to create the EC2 instance in my default VPC. Part of the demonstration includes connecting to Presto locally using JDBC. Therefore, it was also necessary to include a public IP address for the EC2 instance. If you chose to do so, I strongly recommend limiting the required ports 22
and 8080
in the instance’s Security Group to just your IP address (a /32
CIDR block).

Lastly, we need to assign an IAM Role to the EC2 instance, which has access to Amazon S3. I assigned the AWS managed policy, AmazonS3FullAccess
, to the EC2’s IAM Role.

AWS managed policy to the Role
Part of the configuration also asks for a key pair. You can use an existing key or create a new key for the demo. For reference in future commands, I am using a key named ahana-presto
and my key path of ~/.ssh/ahana-presto.pem
. Be sure to update the commands to match your own key’s name and location.

Once complete, instructions for using the PrestoDB Sandbox EC2 are provided.



You can view the running EC2 instance, containing Presto, from the web-based AWS EC2 Management Console. Make sure to note the public IPv4 address or the public IPv4 DNS address as this value will be required during the demo.

AWS CloudFormation
We will use Amazon RDS for PostgreSQL and Amazon S3 as additional data sources for Presto. Included in the project files on GitHub is an AWS CloudFormation template, cloudformation/presto_ahana_demo.yaml
. The template creates a single RDS for PostgreSQL instance in the default VPC and an encrypted Amazon S3 bucket.
All the source code for this post is on GitHub. Use the following command to git clone
a local copy of the project.
git clone \
–branch master –single-branch –depth 1 –no-tags \
https://github.com/garystafford/presto-aws-federated-queries.git
To create the AWS CloudFormation stack from the template, cloudformation/rds_s3.yaml
, execute the following aws cloudformation
command. Make sure you change the DBAvailabilityZone
parameter value (shown in bold) to match the AWS Availability Zone in which your Ahana PrestoDB Sandbox EC2 instance was created. In my case, us-east-1f
.
aws cloudformation create-stack \
--stack-name ahana-prestodb-demo \
--template-body file://cloudformation/presto_ahana_demo.yaml \
--parameters ParameterKey=DBAvailabilityZone,ParameterValue=us-east-1f
To ensure the RDS for PostgreSQL database instance can be accessed by Presto running on the Ahana PrestoDB Sandbox EC2, manually add the PrestoDB Sandbox EC2’s Security Group to port 5432
within the database instance’s VPC Security Group’s Inbound rules. I have also added my own IP to port 5432
, which enables me to connect to the RDS instance directly from my IDE using JDBC.

The AWS CloudFormation stack’s Outputs tab includes a set of values, including the JDBC connection string for the new RDS for PostgreSQL instance, JdbcConnString
, and the Amazon S3 bucket’s name, Bucket
. All these values will be required during the demonstration.

Preparing the PrestoDB Sandbox
There are a few steps we need to take to properly prepare the PrestoDB Sandbox EC2 for our demonstration. First, use your PrestoDB Sandbox EC2 SSH key to scp
the properties
and sql
directories to the Presto EC2 instance. First, you will need to set the EC2_ENDPOINT
value (shown in bold) to your EC2’s public IPv4 address or public IPv4 DNS value. You can hardcode the value or use the aws ec2
API command is shown below to retrieve the value programmatically.
# on local workstation
EC2_ENDPOINT=$(aws ec2 describe-instances \
--filters "Name=product-code,Values=ejee5zzmv4tc5o3tr1uul6kg2" \
"Name=product-code.type,Values=marketplace" \
--query "Reservations[*].Instances[*].{Instance:PublicDnsName}" \
--output text)
scp -i "~/.ssh/ahana-presto.pem" \
-r properties/ sql/ \
ec2-user@${EC2_ENDPOINT}:~/
ssh -i "~/.ssh/ahana-presto.pem" ec2-user@${EC2_ENDPOINT}
Environment Variables
Next, we need to set several environment variables. First, replace the DATA_BUCKET
and POSTGRES_HOST
values below (shown in bold) to match your environment. The PGPASSWORD
value should be correct unless you changed it in the CloudFormation template. Then, execute the command to add the variables to your .bash_profile
file.
echo """
export DATA_BUCKET=prestodb-demo-databucket-CHANGE_ME
export POSTGRES_HOST=presto-demo.CHANGE_ME.us-east-1.rds.amazonaws.com
export PGPASSWORD=5up3r53cr3tPa55w0rd
export JAVA_HOME=/usr
export HADOOP_HOME=/home/ec2-user/hadoop
export HADOOP_CLASSPATH=$HADOOP_HOME/share/hadoop/tools/lib/*
export HIVE_HOME=/home/ec2-user/hive
export PATH=$HIVE_HOME/bin:$HADOOP_HOME/bin:$PATH
""" >>~/.bash_profile
Optionally, I suggest updating the EC2 instance with available updates and install your favorite tools, likehtop
, to monitor the EC2 performance.
yes | sudo yum update
yes | sudo yum install htop

Before further configuration for the demonstration, let’s review a few aspects of the Ahana PrestoDB EC2 instance. There are several applications pre-installed on the instance, including Java, Presto, Hadoop, PostgreSQL, and Hive. Versions shown are current as of early September 2020.
java -version
# openjdk version "1.8.0_252"
# OpenJDK Runtime Environment (build 1.8.0_252-b09)
# OpenJDK 64-Bit Server VM (build 25.252-b09, mixed mode)
hadoop version
# Hadoop 2.9.2
postgres --version
# postgres (PostgreSQL) 9.2.24
psql --version
# psql (PostgreSQL) 9.2.24
hive --version
# Hive 2.3.7
presto-cli --version
# Presto CLI 0.235-cb21100
The Presto configuration files are in the /etc/presto/
directory. The Hive configuration files are in the ~/hive/conf/
directory. Here are a few commands you can use to gain a better understanding of their configurations.
ls /etc/presto/
cat /etc/presto/jvm.config
cat /etc/presto/config.properties
cat /etc/presto/node.properties
# installed and configured catalogs
ls /etc/presto/catalog/
cat ~/hive/conf/hive-site.xml
Configure Presto
To configure Presto, we need to create and copy a new Presto postgresql
catalog properties file for the newly created RDS for PostgreSQL instance. Modify the properties/rds_postgresql.properties
file, replacing the value, connection-url
(shown in bold), with your own JDBC connection string, shown in the CloudFormation Outputs tab.
connector.name=postgresql
connection-url=jdbc:postgresql://presto-demo.abcdefg12345.us-east-1.rds.amazonaws.com:5432/shipping
connection-user=presto
connection-password=5up3r53cr3tPa55w0rd
Move the rds_postgresql.properties
file to its correct location using sudo
.
sudo mv properties/rds_postgresql.properties /etc/presto/catalog/
We also need to modify the existing Hive catalog properties file, which will allow us to write to non-managed Hive tables from Presto.
connector.name=hive-hadoop2
hive.metastore.uri=thrift://localhost:9083
hive.non-managed-table-writes-enabled=true
The following command will overwrite the existing hive.properties
file with the modified version containing the new property.
sudo mv properties/hive.properties |
/etc/presto/catalog/hive.properties
To finalize the configuration of the catalog properties files, we need to restart Presto. The easiest way is to reboot the EC2 instance, then SSH back into the instance. Since our environment variables are in the .bash_profile file
, they will survive a restart and logging back into the EC2 instance.
sudo reboot
Add Tables to Apache Hive Metastore
We will use RDS for PostgreSQL and Apache Hive Metastore/Amazon S3 as additional data sources for our federated queries. The Ahana PrestoDB Sandbox instance comes pre-configured with Apache Hive and an Apache Hive Metastore, backed by PostgreSQL (a separate PostgreSQL 9.x instance pre-installed on the EC2).
The Sandbox’s instance of Presto comes pre-configured with schemas for the TPC Benchmark DS (TPC-DS). We will create identical tables in our Apache Hive Metastore, which correspond to three external tables in the TPC-DS data source’s sf1
schema: tpcds.sf1.customer
, tpcds.sf1.customer_address
, and tpcds.sf1.customer_demographics
. A Hive external table describes the metadata/schema on external files. External table files can be accessed and managed by processes outside of Hive. As an example, here is the SQL statement that creates the external customer
table in the Hive Metastore and whose data will be stored in the S3 bucket.
CREATE EXTERNAL TABLE IF NOT EXISTS `customer`(
`c_customer_sk` bigint,
`c_customer_id` char(16),
`c_current_cdemo_sk` bigint,
`c_current_hdemo_sk` bigint,
`c_current_addr_sk` bigint,
`c_first_shipto_date_sk` bigint,
`c_first_sales_date_sk` bigint,
`c_salutation` char(10),
`c_first_name` char(20),
`c_last_name` char(30),
`c_preferred_cust_flag` char(1),
`c_birth_day` integer,
`c_birth_month` integer,
`c_birth_year` integer,
`c_birth_country` char(20),
`c_login` char(13),
`c_email_address` char(50),
`c_last_review_date_sk` bigint)
STORED AS PARQUET
LOCATION
's3a://prestodb-demo-databucket-CHANGE_ME/customer'
TBLPROPERTIES ('parquet.compression'='SNAPPY');
The threeCREATE EXTERNAL TABLE
SQL statements are included in the sql/
directory: sql/hive_customer.sql
, sql/hive_customer_address.sql
, and sql/hive_customer_demographics.sql
. The bucket name (shown in bold above), needs to be manually updated to your own bucket name in all three files before continuing.
Next, run the following hive
commands to create the external tables in the Hive Metastore within the existing default
schema/database.
hive --database default -f sql/hive_customer.sql
hive --database default -f sql/hive_customer_address.sql
hive --database default -f sql/hive_customer_demographics.sql
To confirm the tables were created successfully, we could use a variety of hive
commands.
hive --database default -e "SHOW TABLES;"
hive --database default -e "DESCRIBE FORMATTED customer;"
hive --database default -e "SELECT * FROM customer LIMIT 5;"

Alternatively, you can also create the external table interactively from within Hive, using the hive
command to access the CLI. Copy and paste the contents of the SQL files to the hive
CLI. To exit hive use quit;
.

Amazon S3 Data Source Setup
With the external tables created, we will now select all the data from each of the three tables in the TPC-DS data source and insert that data into the equivalent Hive tables. The physical data will be written to Amazon S3 as highly-efficient, columnar storage format, SNAPPY-compressed Apache Parquet files. Execute the following commands. I will explain why the customer_address
table statements are a bit different, next.
# inserts 100,000 rows
presto-cli --execute """
INSERT INTO hive.default.customer
SELECT * FROM tpcds.sf1.customer;
"""
# inserts 50,000 rows across 52 partitions
presto-cli --execute """
INSERT INTO hive.default.customer_address
SELECT ca_address_sk, ca_address_id, ca_street_number,
ca_street_name, ca_street_type, ca_suite_number,
ca_city, ca_county, ca_zip, ca_country, ca_gmt_offset,
ca_location_type, ca_state
FROM tpcds.sf1.customer_address
ORDER BY ca_address_sk;
"""
# add new partitions in metastore
hive -e "MSCK REPAIR TABLE default.customer_address;"
# inserts 1,920,800 rows
presto-cli --execute """
INSERT INTO hive.default.customer_demographics
SELECT * FROM tpcds.sf1.customer_demographics;
"""
Confirm the data has been loaded into the correct S3 bucket locations and is in Parquet-format using the AWS Management Console or AWS CLI. Rest assured, the Parquet-format data is SNAPPY-compressed even though the S3 console incorrectly displays Compression
as None
. You can easily confirm the compression codec with a utility like parquet-tools.


Partitioned Tables
The customer_address
table is unique in that it has been partitioned by the ca_state
column. Partitioned tables are created using the PARTITIONED BY
clause.
CREATE EXTERNAL TABLE `customer_address`(
`ca_address_sk` bigint,
`ca_address_id` char(16),
`ca_street_number` char(10),
`ca_street_name` char(60),
`ca_street_type` char(15),
`ca_suite_number` char(10),
`ca_city` varchar(60),
`ca_county` varchar(30),
`ca_zip` char(10),
`ca_country` char(20),
`ca_gmt_offset` double precision,
`ca_location_type` char(20)
)
PARTITIONED BY (`ca_state` char(2))
STORED AS PARQUET
LOCATION
's3a://prestodb-demo-databucket-CHANGE_ME/customer'
TBLPROPERTIES ('parquet.compression'='SNAPPY');
According to Apache Hive, a table can have one or more partition columns and a separate data directory is created for each distinct value combination in the partition columns. Since the data for the Hive tables are stored in Amazon S3, that means that when the data is written to the customer_address
table, it is automatically separated into different S3 key prefixes based on the state. The data is physically “partitioned”.

Whenever add new partitions in S3, we need to run the MSCK REPAIR TABLE
command to add that table’s new partitions to the Hive Metastore.
hive -e "MSCK REPAIR TABLE default.customer_address;"
In SQL, a predicate is a condition expression that evaluates to a Boolean value, either true or false. Defining the partitions aligned with the attributes that are frequently used in the conditions/filters (predicates) of the queries can significantly increase query efficiency. When we execute a query that uses an equality comparison condition, such as ca_state = 'TN'
, partitioning means the query will only work with a slice of the data in the corresponding ca_state=TN
prefix key. There are 50,000 rows of data in the customer_address
table, but only 1,418 rows (2.8% of the total data) in the ca_state=TN
partition. With the additional advantage of Parquet format with SNAPPY compression, partitioning can significantly reduce query execution time.
Adding Data to RDS for PostgreSQL Instance
For the demonstration, we will also replicate the schema and data of the tpcds.sf1.customer_address
table to the new RDS for PostgreSQL instance’s shipping
database.
CREATE TABLE customer_address (
ca_address_sk bigint,
ca_address_id char(16),
ca_street_number char(10),
ca_street_name char(60),
ca_street_type char(15),
ca_suite_number char(10),
ca_city varchar(60),
ca_county varchar(30),
ca_state char(2),
ca_zip char(10),
ca_country char(20),
ca_gmt_offset double precision,
ca_location_type char(20)
);
Like Hive and Presto, we can create the table programmatically from the command line or interactively; I prefer the programmatic approach. Use the following psql
command, we can create the customer_address
table in the public
schema of the shipping
database.
psql -h ${POSTGRES_HOST} -p 5432 -d shipping -U presto \
-f sql/postgres_customer_address.sql
Now, to insert the data into the new PostgreSQL table, run the following presto-cli
command.
# inserts 50,000 rows
presto-cli --execute """
INSERT INTO rds_postgresql.public.customer_address
SELECT * FROM tpcds.sf1.customer_address;
"""
To confirm that the data was imported properly, we can use a variety of commands.
-- Should be 50000 rows in table
psql -h ${POSTGRES_HOST} -p 5432 -d shipping -U presto \
-c "SELECT COUNT(*) FROM customer_address;"
psql -h ${POSTGRES_HOST} -p 5432 -d shipping -U presto \
-c "SELECT * FROM customer_address LIMIT 5;"
Alternatively, you could use the PostgreSQL client interactively by copying and pasting the contents of the sql/postgres_customer_address.sql
file to the psql
command prompt. To interact with PostgreSQL from the psql
command prompt, use the following command.
psql -h ${POSTGRES_HOST} -p 5432 -d shipping -U presto
Use the \dt
command to list the PostgreSQL tables and the \q
command to exit the PostgreSQL client. We now have all the new data sources created and configured for Presto!
Interacting with Presto
Presto provides a web interface for monitoring and managing queries. The interface provides dashboard-like insights into the Presto Cluster and queries running on the cluster. The Presto UI is available on port 8080
using the public IPv4 address or the public IPv4 DNS.

There are several ways to interact with Presto, via the PrestoDB Sandbox. The post will demonstrate how to execute ad-hoc queries against Presto from an IDE using a JDBC connection and the Presto CLI. Other options include running queries against Presto from Java and Python applications, Tableau, or Apache Spark/PySpark.
Below, we see a query being run against Presto from JetBrains PyCharm, using a Java Database Connectivity (JDBC) connection. The advantage of using an IDE like JetBrains is having a single visual interface, including all the project files, multiple JDBC configurations, output results, and the ability to run multiple ad hoc queries.

Below, we see an example of configuring the Presto Data Source using the JDBC connection string, supplied in the CloudFormation stack Outputs tab.

Make sure to download and use the latest Presto JDBC driver JAR.

With JetBrains’ IDEs, we can even limit the databases/schemas displayed by the Data Source. This is helpful when we have multiple Presto catalogs configured, but we are only interested in certain data sources.

We can also run queries using the Presto CLI, three different ways. We can pass a SQL statement to the Presto CLI, pass a file containing a SQL statement to the Presto CLI, or work interactively from the Presto CLI. Below, we see a query being run, interactively from the Presto CLI.

As the query is running, we can observe the live Presto query statistics (not very user friendly in my terminal).

And finally, the view the query results.

Federated Queries
The example queries used in the demonstration and included in the project were mainly extracted from the scholarly article, Why You Should Run TPC-DS: A Workload Analysis, available as a PDF on the tpc.org website. I have modified the SQL queries to work with Presto.
In the first example, we will run the three versions of the same basic query statement. Version 1 of the query is not a federated query; it only queries a single data source. Version 2 of the query queries two different data sources. Finally, version 3 of the query queries three different data sources. Each of the three versions of the SQL statement should return the same results — 93 rows of data.
Version 1: Single Data Source
The first version of the query statement, sql/presto_query2.sql
, is not a federated query. Each of the query’s four tables (catalog_returns
, date_dim
, customer
, and customer_address
) reference the TPC-DS data source, which came pre-installed with the PrestoDB Sandbox. Note table references on lines 11–13 and 41–42 are all associated with the tpcds.sf1
schema.
We will run each query non-interactively using the presto-cli
. We will choose the sf1
(scale factor of 1) tpcds
schema. According to Presto, every unit in the scale factor (sf1
, sf10
, sf100
) corresponds to a gigabyte of data.
presto-cli \
--catalog tpcds \
--schema sf1 \
--file sql/presto_query2.sql \
--output-format ALIGNED \
--client-tags "presto_query2"
Below, we see the query results in the presto-cli
.

Below, we see the first query running in Presto’s web interface.

Below, we see the first query’s results detailed in Presto’s web interface.

Version 2: Two Data Sources
In the second version of the query statement, sql/presto_query2_federated_v1.sql
, two of the tables (catalog_returns
and date_dim
) reference the TPC-DS data source. The other two tables (customer
and customer_address
) now reference the Apache Hive Metastore for their schema and underlying data in Amazon S3. Note table references on lines 11 and 12, as opposed to lines 13, 41, and 42.
Again, run the query using the presto-cli
.
presto-cli \
--catalog tpcds \
--schema sf1 \
--file sql/presto_query2_federated_v1
.sql \
--output-format ALIGNED \
--client-tags "presto_query2_federated_v1
"
Below, we see the second query’s results detailed in Presto’s web interface.

Even though the data is in two separate and physically different data sources, we can easily query it as though it were all in the same place.
Version 3: Three Data Sources
In the third version of the query statement, sql/presto_query2_federated_v2.sql
, two of the tables (catalog_returns
and date_dim
) reference the TPC-DS data source. One of the tables (hive.default.customer
) references the Apache Hive Metastore. The fourth table (rds_postgresql.public.customer_address
) references the new RDS for PostgreSQL database instance. The underlying data is in Amazon S3. Note table references on lines 11 and 12, and on lines 13 and 41, as opposed to line 42.
Again, we have run the query using the presto-cli
.
presto-cli \
--catalog tpcds \
--schema sf1 \
--file sql/presto_query2_federated_v2.sql \
--output-format ALIGNED \
--client-tags "presto_query2_federated_v2"
Below, we see the third query’s results detailed in Presto’s web interface.

Again, even though the data is in three separate and physically different data sources, we can easily query it as though it were all in the same place.
Additional Query Examples
The project contains several additional query statements, which I have extracted from Why You Should Run TPC-DS: A Workload Analysis and modified work with Presto and federate across multiple data sources.
# non-federated
presto-cli \
--catalog tpcds \
--schema sf1 \
--file sql/presto_query1.sql \
--output-format ALIGNED \
--client-tags "presto_query1"
# federated - two sources
presto-cli \
--catalog tpcds \
--schema sf1 \
--file sql/presto_query1_federated.sql \
--output-format ALIGNED \
--client-tags "presto_query1_federated"
# non-federated
presto-cli \
--catalog tpcds \
--schema sf1 \
--file sql/presto_query4.sql \
--output-format ALIGNED \
--client-tags "presto_query4"
# federated - three sources
presto-cli \
--catalog tpcds \
--schema sf1 \
--file sql/presto_query4_federated.sql \
--output-format ALIGNED \
--client-tags "presto_query4_federated"
# non-federated
presto-cli \
--catalog tpcds \
--schema sf1 \
--file sql/presto_query5.sql \
--output-format ALIGNED \
--client-tags "presto_query5"
Conclusion
In this post, we gained a better understanding of Presto using Ahana’s PrestoDB Sandbox product from AWS Marketplace. We learned how Presto queries data where it lives, including Apache Hive, Thrift, Kafka, Kudu, and Cassandra, Elasticsearch, MongoDB, etc. We also learned about Apache Hive and the Apache Hive Metastore, Apache Parquet file format, and how and why to partition Hive data in Amazon S3. Most importantly, we learned how to write federated queries that join multiple disparate data sources without having to move the data into a single monolithic data store.
This blog represents my own viewpoints and not of my employer, Amazon Web Services.
Executing Amazon Athena Queries from JetBrains PyCharm
Posted by Gary A. Stafford in AWS, Big Data, Cloud, Python, Software Development, SQL on January 8, 2020
Amazon Athena
According to Amazon, Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Amazon Athena supports and works with a variety of popular data file formats, including CSV, JSON, Apache ORC, Apache Avro, and Apache Parquet.
The underlying technology behind Amazon Athena is Presto, the popular, open-source distributed SQL query engine for big data, created by Facebook. According to AWS, the Athena query engine is based on Presto 0.172. Athena is ideal for quick, ad-hoc querying, but it can also handle complex analysis, including large joins, window functions, and arrays. In addition to Presto, Athena also uses Apache Hive to define tables.
Athena Query Editor
In the previous post, Getting Started with Data Analysis on AWS using AWS Glue, Amazon Athena, and QuickSight, we used the Athena Query Editor to construct and test SQL queries against semi-structured data in an S3-based Data Lake. The Athena Query Editor has many of the basic features Data Engineers and Analysts expect, including SQL syntax highlighting, code auto-completion, and query formatting. Queries can be run directly from the Editor, saved for future reference, and query results downloaded. The Editor can convert SELECT
queries to CREATE TABLE AS
(CTAS) and CREATE VIEW AS
statements. Access to AWS Glue data sources is also available from within the Editor.
Full-Featured IDE
Although the Athena Query Editor is fairly functional, many Engineers perform a majority of their software development work in a fuller-featured IDE. The choice of IDE may depend on one’s predominant programming language. According to the PYPL Index, the ten most popular, current IDEs are:
- Microsoft Visual Studio
- Android Studio
- Eclipse
- Visual Studio Code
- Apache NetBeans
- JetBrains PyCharm
- JetBrains IntelliJ
- Apple Xcode
- Sublime Text
- Atom
Within the domains of data science, big data analytics, and data analysis, languages such as SQL, Python, Java, Scala, and R are common. Although I work in a variety of IDEs, my go-to choices are JetBrains PyCharm for Python (including for PySpark and Jupyter Notebook development) and JetBrains IntelliJ for Java and Scala (including Apache Spark development). Both these IDEs also support many common SQL-based technologies, out-of-the-box, and are easily extendable to add new technologies.
Athena Integration with PyCharm
Utilizing the extensibility of the JetBrains suite of professional development IDEs, it is simple to add Amazon Athena to the list of available database drivers and make JDBC (Java Database Connectivity) connections to Athena instances on AWS.
Downloading the Athena JDBC Driver
To start, download the Athena JDBC Driver from Amazon. There are two versions, based on your choice of Java JDKs. Considering Java 8 was released six years ago (March 2014), most users will likely want the AthenaJDBC42-2.0.9.jar is compatible with JDBC 4.2 and JDK 8.0 or later.
Installation Guide
AWS also supplies a JDBC Driver Installation and Configuration Guide. The guide, as well as the Athena JDBC and ODBC Drivers, are produced by Simba Technologies (acquired by Magnitude Software). Instructions for creating an Athena Driver starts on page 23.
Creating a New Athena Driver
From PyCharm’s Database Tool Window, select the Drivers dialog box, select the downloaded Athena JDBC Driver JAR. Select com.simba.athena.jdbc.Driver
in the Class dropdown. Name the Driver, ‘Amazon Athena.’
You can configure the Athena Driver further, using the Options and Advanced tabs.
Creating a New Athena Data Source
From PyCharm’s Database Tool Window, select the Data Source dialog box to create a new connection to your Athena instance. Choose ‘Amazon Athena’ from the list of available Database Drivers.
You will need four items to create an Athena Data Source:
- Your IAM User Access Key ID
- Your IAM User Secret Access Key
- The AWS Region of your Athena instance (e.g., us-east-1)
- An existing S3 bucket location to store query results
The Athena connection URL is a combination of the AWS Region and the S3 bucket, items 3 and 4, above. The format of the Athena connection URL is as follows.
jdbc:awsathena://AwsRegion=your-region;S3OutputLocation=s3://your-bucket-name/query-results-path
Give the new Athena Data Source a logical Name, input the User (Access Key ID), Password (Secret Access Key), and the Athena URL. To test the Athena Data Source, use the ‘Test Connection’ button.
You can create multiple Athena Data Sources using the Athena Driver. For example, you may have separate Development, Test, and Production instances of Athena, each in a different AWS Account.
Data Access
Once a successful connection has been made, switching to the Schemas tab, you should see a list of available AWS Glue Data Catalog databases. Below, we see the AWS Glue Catalog, which we created in the prior post. This Glue Data Catalog database contains ten metadata tables, each corresponding to a semi-structured, file-based data source in an S3-based data lake.
In the example below, I have chosen to limit the new Athena Data Source to a single Data Catalog database, to which the Data Source’s IAM User has access. Applying the core AWS security principle of granting least privilege, IAM Users should only have the permissions required to perform a specific set of approved tasks. This principle applies to the Glue Data Catalog databases, metadata tables, and the underlying S3 data sources.
Querying Athena from PyCharm
From within the PyCharm’s Database Tool Window, you should now see a list of the metadata tables defined in your AWS Glue Data Catalog database(s), as well as the individual columns within each table.
Similar to the Athena Query Editor, you can write SQL queries against the database tables in PyCharm. Like the Athena Query Editor, PyCharm has standard features SQL syntax highlighting, code auto-completion, and query formatting. Right-click on the Athena Data Source and choose New, then Console, to start.
Be mindful when writing queries and searching the Internet for SQL references, the Athena query engine is based on Presto 0.172. The current version of Presto, 0.234, is more than 50 releases ahead of the current Athena version. Both Athena and Presto functionality continue to change and diverge. There are also additional considerations and limitations for SQL queries in Athena to be aware of.
Whereas the Athena Query Editor is limited to only one query per query tab, in PyCharm, we can write and run multiple SQL queries in the same console window and have multiple console sessions opened to Athena at the same time.
By default, PyCharm’s query results are limited to the first ten rows of data. The number of rows displayed, as well as many other preferences, can be changed in the PyCharm’s Database Preferences dialog box.
Saving Queries and Exporting Results
In PyCharm, Athena queries can be saved as part of your PyCharm projects, as .sql files. Whereas the Athena Query Editor is limited to CSV, in PyCharm, query results can be exported in a variety of standard data file formats.
Athena Query History
All Athena queries ran from PyCharm are recorded in the History tab of the Athena Console. Although PyCharm shows query run times, the Athena History tab also displays the amount of data scanned. Knowing the query run time and volume of data scanned is useful when performance tuning queries.
Other IDEs
The technique shown for JetBrains PyCharm can also be applied to other JetBrains products, including GoLand, DataGrip, PhpStorm, and IntelliJ (shown below).
This blog represents my own view points and not of my employer, Amazon Web Services.
Getting Started with Data Analysis on AWS using AWS Glue, Amazon Athena, and QuickSight: Part 1
Posted by Gary A. Stafford in AWS, Bash Scripting, Big Data, Cloud, Python, Serverless, Software Development on January 5, 2020
Introduction
According to Wikipedia, data analysis is “a process of inspecting, cleansing, transforming, and modeling data with the goal of discovering useful information, informing conclusion, and supporting decision-making.” In this two-part post, we will explore how to get started with data analysis on AWS, using the serverless capabilities of Amazon Athena, AWS Glue, Amazon QuickSight, Amazon S3, and AWS Lambda. We will learn how to use these complementary services to transform, enrich, analyze, and visualize semi-structured data.
Data Analysis—discovering useful information, informing conclusion, and supporting decision-making. –Wikipedia
In part one, we will begin with raw, semi-structured data in multiple formats. We will discover how to ingest, transform, and enrich that data using Amazon S3, AWS Glue, Amazon Athena, and AWS Lambda. We will build an S3-based data lake, and learn how AWS leverages open-source technologies, such as Presto, Apache Hive, and Apache Parquet. In part two, we will learn how to further analyze and visualize the data using Amazon QuickSight. Here’s a quick preview of what we will build in part one of the post.
Demonstration
In this demonstration, we will adopt the persona of a large, US-based electric energy provider. The energy provider has developed its next-generation Smart Electrical Monitoring Hub (Smart Hub). They have sold the Smart Hub to a large number of residential customers throughout the United States. The hypothetical Smart Hub wirelessly collects detailed electrical usage data from individual, smart electrical receptacles and electrical circuit meters, spread throughout the residence. Electrical usage data is encrypted and securely transmitted from the customer’s Smart Hub to the electric provider, who is running their business on AWS.
Customers are able to analyze their electrical usage with fine granularity, per device, and over time. The goal of the Smart Hub is to enable the customers, using data, to reduce their electrical costs. The provider benefits from a reduction in load on the existing electrical grid and a better distribution of daily electrical load as customers shift usage to off-peak times to save money.
Preview of post’s data in Amazon QuickSight.
The original concept for the Smart Hub was developed as part of a multi-day training and hackathon, I recently attended with an AWSome group of AWS Solutions Architects in San Francisco. As a team, we developed the concept of the Smart Hub integrated with a real-time, serverless, streaming data architecture, leveraging AWS IoT Core, Amazon Kinesis, AWS Lambda, and Amazon DynamoDB.
From left: Bruno Giorgini, Mahalingam (‘Mahali’) Sivaprakasam, Gary Stafford, Amit Kumar Agrawal, and Manish Agarwal.
This post will focus on data analysis, as opposed to the real-time streaming aspect of data capture or how the data is persisted on AWS.
High-level AWS architecture diagram of the demonstration.
Featured Technologies
The following AWS services and open-source technologies are featured prominently in this post.
Amazon S3-based Data Lake
An Amazon S3-based Data Lake uses Amazon S3 as its primary storage platform. Amazon S3 provides an optimal foundation for a data lake because of its virtually unlimited scalability, from gigabytes to petabytes of content. Amazon S3 provides ‘11 nines’ (99.999999999%) durability. It has scalable performance, ease-of-use features, and native encryption and access control capabilities.
AWS Glue
AWS Glue is a fully managed extract, transform, and load (ETL) service to prepare and load data for analytics. AWS Glue discovers your data and stores the associated metadata (e.g., table definition and schema) in the AWS Glue Data Catalog. Once cataloged, your data is immediately searchable, queryable, and available for ETL.
AWS Glue Data Catalog
The AWS Glue Data Catalog is an Apache Hive Metastore compatible, central repository to store structural and operational metadata for data assets. For a given data set, store table definition, physical location, add business-relevant attributes, as well as track how the data has changed over time.
AWS Glue Crawler
An AWS Glue Crawler connects to a data store, progresses through a prioritized list of classifiers to extract the schema of your data and other statistics, and then populates the Glue Data Catalog with this metadata. Crawlers can run periodically to detect the availability of new data as well as changes to existing data, including table definition changes. Crawlers automatically add new tables, new partitions to an existing table, and new versions of table definitions. You can even customize Glue Crawlers to classify your own file types.
AWS Glue ETL Job
An AWS Glue ETL Job is the business logic that performs extract, transform, and load (ETL) work in AWS Glue. When you start a job, AWS Glue runs a script that extracts data from sources, transforms the data, and loads it into targets. AWS Glue generates a PySpark or Scala script, which runs on Apache Spark.
Amazon Athena
Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena supports and works with a variety of standard data formats, including CSV, JSON, Apache ORC, Apache Avro, and Apache Parquet. Athena is integrated, out-of-the-box, with AWS Glue Data Catalog. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run.
The underlying technology behind Amazon Athena is Presto, the open-source distributed SQL query engine for big data, created by Facebook. According to the AWS, the Athena query engine is based on Presto 0.172 (released April 9, 2017). In addition to Presto, Athena uses Apache Hive to define tables.
Amazon QuickSight
Amazon QuickSight is a fully managed business intelligence (BI) service. QuickSight lets you create and publish interactive dashboards that can then be accessed from any device, and embedded into your applications, portals, and websites.
AWS Lambda
AWS Lambda automatically runs code without requiring the provisioning or management servers. AWS Lambda automatically scales applications by running code in response to triggers. Lambda code runs in parallel. With AWS Lambda, you are charged for every 100ms your code executes and the number of times your code is triggered. You pay only for the compute time you consume.
Smart Hub Data
Everything in this post revolves around data. For the post’s demonstration, we will start with four categories of raw, synthetic data. Those data categories include Smart Hub electrical usage data, Smart Hub sensor mapping data, Smart Hub residential locations data, and electrical rate data. To demonstrate the capabilities of AWS Glue to handle multiple data formats, the four categories of raw data consist of three distinct file formats: XML, JSON, and CSV. I have attempted to incorporate as many ‘real-world’ complexities into the data without losing focus on the main subject of the post. The sample datasets are intentionally small to keep your AWS costs to a minimum for the demonstration.
To further reduce costs, we will use a variety of data partitioning schemes. According to AWS, by partitioning your data, you can restrict the amount of data scanned by each query, thus improving performance and reducing cost. We have very little data for the demonstration, in which case partitioning may negatively impact query performance. However, in a ‘real-world’ scenario, there would be millions of potential residential customers generating terabytes of data. In that case, data partitioning would be essential for both cost and performance.
Smart Hub Electrical Usage Data
The Smart Hub’s time-series electrical usage data is collected from the customer’s Smart Hub. In the demonstration’s sample electrical usage data, each row represents a completely arbitrary five-minute time interval. There are a total of ten electrical sensors whose electrical usage in kilowatt-hours (kW) is recorded and transmitted. Each Smart Hub records and transmits electrical usage for 10 device sensors, 288 times per day (24 hr / 5 min intervals), for a total of 2,880 data points per day, per Smart Hub. There are two days worth of usage data for the demonstration, for a total of 5,760 data points. The data is stored in JSON Lines format. The usage data will be partitioned in the Amazon S3-based data lake by date (e.g., ‘dt=2019-12-21’).
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{"loc_id":"b6a8d42425fde548","ts":1576915200,"data":{"s_01":0,"s_02":0.00502,"s_03":0,"s_04":0,"s_05":0,"s_06":0,"s_07":0,"s_08":0,"s_09":0,"s_10":0.04167}} | |
{"loc_id":"b6a8d42425fde548","ts":1576915500,"data":{"s_01":0,"s_02":0.00552,"s_03":0,"s_04":0,"s_05":0,"s_06":0,"s_07":0,"s_08":0,"s_09":0,"s_10":0.04147}} | |
{"loc_id":"b6a8d42425fde548","ts":1576915800,"data":{"s_01":0.29267,"s_02":0.00642,"s_03":0,"s_04":0,"s_05":0,"s_06":0,"s_07":0,"s_08":0,"s_09":0,"s_10":0.04207}} | |
{"loc_id":"b6a8d42425fde548","ts":1576916100,"data":{"s_01":0.29207,"s_02":0.00592,"s_03":0,"s_04":0,"s_05":0,"s_06":0,"s_07":0,"s_08":0,"s_09":0,"s_10":0.04137}} | |
{"loc_id":"b6a8d42425fde548","ts":1576916400,"data":{"s_01":0.29217,"s_02":0.00622,"s_03":0,"s_04":0,"s_05":0,"s_06":0,"s_07":0,"s_08":0,"s_09":0,"s_10":0.04157}} | |
{"loc_id":"b6a8d42425fde548","ts":1576916700,"data":{"s_01":0,"s_02":0.00562,"s_03":0,"s_04":0,"s_05":0,"s_06":0,"s_07":0,"s_08":0,"s_09":0,"s_10":0.04197}} | |
{"loc_id":"b6a8d42425fde548","ts":1576917000,"data":{"s_01":0,"s_02":0.00512,"s_03":0,"s_04":0,"s_05":0,"s_06":0,"s_07":0,"s_08":0,"s_09":0,"s_10":0.04257}} | |
{"loc_id":"b6a8d42425fde548","ts":1576917300,"data":{"s_01":0,"s_02":0.00522,"s_03":0,"s_04":0,"s_05":0,"s_06":0,"s_07":0,"s_08":0,"s_09":0,"s_10":0.04177}} | |
{"loc_id":"b6a8d42425fde548","ts":1576917600,"data":{"s_01":0,"s_02":0.00502,"s_03":0,"s_04":0,"s_05":0,"s_06":0,"s_07":0,"s_08":0,"s_09":0,"s_10":0.04267}} | |
{"loc_id":"b6a8d42425fde548","ts":1576917900,"data":{"s_01":0,"s_02":0.00612,"s_03":0,"s_04":0,"s_05":0,"s_06":0,"s_07":0,"s_08":0,"s_09":0,"s_10":0.04237}} |
Note the electrical usage data contains nested data. The electrical usage for each of the ten sensors is contained in a JSON array, within each time series entry. The array contains ten numeric values of type, double.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"loc_id": "b6a8d42425fde548", | |
"ts": 1576916400, | |
"data": { | |
"s_01": 0.29217, | |
"s_02": 0.00622, | |
"s_03": 0, | |
"s_04": 0, | |
"s_05": 0, | |
"s_06": 0, | |
"s_07": 0, | |
"s_08": 0, | |
"s_09": 0, | |
"s_10": 0.04157 | |
} | |
} |
Real data is often complex and deeply nested. Later in the post, we will see that AWS Glue can map many common data types, including nested data objects, as illustrated below.
Smart Hub Sensor Mappings
The Smart Hub sensor mappings data maps a sensor column in the usage data (e.g., ‘s_01’ to the corresponding actual device (e.g., ‘Central Air Conditioner’). The data contains the device location, wattage, and the last time the record was modified. The data is also stored in JSON Lines format. The sensor mappings data will be partitioned in the Amazon S3-based data lake by the state of the residence (e.g., ‘state=or’ for Oregon).
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{"loc_id":"b6a8d42425fde548","id":"s_01","description":"Central Air Conditioner","location":"N/A","watts":3500,"last_modified":1559347200} | |
{"loc_id":"b6a8d42425fde548","id":"s_02","description":"Ceiling Fan","location":"Master Bedroom","watts":65,"last_modified":1559347200} | |
{"loc_id":"b6a8d42425fde548","id":"s_03","description":"Clothes Dryer","location":"Basement","watts":5000,"last_modified":1559347200} | |
{"loc_id":"b6a8d42425fde548","id":"s_04","description":"Clothes Washer","location":"Basement","watts":1800,"last_modified":1559347200} | |
{"loc_id":"b6a8d42425fde548","id":"s_05","description":"Dishwasher","location":"Kitchen","watts":900,"last_modified":1559347200} | |
{"loc_id":"b6a8d42425fde548","id":"s_06","description":"Flat Screen TV","location":"Living Room","watts":120,"last_modified":1559347200} | |
{"loc_id":"b6a8d42425fde548","id":"s_07","description":"Microwave Oven","location":"Kitchen","watts":1000,"last_modified":1559347200} | |
{"loc_id":"b6a8d42425fde548","id":"s_08","description":"Coffee Maker","location":"Kitchen","watts":900,"last_modified":1559347200} | |
{"loc_id":"b6a8d42425fde548","id":"s_09","description":"Hair Dryer","location":"Master Bathroom","watts":2000,"last_modified":1559347200} | |
{"loc_id":"b6a8d42425fde548","id":"s_10","description":"Refrigerator","location":"Kitchen","watts":500,"last_modified":1559347200} |
Smart Hub Locations
The Smart Hub locations data contains the geospatial coordinates, home address, and timezone for each residential Smart Hub. The data is stored in CSV format. The data for the four cities included in this demonstration originated from OpenAddresses, ‘the free and open global address collection.’ There are approximately 4k location records. The location data will be partitioned in the Amazon S3-based data lake by the state of the residence where the Smart Hub is installed (e.g., ‘state=or’ for Oregon).
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
lon | lat | number | street | unit | city | district | region | postcode | id | hash | tz | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
-122.8077278 | 45.4715614 | 6635 | SW JUNIPER TER | 97008 | b6a8d42425fde548 | America/Los_Angeles | ||||||
-122.8356634 | 45.4385864 | 11225 | SW PINTAIL LOOP | 97007 | 08ae3df798df8b90 | America/Los_Angeles | ||||||
-122.8252379 | 45.4481709 | 9930 | SW WRANGLER PL | 97008 | 1c7e1f7df752663e | America/Los_Angeles | ||||||
-122.8354211 | 45.4535977 | 9174 | SW PLATINUM PL | 97007 | b364854408ee431e | America/Los_Angeles | ||||||
-122.8315771 | 45.4949449 | 15040 | SW MILLIKAN WAY | # 233 | 97003 | 0e97796ba31ba3b4 | America/Los_Angeles | |||||
-122.7950339 | 45.4470259 | 10006 | SW CONESTOGA DR | # 113 | 97008 | 2b5307be5bfeb026 | America/Los_Angeles | |||||
-122.8072836 | 45.4908594 | 12600 | SW CRESCENT ST | # 126 | 97005 | 4d74167f00f63f50 | America/Los_Angeles | |||||
-122.8211801 | 45.4689303 | 7100 | SW 140TH PL | 97008 | c5568631f0b9de9c | America/Los_Angeles | ||||||
-122.831154 | 45.4317057 | 15050 | SW MALLARD DR | # 101 | 97007 | dbd1321080ce9682 | America/Los_Angeles | |||||
-122.8162856 | 45.4442878 | 10460 | SW 136TH PL | 97008 | 008faab8a9a3e519 | America/Los_Angeles |
Electrical Rates
Lastly, the electrical rate data contains the cost of electricity. In this demonstration, the assumption is that the rate varies by state, by month, and by the hour of the day. The data is stored in XML, a data export format still common to older, legacy systems. The electrical rate data will not be partitioned in the Amazon S3-based data lake.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<?xml version="1.0" encoding="UTF-8"?> | |
<root> | |
<row> | |
<state>or</state> | |
<year>2019</year> | |
<month>12</month> | |
<from>19:00:00</from> | |
<to>19:59:59</to> | |
<type>peak</type> | |
<rate>12.623</rate> | |
</row> | |
<row> | |
<state>or</state> | |
<year>2019</year> | |
<month>12</month> | |
<from>20:00:00</from> | |
<to>20:59:59</to> | |
<type>partial-peak</type> | |
<rate>7.232</rate> | |
</row> | |
<row> | |
<state>or</state> | |
<year>2019</year> | |
<month>12</month> | |
<from>21:00:00</from> | |
<to>21:59:59</to> | |
<type>partial-peak</type> | |
<rate>7.232</rate> | |
</row> | |
<row> | |
<state>or</state> | |
<year>2019</year> | |
<month>12</month> | |
<from>22:00:00</from> | |
<to>22:59:59</to> | |
<type>off-peak</type> | |
<rate>4.209</rate> | |
</row> | |
</root> |
Data Analysis Process
Due to the number of steps involved in the data analysis process in the demonstration, I have divided the process into four logical stages: 1) Raw Data Ingestion, 2) Data Transformation, 3) Data Enrichment, and 4) Data Visualization and Business Intelligence (BI).
Full data analysis workflow diagram (click to enlarge…)
Raw Data Ingestion
In the Raw Data Ingestion stage, semi-structured CSV-, XML-, and JSON-format data files are copied to a secure Amazon Simple Storage Service (S3) bucket. Within the bucket, data files are organized into folders based on their physical data structure (schema). Due to the potentially unlimited number of data files, files are further organized (partitioned) into subfolders. Organizational strategies for data files are based on date, time, geographic location, customer id, or other common data characteristics.
This collection of semi-structured data files, S3 buckets, and partitions form what is referred to as a Data Lake. According to AWS, a data lake is a centralized repository that allows you to store all your structured and unstructured data at any scale.
A series of AWS Glue Crawlers process the raw CSV-, XML-, and JSON-format files, extracting metadata, and creating table definitions in the AWS Glue Data Catalog. According to AWS, an AWS Glue Data Catalog contains metadata tables, where each table specifies a single data store.
Data Transformation
In the Data Transformation stage, the raw data in the previous stage is transformed. Data transformation may include both modifying the data and changing the data format. Data modifications include data cleansing, re-casting data types, changing date formats, field-level computations, and field concatenation.
The data is then converted from CSV-, XML-, and JSON-format to Apache Parquet format and written back to the Amazon S3-based data lake. Apache Parquet is a compressed, efficient columnar storage format. Amazon Athena, like many Cloud-based services, charges you by the amount of data scanned per query. Hence, using data partitioning, bucketing, compression, and columnar storage formats, like Parquet, will reduce query cost.
Lastly, the transformed Parquet-format data is cataloged to new tables, alongside the raw CSV, XML, and JSON data, in the Glue Data Catalog.
Data Enrichment
According to ScienceDirect, data enrichment or augmentation is the process of enhancing existing information by supplementing missing or incomplete data. Typically, data enrichment is achieved by using external data sources, but that is not always the case.
Data Enrichment—the process of enhancing existing information by supplementing missing or incomplete data. –ScienceDirect
In the Data Enrichment stage, the Parquet-format Smart Hub usage data is augmented with related data from the three other data sources: sensor mappings, locations, and electrical rates. The customer’s Smart Hub usage data is enriched with the customer’s device types, the customer’s timezone, and customer’s electricity cost per monitored period based on the customer’s geographic location and time of day.
Once the data is enriched, it is converted to Parquet and optimized for query performance, stored in the data lake, and cataloged. At this point, the original CSV-, XML-, and JSON-format raw data files, the transformed Parquet-format data files, and the Parquet-format enriched data files are all stored in the Amazon S3-based data lake and cataloged in the Glue Data Catalog.
Data Visualization
In the final Data Visualization and Business Intelligence (BI) stage, the enriched data is presented and analyzed. There are many enterprise-grade services available for visualization and Business Intelligence, which integrate with Athena. Amazon services include Amazon QuickSight, Amazon EMR, and Amazon SageMaker. Third-party solutions from AWS Partners, available on the AWS Marketplace, include Tableau, Looker, Sisense, and Domo. In this demonstration, we will focus on Amazon QuickSight.
Getting Started
Requirements
To follow along with the demonstration, you will need an AWS Account and a current version of the AWS CLI. To get the most from the demonstration, you should also have Python 3 and jq installed in your work environment.
Source Code
All source code for this post can be found on GitHub. Use the following command to clone a copy of the project.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
git clone \ | |
–branch master –single-branch –depth 1 –no-tags \ | |
https://github.com/garystafford/athena-glue-quicksight-demo.git |
Source code samples in this post are displayed as GitHub Gists, which will not display correctly on some mobile and social media browsers.
TL;DR?
Just want the jump in without reading the instructions? All the AWS CLI commands, found within the post, are consolidated in the GitHub project’s README file.
CloudFormation Stack
To start, create the ‘smart-hub-athena-glue-stack’ CloudFormation stack using the smart-hub-athena-glue.yml template. The template will create (3) Amazon S3 buckets, (1) AWS Glue Data Catalog Database, (5) Data Catalog Database Tables, (6) AWS Glue Crawlers, (1) AWS Glue ETL Job, and (1) IAM Service Role for AWS Glue.
Make sure to change the DATA_BUCKET
, SCRIPT_BUCKET
, and LOG_BUCKET
variables, first, to your own unique S3 bucket names. I always suggest using the standard AWS 3-part convention of 1) descriptive name, 2) AWS Account ID or Account Alias, and 3) AWS Region, to name your bucket (e.g. ‘smart-hub-data-123456789012-us-east-1’).
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# *** CHANGE ME *** | |
BUCKET_SUFFIX="123456789012-us-east-1" | |
DATA_BUCKET="smart-hub-data-${BUCKET_SUFFIX}" | |
SCRIPT_BUCKET="smart-hub-scripts-${BUCKET_SUFFIX}" | |
LOG_BUCKET="smart-hub-logs-${BUCKET_SUFFIX}" | |
aws cloudformation create-stack \ | |
–stack-name smart-hub-athena-glue-stack \ | |
–template-body file://cloudformation/smart-hub-athena-glue.yml \ | |
–parameters ParameterKey=DataBucketName,ParameterValue=${DATA_BUCKET} \ | |
ParameterKey=ScriptBucketName,ParameterValue=${SCRIPT_BUCKET} \ | |
ParameterKey=LogBucketName,ParameterValue=${LOG_BUCKET} \ | |
–capabilities CAPABILITY_NAMED_IAM |
Raw Data Files
Next, copy the raw CSV-, XML-, and JSON-format data files from the local project to the DATA_BUCKET
S3 bucket (steps 1a-1b in workflow diagram). These files represent the beginnings of the S3-based data lake. Each category of data uses a different strategy for organizing and separating the files. Note the use of the Apache Hive-style partitions (e.g., /smart_hub_data_json/dt=2019-12-21
). As discussed earlier, the assumption is that the actual, large volume of data in the data lake would necessitate using partitioning to improve query performance.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# location data | |
aws s3 cp data/locations/denver_co_1576656000.csv \ | |
s3://${DATA_BUCKET}/smart_hub_locations_csv/state=co/ | |
aws s3 cp data/locations/palo_alto_ca_1576742400.csv \ | |
s3://${DATA_BUCKET}/smart_hub_locations_csv/state=ca/ | |
aws s3 cp data/locations/portland_metro_or_1576742400.csv \ | |
s3://${DATA_BUCKET}/smart_hub_locations_csv/state=or/ | |
aws s3 cp data/locations/stamford_ct_1576569600.csv \ | |
s3://${DATA_BUCKET}/smart_hub_locations_csv/state=ct/ | |
# sensor mapping data | |
aws s3 cp data/mappings/ \ | |
s3://${DATA_BUCKET}/sensor_mappings_json/state=or/ \ | |
–recursive | |
# electrical usage data | |
aws s3 cp data/usage/2019-12-21/ \ | |
s3://${DATA_BUCKET}/smart_hub_data_json/dt=2019-12-21/ \ | |
–recursive | |
aws s3 cp data/usage/2019-12-22/ \ | |
s3://${DATA_BUCKET}/smart_hub_data_json/dt=2019-12-22/ \ | |
–recursive | |
# electricity rates data | |
aws s3 cp data/rates/ \ | |
s3://${DATA_BUCKET}/electricity_rates_xml/ \ | |
–recursive |
Confirm the contents of the DATA_BUCKET
S3 bucket with the following command.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
aws s3 ls s3://${DATA_BUCKET}/ \ | |
–recursive –human-readable –summarize |
There should be a total of (14) raw data files in the DATA_BUCKET
S3 bucket.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
2020-01-04 14:39:51 20.0 KiB electricity_rates_xml/2019_12_1575270000.xml | |
2020-01-04 14:39:46 1.3 KiB sensor_mappings_json/state=or/08ae3df798df8b90_1550908800.json | |
2020-01-04 14:39:46 1.3 KiB sensor_mappings_json/state=or/1c7e1f7df752663e_1559347200.json | |
2020-01-04 14:39:46 1.3 KiB sensor_mappings_json/state=or/b6a8d42425fde548_1568314800.json | |
2020-01-04 14:39:47 44.9 KiB smart_hub_data_json/dt=2019-12-21/08ae3df798df8b90_1576915200.json | |
2020-01-04 14:39:47 44.9 KiB smart_hub_data_json/dt=2019-12-21/1c7e1f7df752663e_1576915200.json | |
2020-01-04 14:39:47 44.9 KiB smart_hub_data_json/dt=2019-12-21/b6a8d42425fde548_1576915200.json | |
2020-01-04 14:39:49 44.6 KiB smart_hub_data_json/dt=2019-12-22/08ae3df798df8b90_15770016000.json | |
2020-01-04 14:39:49 44.6 KiB smart_hub_data_json/dt=2019-12-22/1c7e1f7df752663e_1577001600.json | |
2020-01-04 14:39:49 44.6 KiB smart_hub_data_json/dt=2019-12-22/b6a8d42425fde548_15770016001.json | |
2020-01-04 14:39:39 89.7 KiB smart_hub_locations_csv/state=ca/palo_alto_ca_1576742400.csv | |
2020-01-04 14:39:37 84.2 KiB smart_hub_locations_csv/state=co/denver_co_1576656000.csv | |
2020-01-04 14:39:44 78.6 KiB smart_hub_locations_csv/state=ct/stamford_ct_1576569600.csv | |
2020-01-04 14:39:42 91.6 KiB smart_hub_locations_csv/state=or/portland_metro_or_1576742400.csv | |
Total Objects: 14 | |
Total Size: 636.7 KiB |
Lambda Functions
Next, package the (5) Python3.8-based AWS Lambda functions for deployment.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
pushd lambdas/athena-json-to-parquet-data || exit | |
zip -r package.zip index.py | |
popd || exit | |
pushd lambdas/athena-csv-to-parquet-locations || exit | |
zip -r package.zip index.py | |
popd || exit | |
pushd lambdas/athena-json-to-parquet-mappings || exit | |
zip -r package.zip index.py | |
popd || exit | |
pushd lambdas/athena-complex-etl-query || exit | |
zip -r package.zip index.py | |
popd || exit | |
pushd lambdas/athena-parquet-to-parquet-elt-data || exit | |
zip -r package.zip index.py | |
popd || exit |
Copy the five Lambda packages to the SCRIPT_BUCKET
S3 bucket. The ZIP archive Lambda packages are accessed by the second CloudFormation stack, smart-hub-serverless. This CloudFormation stack, which creates the Lambda functions, will fail to deploy if the packages are not found in the SCRIPT_BUCKET
S3 bucket.
I have chosen to place the packages in a different S3 bucket then the raw data files. In a real production environment, these two types of files would be separated, minimally, into separate buckets for security. Remember, only data should go into the data lake.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
aws s3 cp lambdas/athena-json-to-parquet-data/package.zip \ | |
s3://${SCRIPT_BUCKET}/lambdas/athena_json_to_parquet_data/ | |
aws s3 cp lambdas/athena-csv-to-parquet-locations/package.zip \ | |
s3://${SCRIPT_BUCKET}/lambdas/athena_csv_to_parquet_locations/ | |
aws s3 cp lambdas/athena-json-to-parquet-mappings/package.zip \ | |
s3://${SCRIPT_BUCKET}/lambdas/athena_json_to_parquet_mappings/ | |
aws s3 cp lambdas/athena-complex-etl-query/package.zip \ | |
s3://${SCRIPT_BUCKET}/lambdas/athena_complex_etl_query/ | |
aws s3 cp lambdas/athena-parquet-to-parquet-elt-data/package.zip \ | |
s3://${SCRIPT_BUCKET}/lambdas/athena_parquet_to_parquet_elt_data/ |
Create the second ‘smart-hub-lambda-stack’ CloudFormation stack using the smart-hub-lambda.yml CloudFormation template. The template will create (5) AWS Lambda functions and (1) Lambda execution IAM Service Role.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
aws cloudformation create-stack \ | |
–stack-name smart-hub-lambda-stack \ | |
–template-body file://cloudformation/smart-hub-lambda.yml \ | |
–capabilities CAPABILITY_NAMED_IAM |
At this point, we have deployed all of the AWS resources required for the demonstration using CloudFormation. We have also copied all of the raw CSV-, XML-, and JSON-format data files in the Amazon S3-based data lake.
AWS Glue Crawlers
If you recall, we created five tables in the Glue Data Catalog database as part of the CloudFormation stack. One table for each of the four raw data types and one table to hold temporary ELT data later in the demonstration. To confirm the five tables were created in the Glue Data Catalog database, use the Glue Data Catalog Console, or run the following AWS CLI / jq command.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
aws glue get-tables \ | |
–database-name smart_hub_data_catalog \ | |
| jq -r '.TableList[].Name' |
The five data catalog tables should be as follows.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
electricity_rates_xml | |
etl_tmp_output_parquet | |
sensor_mappings_json | |
smart_hub_data_json | |
smart_hub_locations_csv |
We also created six Glue Crawlers as part of the CloudFormation template. Four of these Crawlers are responsible for cataloging the raw CSV-, XML-, and JSON-format data from S3 into the corresponding, existing Glue Data Catalog database tables. The Crawlers will detect any new partitions and add those to the tables as well. Each Crawler corresponds to one of the four raw data types. Crawlers can be scheduled to run periodically, cataloging new data and updating data partitions. Crawlers will also create a Data Catalog database tables. We use Crawlers to create new tables, later in the post.
Run the four Glue Crawlers using the AWS CLI (step 1c in workflow diagram).
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
aws glue start-crawler –name smart-hub-locations-csv | |
aws glue start-crawler –name smart-hub-sensor-mappings-json | |
aws glue start-crawler –name smart-hub-data-json | |
aws glue start-crawler –name smart-hub-rates-xml |
You can check the Glue Crawler Console to ensure the four Crawlers finished successfully.
Alternately, use another AWS CLI / jq command.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
aws glue get-crawler-metrics \ | |
| jq -r '.CrawlerMetricsList[] | "\(.CrawlerName): \(.StillEstimating), \(.TimeLeftSeconds)"' \ | |
| grep "^smart-hub-[A-Za-z-]*" |
When complete, all Crawlers should all be in a state of ‘Still Estimating = false’ and ‘TimeLeftSeconds = 0’. In my experience, the Crawlers can take up one minute to start, after the estimation stage, and one minute to stop when complete.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
smart-hub-data-json: true, 0 | |
smart-hub-etl-tmp-output-parquet: false, 0 | |
smart-hub-locations-csv: false, 15 | |
smart-hub-rates-parquet: false, 0 | |
smart-hub-rates-xml: false, 15 | |
smart-hub-sensor-mappings-json: false, 15 |
Successfully running the four Crawlers completes the Raw Data Ingestion stage of the demonstration.
Converting to Parquet with CTAS
With the Raw Data Ingestion stage completed, we will now transform the raw Smart Hub usage data, sensor mapping data, and locations data into Parquet-format using three AWS Lambda functions. Each Lambda subsequently calls Athena, which executes a CREATE TABLE AS SELECT
SQL statement (aka CTAS) . Each Lambda executes a similar command, varying only by data source, data destination, and partitioning scheme. Below, is an example of the command used for the Smart Hub electrical usage data, taken from the Python-based Lambda, athena-json-to-parquet-data/index.py.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
query = \ | |
"CREATE TABLE IF NOT EXISTS " + data_catalog + "." + output_directory + " " \ | |
"WITH ( " \ | |
" format = 'PARQUET', " \ | |
" parquet_compression = 'SNAPPY', " \ | |
" partitioned_by = ARRAY['dt'], " \ | |
" external_location = 's3://" + data_bucket + "/" + output_directory + "' " \ | |
") AS " \ | |
"SELECT * " \ | |
"FROM " + data_catalog + "." + input_directory + ";" |
This compact, yet powerful CTAS statement converts a copy of the raw JSON- and CSV-format data files into Parquet-format, and partitions and stores the resulting files back into the S3-based data lake. Additionally, the CTAS SQL statement catalogs the Parquet-format data files into the Glue Data Catalog database, into new tables. Unfortunately, this method will not work for the XML-format raw data files, which we will tackle next.
The five deployed Lambda functions should be visible from the Lambda Console’s Functions tab.
Invoke the three Lambda functions using the AWS CLI. (part of step 2a in workflow diagram).
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
aws lambda invoke \ | |
–function-name athena-json-to-parquet-data \ | |
response.json | |
aws lambda invoke \ | |
–function-name athena-csv-to-parquet-locations \ | |
response.json | |
aws lambda invoke \ | |
–function-name athena-json-to-parquet-mappings \ | |
response.json |
Here is an example of the same CTAS command, shown above for the Smart Hub electrical usage data, as it is was executed successfully by Athena.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
CREATE TABLE IF NOT EXISTS smart_hub_data_catalog.smart_hub_data_parquet | |
WITH (format = 'PARQUET', | |
parquet_compression = 'SNAPPY', | |
partitioned_by = ARRAY['dt'], | |
external_location = 's3://smart-hub-data-demo-account-1-us-east-1/smart_hub_data_parquet') | |
AS | |
SELECT * | |
FROM smart_hub_data_catalog.smart_hub_data_json |
We can view any Athena SQL query from the Athena Console’s History tab. Clicking on a query (in pink) will copy it to the Query Editor tab and execute it. Below, we see the three SQL statements executed by the Lamba functions.
AWS Glue ETL Job for XML
If you recall, the electrical rate data is in XML format. The Lambda functions we just executed, converted the CSV and JSON data to Parquet using Athena. Currently, unlike CSV, JSON, ORC, Parquet, and Avro, Athena does not support the older XML data format. For the XML data files, we will use an AWS Glue ETL Job to convert the XML data to Parquet. The Glue ETL Job is written in Python and uses Apache Spark, along with several AWS Glue PySpark extensions. For this job, I used an existing script created in the Glue ETL Jobs Console as a base, then modified the script to meet my needs.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
from awsglue.transforms import * | |
from awsglue.utils import getResolvedOptions | |
from pyspark.context import SparkContext | |
from awsglue.context import GlueContext | |
from awsglue.job import Job | |
args = getResolvedOptions(sys.argv, [ | |
'JOB_NAME', | |
's3_output_path', | |
'source_glue_database', | |
'source_glue_table' | |
]) | |
s3_output_path = args['s3_output_path'] | |
source_glue_database = args['source_glue_database'] | |
source_glue_table = args['source_glue_table'] | |
sc = SparkContext() | |
glueContext = GlueContext(sc) | |
spark = glueContext.spark_session | |
job = Job(glueContext) | |
job.init(args['JOB_NAME'], args) | |
datasource0 = glueContext. \ | |
create_dynamic_frame. \ | |
from_catalog(database=source_glue_database, | |
table_name=source_glue_table, | |
transformation_ctx="datasource0") | |
applymapping1 = ApplyMapping.apply( | |
frame=datasource0, | |
mappings=[("from", "string", "from", "string"), | |
("to", "string", "to", "string"), | |
("type", "string", "type", "string"), | |
("rate", "double", "rate", "double"), | |
("year", "int", "year", "int"), | |
("month", "int", "month", "int"), | |
("state", "string", "state", "string")], | |
transformation_ctx="applymapping1") | |
resolvechoice2 = ResolveChoice.apply( | |
frame=applymapping1, | |
choice="make_struct", | |
transformation_ctx="resolvechoice2") | |
dropnullfields3 = DropNullFields.apply( | |
frame=resolvechoice2, | |
transformation_ctx="dropnullfields3") | |
datasink4 = glueContext.write_dynamic_frame.from_options( | |
frame=dropnullfields3, | |
connection_type="s3", | |
connection_options={ | |
"path": s3_output_path, | |
"partitionKeys": ["state"] | |
}, | |
format="parquet", | |
transformation_ctx="datasink4") | |
job.commit() |
The three Python command-line arguments the script expects (lines 10–12, above) are defined in the CloudFormation template, smart-hub-athena-glue.yml. Below, we see them on lines 10–12 of the CloudFormation snippet. They are injected automatically when the job is run and can be overridden from the command line when starting the job.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
GlueJobRatesToParquet: | |
Type: AWS::Glue::Job | |
Properties: | |
GlueVersion: 1.0 | |
Command: | |
Name: glueetl | |
PythonVersion: 3 | |
ScriptLocation: !Sub "s3://${ScriptBucketName}/glue_scripts/rates_xml_to_parquet.py" | |
DefaultArguments: { | |
"–s3_output_path": !Sub "s3://${DataBucketName}/electricity_rates_parquet", | |
"–source_glue_database": !Ref GlueDatabase, | |
"–source_glue_table": "electricity_rates_xml", | |
"–job-bookmark-option": "job-bookmark-enable", | |
"–enable-spark-ui": "true", | |
"–spark-event-logs-path": !Sub "s3://${LogBucketName}/glue-etl-jobs/" | |
} | |
Description: "Convert electrical rates XML data to Parquet" | |
ExecutionProperty: | |
MaxConcurrentRuns: 2 | |
MaxRetries: 0 | |
Name: rates-xml-to-parquet | |
Role: !GetAtt "CrawlerRole.Arn" | |
DependsOn: | |
– CrawlerRole | |
– GlueDatabase | |
– DataBucket | |
– ScriptBucket | |
– LogBucket |
First, copy the Glue ETL Job Python script to the SCRIPT_BUCKET
S3 bucket.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
aws s3 cp glue-scripts/rates_xml_to_parquet.py \ | |
s3://${SCRIPT_BUCKET}/glue_scripts/ |
Next, start the Glue ETL Job (part of step 2a in workflow diagram). Although the conversion is a relatively simple set of tasks, the creation of the Apache Spark environment, to execute the tasks, will take several minutes. Whereas the Glue Crawlers took about 2 minutes on average, the Glue ETL Job could take 10–15 minutes in my experience. The actual execution time only takes about 1–2 minutes of the 10–15 minutes to complete. In my opinion, waiting up to 15 minutes is too long to be viable for ad-hoc jobs against smaller datasets; Glue ETL Jobs are definitely targeted for big data.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
aws glue start-job-run –job-name rates-xml-to-parquet |
To check on the status of the job, use the Glue ETL Jobs Console, or use the AWS CLI.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# get status of most recent job (the one that is running) | |
aws glue get-job-run \ | |
–job-name rates-xml-to-parquet \ | |
–run-id "$(aws glue get-job-runs \ | |
–job-name rates-xml-to-parquet \ | |
| jq -r '.JobRuns[0].Id')" |
When complete, you should see results similar to the following. Note the ‘JobRunState’ is ‘SUCCEEDED.’ This particular job ran for a total of 14.92 minutes, while the actual execution time was 2.25 minutes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"JobRun": { | |
"Id": "jr_f7186b26bf042ea7773ad08704d012d05299f080e7ac9b696ca8dd575f79506b", | |
"Attempt": 0, | |
"JobName": "rates-xml-to-parquet", | |
"StartedOn": 1578022390.301, | |
"LastModifiedOn": 1578023285.632, | |
"CompletedOn": 1578023285.632, | |
"JobRunState": "SUCCEEDED", | |
"PredecessorRuns": [], | |
"AllocatedCapacity": 10, | |
"ExecutionTime": 135, | |
"Timeout": 2880, | |
"MaxCapacity": 10.0, | |
"LogGroupName": "/aws-glue/jobs", | |
"GlueVersion": "1.0" | |
} | |
} |
The job’s progress and the results are also visible in the AWS Glue Console’s ETL Jobs tab.
Detailed Apache Spark logs are also available in CloudWatch Management Console, which is accessible directly from the Logs link in the AWS Glue Console’s ETL Jobs tab.
The last step in the Data Transformation stage is to convert catalog the Parquet-format electrical rates data, created with the previous Glue ETL Job, using yet another Glue Crawler (part of step 2b in workflow diagram). Start the following Glue Crawler to catalog the Parquet-format electrical rates data.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
aws glue start-crawler –name smart-hub-rates-parquet |
This concludes the Data Transformation stage. The raw and transformed data is in the data lake, and the following nine tables should exist in the Glue Data Catalog.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
electricity_rates_parquet | |
electricity_rates_xml | |
etl_tmp_output_parquet | |
sensor_mappings_json | |
sensor_mappings_parquet | |
smart_hub_data_json | |
smart_hub_data_parquet | |
smart_hub_locations_csv | |
smart_hub_locations_parquet |
If we examine the tables, we should observe the data partitions we used to organize the data files in the Amazon S3-based data lake are contained in the table metadata. Below, we see the four partitions, based on state, of the Parquet-format locations data.
Data Enrichment
To begin the Data Enrichment stage, we will invoke the AWS Lambda, athena-complex-etl-query/index.py. This Lambda accepts input parameters (lines 28–30, below), passed in the Lambda handler’s event parameter. The arguments include the Smart Hub ID, the start date for the data requested, and the end date for the data requested. The scenario for the demonstration is that a customer with the location id value, using the electrical provider’s application, has requested data for a particular range of days (start date and end date), to visualize and analyze.
The Lambda executes a series of Athena INSERT INTO
SQL statements, one statement for each of the possible Smart Hub connected electrical sensors, s_01
through s_10
, for which there are values in the Smart Hub electrical usage data. Amazon just released the Amazon Athena INSERT INTO
a table using the results of a SELECT query capability in September 2019, an essential addition to Athena. New Athena features are listed in the release notes.
Here, the SELECT query is actually a series of chained subqueries, using Presto SQL’s WITH clause capability. The queries join the Parquet-format Smart Hub electrical usage data sources in the S3-based data lake, with the other three Parquet-format, S3-based data sources: sensor mappings, locations, and electrical rates. The Parquet-format data is written as individual files to S3 and inserted into the existing ‘etl_tmp_output_parquet’ Glue Data Catalog database table. Compared to traditional relational database-based queries, the capabilities of Glue and Athena to enable complex SQL queries across multiple semi-structured data files, stored in S3, is truly amazing!
The capabilities of Glue and Athena to enable complex SQL queries across multiple semi-structured data files, stored in S3, is truly amazing!
Below, we see the SQL statement starting on line 43.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import boto3 | |
import os | |
import logging | |
import json | |
from typing import Dict | |
# environment variables | |
data_catalog = os.getenv('DATA_CATALOG') | |
data_bucket = os.getenv('DATA_BUCKET') | |
# variables | |
output_directory = 'etl_tmp_output_parquet' | |
# uses list comprehension to generate the equivalent of: | |
# ['s_01', 's_02', …, 's_09', 's_10'] | |
sensors = [f's_{i:02d}' for i in range(1, 11)] | |
# logging | |
logger = logging.getLogger() | |
logger.setLevel(logging.INFO) | |
# athena client | |
athena_client = boto3.client('athena') | |
def handler(event, context): | |
args = { | |
"loc_id": event['loc_id'], | |
"date_from": event['date_from'], | |
"date_to": event['date_to'] | |
} | |
athena_query(args) | |
return { | |
'statusCode': 200, | |
'body': json.dumps("function 'athena-complex-etl-query' complete") | |
} | |
def athena_query(args: Dict[str, str]): | |
for sensor in sensors: | |
query = \ | |
"INSERT INTO " + data_catalog + "." + output_directory + " " \ | |
"WITH " \ | |
" t1 AS " \ | |
" (SELECT d.loc_id, d.ts, d.data." + sensor + " AS kwh, l.state, l.tz " \ | |
" FROM smart_hub_data_catalog.smart_hub_data_parquet d " \ | |
" LEFT OUTER JOIN smart_hub_data_catalog.smart_hub_locations_parquet l " \ | |
" ON d.loc_id = l.hash " \ | |
" WHERE d.loc_id = '" + args['loc_id'] + "' " \ | |
" AND d.dt BETWEEN cast('" + args['date_from'] + \ | |
"' AS date) AND cast('" + args['date_to'] + "' AS date)), " \ | |
" t2 AS " \ | |
" (SELECT at_timezone(from_unixtime(t1.ts, 'UTC'), t1.tz) AS ts, " \ | |
" date_format(at_timezone(from_unixtime(t1.ts, 'UTC'), t1.tz), '%H') AS rate_period, " \ | |
" m.description AS device, m.location, t1.loc_id, t1.state, t1.tz, t1.kwh " \ | |
" FROM t1 LEFT OUTER JOIN smart_hub_data_catalog.sensor_mappings_parquet m " \ | |
" ON t1.loc_id = m.loc_id " \ | |
" WHERE t1.loc_id = '" + args['loc_id'] + "' " \ | |
" AND m.state = t1.state " \ | |
" AND m.description = (SELECT m2.description " \ | |
" FROM smart_hub_data_catalog.sensor_mappings_parquet m2 " \ | |
" WHERE m2.loc_id = '" + args['loc_id'] + "' AND m2.id = '" + sensor + "')), " \ | |
" t3 AS " \ | |
" (SELECT substr(r.to, 1, 2) AS rate_period, r.type, r.rate, r.year, r.month, r.state " \ | |
" FROM smart_hub_data_catalog.electricity_rates_parquet r " \ | |
" WHERE r.year BETWEEN cast(date_format(cast('" + args['date_from'] + \ | |
"' AS date), '%Y') AS integer) AND cast(date_format(cast('" + args['date_to'] + \ | |
"' AS date), '%Y') AS integer)) " \ | |
"SELECT replace(cast(t2.ts AS VARCHAR), concat(' ', t2.tz), '') AS ts, " \ | |
" t2.device, t2.location, t3.type, t2.kwh, t3.rate AS cents_per_kwh, " \ | |
" round(t2.kwh * t3.rate, 4) AS cost, t2.state, t2.loc_id " \ | |
"FROM t2 LEFT OUTER JOIN t3 " \ | |
" ON t2.rate_period = t3.rate_period " \ | |
"WHERE t3.state = t2.state " \ | |
"ORDER BY t2.ts, t2.device;" | |
logger.info(query) | |
response = athena_client.start_query_execution( | |
QueryString=query, | |
QueryExecutionContext={ | |
'Database': data_catalog | |
}, | |
ResultConfiguration={ | |
'OutputLocation': 's3://' + data_bucket + '/tmp/' + output_directory | |
}, | |
WorkGroup='primary' | |
) | |
logger.info(response) |
Below, is an example of one of the final queries, for the s_10
sensor, as executed by Athena. All the input parameter values, Python variables, and environment variables have been resolved into the query.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
INSERT INTO smart_hub_data_catalog.etl_tmp_output_parquet | |
WITH t1 AS (SELECT d.loc_id, d.ts, d.data.s_10 AS kwh, l.state, l.tz | |
FROM smart_hub_data_catalog.smart_hub_data_parquet d | |
LEFT OUTER JOIN smart_hub_data_catalog.smart_hub_locations_parquet l ON d.loc_id = l.hash | |
WHERE d.loc_id = 'b6a8d42425fde548' | |
AND d.dt BETWEEN cast('2019-12-21' AS date) AND cast('2019-12-22' AS date)), | |
t2 AS (SELECT at_timezone(from_unixtime(t1.ts, 'UTC'), t1.tz) AS ts, | |
date_format(at_timezone(from_unixtime(t1.ts, 'UTC'), t1.tz), '%H') AS rate_period, | |
m.description AS device, | |
m.location, | |
t1.loc_id, | |
t1.state, | |
t1.tz, | |
t1.kwh | |
FROM t1 | |
LEFT OUTER JOIN smart_hub_data_catalog.sensor_mappings_parquet m ON t1.loc_id = m.loc_id | |
WHERE t1.loc_id = 'b6a8d42425fde548' | |
AND m.state = t1.state | |
AND m.description = (SELECT m2.description | |
FROM smart_hub_data_catalog.sensor_mappings_parquet m2 | |
WHERE m2.loc_id = 'b6a8d42425fde548' | |
AND m2.id = 's_10')), | |
t3 AS (SELECT substr(r.to, 1, 2) AS rate_period, r.type, r.rate, r.year, r.month, r.state | |
FROM smart_hub_data_catalog.electricity_rates_parquet r | |
WHERE r.year BETWEEN cast(date_format(cast('2019-12-21' AS date), '%Y') AS integer) | |
AND cast(date_format(cast('2019-12-22' AS date), '%Y') AS integer)) | |
SELECT replace(cast(t2.ts AS VARCHAR), concat(' ', t2.tz), '') AS ts, | |
t2.device, | |
t2.location, | |
t3.type, | |
t2.kwh, | |
t3.rate AS cents_per_kwh, | |
round(t2.kwh * t3.rate, 4) AS cost, | |
t2.state, | |
t2.loc_id | |
FROM t2 | |
LEFT OUTER JOIN t3 ON t2.rate_period = t3.rate_period | |
WHERE t3.state = t2.state | |
ORDER BY t2.ts, t2.device; |
Along with enriching the data, the query performs additional data transformation using the other data sources. For example, the Unix timestamp is converted to a localized timestamp containing the date and time, according to the customer’s location (line 7, above). Transforming dates and times is a frequent, often painful, data analysis task. Another example of data enrichment is the augmentation of the data with a new, computed column. The column’s values are calculated using the values of two other columns (line 33, above).
Invoke the Lambda with the following three parameters in the payload (step 3a in workflow diagram).
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
aws lambda invoke \ | |
–function-name athena-complex-etl-query \ | |
–payload "{ \"loc_id\": \"b6a8d42425fde548\", | |
\"date_from\": \"2019-12-21\", \"date_to\": \"2019-12-22\"}" \ | |
response.json |
The ten INSERT INTO
SQL statement’s result statuses (one per device sensor) are visible from the Athena Console’s History tab.
Each Athena query execution saves that query’s results to the S3-based data lake as individual, uncompressed Parquet-format data files. The data is partitioned in the Amazon S3-based data lake by the Smart Meter location ID (e.g., ‘loc_id=b6a8d42425fde548’).
Below is a snippet of the enriched data for a customer’s clothes washer (sensor ‘s_04’). Note the timestamp is now an actual date and time in the local timezone of the customer (e.g., ‘2019-12-21 20:10:00.000’). The sensor ID (‘s_04’) is replaced with the actual device name (‘Clothes Washer’). The location of the device (‘Basement’) and the type of electrical usage period (e.g. ‘peak’ or ‘partial-peak’) has been added. Finally, the cost column has been computed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
ts | device | location | type | kwh | cents_per_kwh | cost | state | loc_id | |
---|---|---|---|---|---|---|---|---|---|
2019-12-21 19:40:00.000 | Clothes Washer | Basement | peak | 0.0 | 12.623 | 0.0 | or | b6a8d42425fde548 | |
2019-12-21 19:45:00.000 | Clothes Washer | Basement | peak | 0.0 | 12.623 | 0.0 | or | b6a8d42425fde548 | |
2019-12-21 19:50:00.000 | Clothes Washer | Basement | peak | 0.1501 | 12.623 | 1.8947 | or | b6a8d42425fde548 | |
2019-12-21 19:55:00.000 | Clothes Washer | Basement | peak | 0.1497 | 12.623 | 1.8897 | or | b6a8d42425fde548 | |
2019-12-21 20:00:00.000 | Clothes Washer | Basement | partial-peak | 0.1501 | 7.232 | 1.0855 | or | b6a8d42425fde548 | |
2019-12-21 20:05:00.000 | Clothes Washer | Basement | partial-peak | 0.2248 | 7.232 | 1.6258 | or | b6a8d42425fde548 | |
2019-12-21 20:10:00.000 | Clothes Washer | Basement | partial-peak | 0.2247 | 7.232 | 1.625 | or | b6a8d42425fde548 | |
2019-12-21 20:15:00.000 | Clothes Washer | Basement | partial-peak | 0.2248 | 7.232 | 1.6258 | or | b6a8d42425fde548 | |
2019-12-21 20:20:00.000 | Clothes Washer | Basement | partial-peak | 0.2253 | 7.232 | 1.6294 | or | b6a8d42425fde548 | |
2019-12-21 20:25:00.000 | Clothes Washer | Basement | partial-peak | 0.151 | 7.232 | 1.092 | or | b6a8d42425fde548 |
To transform the enriched CSV-format data to Parquet-format, we need to catalog the CSV-format results using another Crawler, first (step 3d in workflow diagram).
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
aws glue start-crawler –name smart-hub-etl-tmp-output-parquet |
Optimizing Enriched Data
The previous step created enriched Parquet-format data. However, this data is not as optimized for query efficiency as it should be. Using the Athena INSERT INTO WITH
SQL statement, allowed the data to be partitioned. However, the method does not allow the Parquet data to be easily combined into larger files and compressed. To perform both these optimizations, we will use one last Lambda, athena-parquet-to-parquet-elt-data/index.py. The Lambda will create a new location in the Amazon S3-based data lake, containing all the enriched data, in a single file and compressed using Snappy compression.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
aws lambda invoke \ | |
–function-name athena-parquet-to-parquet-elt-data \ | |
response.json |
The resulting Parquet file is visible in the S3 Management Console.
The final step in the Data Enrichment stage is to catalog the optimized Parquet-format enriched ETL data. To catalog the data, run the following Glue Crawler (step 3i in workflow diagram
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
aws glue start-crawler –name smart-hub-etl-output-parquet |
Final Data Lake and Data Catalog
We should now have the following ten top-level folders of partitioned data in the S3-based data lake. The ‘tmp’ folder may be ignored.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
aws s3 ls s3://${DATA_BUCKET}/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
PRE electricity_rates_parquet/ | |
PRE electricity_rates_xml/ | |
PRE etl_output_parquet/ | |
PRE etl_tmp_output_parquet/ | |
PRE sensor_mappings_json/ | |
PRE sensor_mappings_parquet/ | |
PRE smart_hub_data_json/ | |
PRE smart_hub_data_parquet/ | |
PRE smart_hub_locations_csv/ | |
PRE smart_hub_locations_parquet/ |
Similarly, we should now have the following ten corresponding tables in the Glue Data Catalog. Use the AWS Glue Console to confirm the tables exist.
Alternately, use the following AWS CLI / jq command to list the table names.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
aws glue get-tables \ | |
–database-name smart_hub_data_catalog \ | |
| jq -r '.TableList[].Name' |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
electricity_rates_parquet | |
electricity_rates_xml | |
etl_output_parquet | |
etl_tmp_output_parquet | |
sensor_mappings_json | |
sensor_mappings_parquet | |
smart_hub_data_json | |
smart_hub_data_parquet | |
smart_hub_locations_csv | |
smart_hub_locations_parquet |
‘Unknown’ Bug
You may have noticed the four tables created with the AWS Lambda functions, using the CTAS SQL statement, erroneously have the ‘Classification’ of ‘Unknown’ as opposed to ‘parquet’. I am not sure why, I believe it is a possible bug with the CTAS feature. It seems to have no adverse impact on the table’s functionality. However, to fix the issue, run the following set of commands. This aws glue update-table
hack will switch the table’s ‘Classification’ to ‘parquet’.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
database=smart_hub_data_catalog | |
tables=(smart_hub_locations_parquet sensor_mappings_parquet smart_hub_data_parquet etl_output_parquet) | |
for table in ${tables}; do | |
fixed_table=$(aws glue get-table \ | |
–database-name "${database}" \ | |
–name "${table}" \ | |
| jq '.Table.Parameters.classification = "parquet" | del(.Table.DatabaseName) | del(.Table.CreateTime) | del(.Table.UpdateTime) | del(.Table.CreatedBy) | del(.Table.IsRegisteredWithLakeFormation)') | |
fixed_table=$(echo ${fixed_table} | jq .Table) | |
aws glue update-table \ | |
–database-name "${database}" \ | |
–table-input "${fixed_table}" | |
echo "table '${table}' classification changed to 'parquet'" | |
done |
The results of the fix may be seen from the AWS Glue Console. All ten tables are now classified correctly.
Explore the Data
Before starting to visualize and analyze the data with Amazon QuickSight, try executing a few Athena queries against the tables in the Glue Data Catalog database, using the Athena Query Editor. Working in the Editor is the best way to understand the data, learn Athena, and debug SQL statements and queries. The Athena Query Editor has convenient developer features like SQL auto-complete and query formatting capabilities.
Be mindful when writing queries and searching the Internet for SQL references, the Athena query engine is based on Presto 0.172. The current version of Presto, 0.229, is more than 50 releases ahead of the current Athena version. Both Athena and Presto functionality has changed and diverged. There are additional considerations and limitations for SQL queries in Athena to be aware of.
Here are a few simple, ad-hoc queries to run in the Athena Query Editor.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
— preview the final etl data | |
SELECT * | |
FROM smart_hub_data_catalog.etl_output_parquet | |
LIMIT 10; | |
— total cost in $'s for each device, at location 'b6a8d42425fde548' | |
— from high to low, on December 21, 2019 | |
SELECT device, | |
concat('$', cast(cast(sum(cost) / 100 AS decimal(10, 2)) AS varchar)) AS total_cost | |
FROM smart_hub_data_catalog.etl_tmp_output_parquet | |
WHERE loc_id = 'b6a8d42425fde548' | |
AND date (cast(ts AS timestamp)) = date '2019-12-21' | |
GROUP BY device | |
ORDER BY total_cost DESC; | |
— count of smart hub residential locations in Oregon and California, | |
— grouped by zip code, sorted by count | |
SELECT DISTINCT postcode, upper(state), count(postcode) AS smart_hub_count | |
FROM smart_hub_data_catalog.smart_hub_locations_parquet | |
WHERE state IN ('or', 'ca') | |
AND length(cast(postcode AS varchar)) >= 5 | |
GROUP BY state, postcode | |
ORDER BY smart_hub_count DESC, postcode; | |
— electrical usage for the clothes washer | |
— over a 30-minute period, on December 21, 2019 | |
SELECT ts, device, location, type, cost | |
FROM smart_hub_data_catalog.etl_tmp_output_parquet | |
WHERE loc_id = 'b6a8d42425fde548' | |
AND device = 'Clothes Washer' | |
AND cast(ts AS timestamp) | |
BETWEEN timestamp '2019-12-21 08:45:00' | |
AND timestamp '2019-12-21 09:15:00' | |
ORDER BY ts; |
Cleaning Up
You may choose to save the AWS resources created in part one of this demonstration, to be used in part two. Since you are not actively running queries against the data, ongoing AWS costs will be minimal. If you eventually choose to clean up the AWS resources created in part one of this demonstration, execute the following AWS CLI commands. To avoid failures, make sure each command completes before running the subsequent command. You will need to confirm the CloudFormation stacks are deleted using the AWS CloudFormation Console or the AWS CLI. These commands will not remove Amazon QuickSight data sets, analyses, and dashboards created in part two. However, deleting the AWS Glue Data Catalog and the underlying data sources will impact the ability to visualize the data in QuickSight.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# delete s3 contents first | |
aws s3 rm s3://${DATA_BUCKET} –recursive | |
aws s3 rm s3://${SCRIPT_BUCKET} –recursive | |
aws s3 rm s3://${LOG_BUCKET} –recursive | |
# then, delete lambda cfn stack | |
aws cloudformation delete-stack –stack-name smart-hub-lambda-stack | |
# finally, delete athena-glue-s3 stack | |
aws cloudformation delete-stack –stack-name smart-hub-athena-glue-stack |
Part Two
In part one, starting with raw, semi-structured data in multiple formats, we learned how to ingest, transform, and enrich that data using Amazon S3, AWS Glue, Amazon Athena, and AWS Lambda. We built an S3-based data lake and learned how AWS leverages open-source technologies, including Presto, Apache Hive, and Apache Parquet. In part two of this post, we will use the transformed and enriched datasets, stored in the data lake, to create compelling visualizations using Amazon QuickSight.
All opinions expressed in this post are my own and not necessarily the views of my current or past employers or their clients.