Posts Tagged RDS

Getting Started with Apache Zeppelin on Amazon EMR, using AWS Glue, RDS, and S3: Part 2

Introduction

In Part 1 of this two-part post, we created and configured the AWS resources required to demonstrate the use of Apache Zeppelin on Amazon Elastic MapReduce (EMR). Further, we configured Zeppelin integrations with AWS Glue Data CatalogAmazon Relational Database Service (RDS) for PostgreSQL, and Amazon Simple Cloud Storage Service (S3) Data Lake. We also covered how to obtain the project’s source code from the two GitHub repositories, zeppelin-emr-demo and zeppelin-emr-config. Below is a high-level architectural diagram of the infrastructure we constructed in Part 1 for this demonstration.

EMR-Zeppelin

Part 2

In Part 2 of this post, we will explore Apache Zeppelin’s features and integration capabilities with a variety of AWS services using a series of four Zeppelin notebooks. Below is an overview of each Zeppelin notebook with a link to view it using Zepl’s free Notebook Explorer. Zepl was founded by the same engineers that developed Apache Zeppelin. Zepl’s enterprise collaboration platform, built on Apache Zeppelin, enables both Data Science and AI/ML teams to collaborate around data.

Notebook 1

The first notebook uses a small 21k row kaggle dataset, Transactions from a Bakery. The notebook demonstrates Zeppelin’s integration capabilities with the Helium plugin system for adding new chart types, the use of Amazon S3 for data storage and retrieval, and the use of Apache Parquet, a compressed and efficient columnar data storage format, and Zeppelin’s storage integration with GitHub for notebook version control.

Interpreters

When you open a notebook for the first time, you are given the choice of interpreters to bind and unbind to the notebook. The last interpreter in the list shown below, postgres, is the new PostgreSQL JDBC Zeppelin interpreter we created in Part 1 of this post. We will use this interpreter in Notebook 3.

screen-shot-2019-11-24-at-8_03_50-pm

Application Versions

The first two paragraphs of the notebook are used to confirm the version of Spark, Scala, OpenJDK, and Python we are using. Recall we updated the Spark and Python interpreters to use Python 3.

screen_shot_2019-11-26_at_6_58_33_pm

Helium Visualizations

If you recall from Part 1 of the post, we pre-installed several additional Helium Visualizations, including the Ultimate Pie Chart. Below, we see the use of the Spark SQL (%sql) interpreter to query a Spark DataFrame, return results, and visualize the data using the Ultimate Pie Chart.  In addition to the pie chart, we see the other pre-installed Helium visualizations proceeding the five default visualizations, in the menu bar. With Zeppelin, all we have to do is write Spark SQL queries against the Spark DataFrame created earlier in the notebook, and Zeppelin will handle the visualization. You have some basic controls over charts using the ‘settings’ option.

screen-shot-2019-11-24-at-8_06_56-pm

Building the Data Lake

Notebook 1 demonstrates how to read and write data to S3. We read and write the Bakery dataset to both CSV-format and Apache Parquet-format, using Spark (PySpark). We also write the results of Spark SQL queries, like the one above, in Parquet, to S3.

screen-shot-2019-11-24-at-8_20_18-pm

With Parquet, data may be split into multiple files, as shown in the S3 bucket directory below. Parquet is much faster to read into a Spark DataFrame than CSV. Spark provides support for both reading and writing Parquet files. We will write all of our data to Parquet in S3, making future re-use of the data much more efficient than downloading data from the Internet, like GroupLens or kaggle, or consuming CSV from S3.

screen-shot-2019-11-24-at-8_22_46-pm

Preview S3 Data

In addition to using the Zeppelin notebook, we can preview data right in the S3 bucket web interface using the Amazon S3 Select feature. This query in place feature is helpful to quickly understand the structure and content of new data files with which you want to interact within Zeppelin.

screen-shot-2019-11-24-at-8_23_33-pm

screen-shot-2019-11-24-at-8_23_40-pm

screen_shot_2019-11-28_at_7_41_49_pm.png

Saving Changes to GitHub

In Part 1, we configured Zeppelin to read and write the notebooks from your own copy of the GitHub notebook repository. Using the ‘version control’ menu item, changes made to the notebooks can be committed directly to GitHub.

screen-shot-2019-11-24-at-8_16_36-pm

screen-shot-2019-11-24-at-8_38_19-pm

In GitHub, note the committer is the zeppelin user.

screen_shot_2019-11-26_at_7_48_42_pm.png

Notebook 2

The second notebook demonstrates the use of a single-node and multi-node Amazon EMR cluster for the exploration and analysis of public datasets ranging from approximately 100k rows up to 27MM rows, using Zeppelin. We will use the latest GroupLens MovieLens rating datasets to examine the performance characteristics of Zeppelin, using Spark, on single- verses multi-node EMR clusters for analyzing big data using a variety of Amazon EC2 Instance Types.

screen-shot-2019-11-24-at-8_41_31-pm

Multi-Node EMR Cluster

If you recall from Part 1, we waited to create this cluster due to the compute costs of running the cluster’s large EC2 instances. You should understand the cost of these resources before proceeding, and that you ensure they are destroyed immediately upon completion of the demonstration to minimize your expenses.

Normalized Instance Hours
Understanding the costs of EMR requires understanding the concept of normalized instance hours. Cluster displayed in the EMR AWS Console contains two columns, ‘Elapsed time’ and ‘Normalized instance hours’. The ‘Elapsed time’ column reflects the actual wall-clock time the cluster was used. The ‘Normalized instance hours’ column indicates the approximate number of compute hours the cluster has used, rounded up to the nearest hour.

screen_shot_2019-11-28_at_6_09_38_pm

Normalized instance hours calculations are based on a normalization factor. The normalization factor ranges from 1 for a small instance, up to 64 for an 8xlarge. Based on the type and quantity of instances in our multi-node cluster, we would use approximately 56 compute hours (aka normalized instance hours) for every one hour of wall-clock time. Note the multi-node cluster used in our demo, highlighted in yellow above. The cluster ran for two hours, which equated to 112 normalized instance hours.

Instance
Type
Normalization
Factor

Quantity
Normalized
Instance Hours
m5.xlarge 8 1 8
m5.2xlarge 16 3 48
total 56

Create the Multi-Node Cluster

Create the multi-node EMR cluster using CloudFormation. Change the following nine variable values, then run the emr cloudformation create-stack API command, using the AWS CLI.

# change me
ZEPPELIN_DEMO_BUCKET="your-bucket-name"
EC2_KEY_NAME="your-key-name"
LOG_BUCKET="aws-logs-your_aws_account_id-your_region"
GITHUB_ACCOUNT="your-account-name"
GITHUB_REPO="your-new-project-name"
GITHUB_TOKEN="your-token-value"
MASTER_INSTANCE_TYPE="m5.xlarge" # optional
CORE_INSTANCE_TYPE="m5.2xlarge" # optional
CORE_INSTANCE_COUNT=3 # optional

aws cloudformation create-stack \
    --stack-name zeppelin-emr-prod-stack \
    --template-body file://cloudformation/emr_cluster.yml \
    --parameters ParameterKey=ZeppelinDemoBucket,ParameterValue=${ZEPPELIN_DEMO_BUCKET} \
                 ParameterKey=Ec2KeyName,ParameterValue=${EC2_KEY_NAME} \
                 ParameterKey=LogBucket,ParameterValue=${LOG_BUCKET} \
                 ParameterKey=MasterInstanceType,ParameterValue=${MASTER_INSTANCE_TYPE} \
                 ParameterKey=CoreInstanceType,ParameterValue=${CORE_INSTANCE_TYPE} \
                 ParameterKey=CoreInstanceCount,ParameterValue=${CORE_INSTANCE_COUNT} \
                 ParameterKey=GitHubAccount,ParameterValue=${GITHUB_ACCOUNT} \
                 ParameterKey=GitHubRepository,ParameterValue=${GITHUB_REPO} \
                 ParameterKey=GitHubToken,ParameterValue=${GITHUB_TOKEN}

Use the Amazon EMR web interface to confirm the success of the CloudFormation stack. The fully-provisioned cluster should be in the ‘Waiting’ state when ready.

screen_shot_2019-11-26_at_4_58_05_pm

Configuring the EMR Cluster

Refer to Part 1 for the configuration steps necessary to prepare the EMR cluster and Zeppelin before continuing. Repeat all the steps used for the single-node cluster.

Monitoring with Ganglia

In Part 1, we installed Ganglia as part of creating the EMR cluster. Ganglia, according to its website, is a scalable distributed monitoring system for high-performance computing systems such as clusters and grids. Ganglia can be used to evaluate the performance of the single-node and multi-node EMR clusters. With Ganglia, we can easily view cluster and individual instance CPU, memory, and network I/O performance.

screen-shot-2019-11-24-at-8_46_46-pm
Ganglia Example: Cluster CPU

screen-shot-2019-11-24-at-8_48_44-pm
Ganglia Example: Cluster Memory

screen_shot_2019-11-26_at_5_18_51_pm
Ganglia Example: Cluster Network I/O

YARN Resource Manager

The YARN Resource Manager Web UI is also available on our EMR cluster. Using the Resource Manager, we can view the compute resource load on the cluster, as well as the individual EMR Core nodes. Below, we see that the multi-node cluster has 24 vCPUs and 72 GiB of memory available, split evenly across the three Core cluster nodes.

You might recall, the m5.2xlarge EC2 instance type, used for the three Core nodes, each contains 8 vCPUs and 32 GiB of memory. However, by default, although all 8 vCPUs are available for computation per node, only 24 GiB of the node’s 32 GiB of memory are available for computation. EMR ensures a portion of the memory on each node is reserved for other system processes. The maximum available memory is controlled by the YARN memory configuration option, yarn.scheduler.maximum-allocation-mb.

screen_shot_2019-11-26_at_5_15_00_pm

The YARN Resource Manager preview above shows the load on the Code nodes as Notebook 2 is executing the Spark SQL queries on the large MovieLens with 27MM ratings. Note that only 4 of the 24 vCPUs (16.6%) are in use, but that 70.25 of the 72 GiB (97.6%) of available memory is being used. According to Spark, because of the in-memory nature of most Spark computations, Spark programs can be bottlenecked by any resource in the cluster: CPU, network bandwidth, or memory. Most often, if the data fits in memory, the bottleneck is network bandwidth. In this case, memory appears to be the most constrained resource. Using memory-optimized instances, such as r4 or r5 instance types, might be more effective for the core nodes than the m5 instance types.

MovieLens Datasets

By changing one variable in the notebook, we can work with the latest, smaller GroupLens MovieLens dataset containing approximately 100k rows (ml-latest-small) or the larger dataset, containing approximately 27M rows (ml-latest). For this demo, try both datasets on both the single-node and multi-node clusters. Compare the Spark SQL paragraph execution times for each of the four variations, including single-node with the small dataset, single-node with the large dataset, multi-node with the small dataset, and multi-node with the large dataset. Observe how fast the SQL queries are executed on the single-node versus multi-node cluster. Try switching to a different Core node instance type, such as r5.2xlarge. Try creating a cluster with additional Core nodes. How is the compute time effected?

screen_shot_2019-11-26_at_5_02_34_pm

Terminate the multi-node EMR cluster to save yourself the expense before continuing to Notebook 3.

aws cloudformation delete-stack \
    --stack-name=zeppelin-emr-prod-stack

Notebook 3

The third notebook demonstrates Amazon EMR and Zeppelin’s integration capabilities with AWS Glue Data Catalog as an Apache Hive-compatible metastore for Spark SQL. We will create an Amazon S3-based Data Lake using the AWS Glue Data Catalog and a set of AWS Glue Crawlers.

screen_shot_2019-11-27_at_11_44_44_pm

Glue Crawlers

Before continuing with Notebook 3, run the two Glue Crawlers using the AWS CLI.

aws glue start-crawler --name bakery-transactions-crawler
aws glue start-crawler --name movie-ratings-crawler

The two Crawlers will create a total of seven tables in the Glue Data Catalog database.

screen_shot_2019-11-27_at_8_50_09_pm

If we examine the Glue Data Catalog database, we should now observe several tables, one for each dataset found in the S3 bucket. The location of each dataset is shown in the ‘Location’ column of the tables view.

screen-shot-2019-11-24-at-9_14_19-pm

From the Zeppelin notebook, we can even use Spark SQL to query the AWS Glue Data Catalog, itself, for its databases and the tables within them.

screen-shot-2019-11-24-at-9_12_52-pm

According to Amazon, the Glue Data Catalog tables and databases are containers for the metadata definitions that define a schema for underlying source data. Using Zeppelin’s SQL interpreter, we can query the Data Catalog database and return the underlying source data. The SQL query example, below, demonstrates how we can perform a join across two tables in the data catalog database, representing two different data sources, and return results.

screen-shot-2019-11-24-at-9_09_26-pm

Notebook 4

The fourth notebook demonstrates Zeppelin’s ability to integrate with an external data source. In this case, we will interact with data in an Amazon RDS PostgreSQL relational database using three methods, including the Psycopg 2 PostgreSQL adapter for Python, Spark’s native JDBC capability, and Zeppelin’s JDBC Interpreter.

screen-shot-2019-11-27-at-11_26_34-am.png

First, we create a new schema and four related tables for the RDS PostgreSQL movie ratings database, using the Psycopg 2 PostgreSQL adapter for Python and the SQL file we copied to S3 in Part 1.

screen_shot_2019-11-27_at_11_09_42_am

The RDS database’s schema, shown below, approximates the schema of the four CSV files from the GroupLens MovieLens rating dataset we used in Notebook 2.

screen_shot_2019-11-22_at_12_55_25_pm

Since the schema of the PostgreSQL database matches the MovieLens dataset files, we can import the data from the CVS files, downloaded from GroupLens, directly into the RDS database, again using the Psycopg PostgreSQL adapter for Python.

screen_shot_2019-11-27_at_11_09_52_am

According to the Spark documentation, Spark SQL also includes a data source that can read data from other databases using JDBC. Using Spark’s JDBC capability and the PostgreSQL JDBC Driver we installed in Part 1, we can perform Spark SQL queries against the RDS database using PySpark (%spark.pyspark). Below, we see a paragraph example of reading the RDS database’s movies table, using Spark.

screen_shot_2019-11-27_at_11_10_01_am

As a third method of querying the RDS database, we can use the custom Zeppelin PostgreSQL JDBC interpreter (%postgres) we created in Part 1. Although the default driver of the JDBC interpreter is set as PostgreSQL, and the associated JAR is included with Zeppelin, we overrode that older JAR, with the latest PostgreSQL JDBC Driver JAR.

Using the %postgres interpreter, we query the RDS database’s public schema, and return the four database tables we created earlier in the notebook.

screen_shot_2019-11-27_at_11_10_26_am

Again, below, using the %postgres interpreter in the notebook’s paragraph, we query the RDS database and return data, which we then visualize using Zeppelin’s bar chart. Finally, note the use of Zeppelin Dynamic Forms in this example. Dynamic Forms allows Zeppelin to dynamically creates input forms, whose input values are then available to use programmatically. Here, we use two form input values to control the data returned from our query and the resulting visualization.

screen_shot_2019-11-27_at_11_10_54_am

Conclusion

In this two-part post, we learned how effectively Apache Zeppelin integrates with Amazon EMR. We also learned how to extend Zeppelin’s capabilities, using  AWS Glue, Amazon RDS, and Amazon S3 as a Data Lake. Beyond what was covered in this post, there are dozens of more Zeppelin and EMR features, as well as dozens of more AWS services that integrate with Zeppelin and EMR, for you to discover.

All opinions expressed in this post are my own and not necessarily the views of my current or past employers or their clients.

, , , , , , , , ,

Leave a comment

Getting Started with PostgreSQL using Amazon RDS, CloudFormation, pgAdmin, and Python

Introduction

In the following post, we will explore how to get started with Amazon Relational Database Service (RDS) for PostgreSQL. CloudFormation will be used to build a PostgreSQL master database instance and a single read replica in a new VPC. AWS Systems Manager Parameter Store will be used to store our CloudFormation configuration values. Amazon RDS Event Notifications will send text messages to our mobile device to let us know when the RDS instances are ready for use. Once running, we will examine a variety of methods to interact with our database instances, including pgAdmin, Adminer, and Python.

Technologies

The primary technologies used in this post include the following.

PostgreSQL

Image result for postgres logoAccording to its website, PostgreSQL, commonly known as Postgres, is the world’s most advanced Open Source relational database. Originating at UC Berkeley in 1986, PostgreSQL has more than 30 years of active core development. PostgreSQL has earned a strong reputation for its proven architecture, reliability, data integrity, robust feature set, extensibility. PostgreSQL runs on all major operating systems and has been ACID-compliant since 2001.

Amazon RDS for PostgreSQL

Image result for amazon rds logoAccording to Amazon, Amazon Relational Database Service (RDS) provides six familiar database engines to choose from, including Amazon Aurora, PostgreSQL, MySQL, MariaDB, Oracle Database, and SQL Server. RDS is available on several database instance types - optimized for memory, performance, or I/O.

Amazon RDS for PostgreSQL makes it easy to set up, operate, and scale PostgreSQL deployments in the cloud. Amazon RDS supports the latest PostgreSQL version 11, which includes several enhancements to performance, robustness, transaction management, query parallelism, and more.

AWS CloudFormation

Deployment__Management_copy_AWS_CloudFormation-512

According to Amazon, CloudFormation provides a common language to describe and provision all the infrastructure resources within AWS-based cloud environments. CloudFormation allows you to use a JSON- or YAML-based template to model and provision all the resources needed for your applications across all AWS regions and accounts, in an automated and secure manner.

Demonstration

Architecture

Below, we see an architectural representation of what will be built in the demonstration. This is not a typical three-tier AWS architecture, wherein the RDS instances would be placed in private subnets (data tier) and accessible only by the application tier, running on AWS. The architecture for the demonstration is designed for interacting with RDS through external database clients such as pgAdmin, and applications like our local Python scripts, detailed later in the post.

RDS AWS Arch Diagram

Source Code

All source code for this post is available on GitHub in a single public repository, postgres-rds-demo.

.
├── LICENSE.md
├── README.md
├── cfn-templates
│   ├── event.template
│   ├── rds.template
├── parameter_store_values.sh
├── python-scripts
│   ├── create_pagila_data.py
│   ├── database.ini
│   ├── db_config.py
│   ├── query_postgres.py
│   ├── requirements.txt
│   └── unit_tests.py
├── sql-scripts
│   ├── pagila-insert-data.sql
│   └── pagila-schema.sql
└── stack.yml

To clone the GitHub repository, execute the following command.

git clone --branch master --single-branch --depth 1 --no-tags \
  https://github.com/garystafford/aws-rds-postgres.git

Prerequisites

For this demonstration, I will assume you already have an AWS account. Further, that you have the latest copy of the AWS CLI and Python 3 installed on your development machine. Optionally, for pgAdmin and Adminer, you will also need to have Docker installed.

Steps

In this demonstration, we will perform the following steps.

  • Put CloudFormation configuration values in Parameter Store;
  • Execute CloudFormation templates to create AWS resources;
  • Execute SQL scripts using Python to populate the new database with sample data;
  • Configure pgAdmin and Python connections to RDS PostgreSQL instances;

AWS Systems Manager Parameter Store

With AWS, it is typical to use services like AWS Systems Manager Parameter Store and AWS Secrets Manager to store overt, sensitive, and secret configuration values. These values are utilized by your code, or from AWS services like CloudFormation. Parameter Store allows us to follow the proper twelve-factor, cloud-native practice of separating configuration from code.

To demonstrate the use of Parameter Store, we will place a few of our CloudFormation configuration items into Parameter Store. The demonstration’s GitHub repository includes a shell script, parameter_store_values.sh, which will put the necessary parameters into Parameter Store.

Below, we see several of the demo’s configuration values, which have been put into Parameter Store.

screen_shot_2019-08-08_at_7_00_17_pm

SecureString

Whereas our other parameters are stored in Parameter Store as String datatypes, the database’s master user password is stored as a SecureString data-type. Parameter Store uses an AWS Key Management Service (KMS) customer master key (CMK) to encrypt the SecureString parameter value.

screen_shot_2019-08-08_at_7_01_15_pm

SMS Text Alert Option

Before running the Parameter Store script, you will need to change the /rds_demo/alert_phone parameter value in the script (shown below) to your mobile device number, including country code, such as ‘+12038675309’. Amazon SNS will use it to send SMS messages, using Amazon RDS Event Notification. If you don’t want to use this messaging feature, simply ignore this parameter and do not execute the event.template CloudFormation template in the proceeding step.

aws ssm put-parameter \
  --name /rds_demo/alert_phone \
  --type String \
  --value "your_phone_number_here" \
  --description "RDS alert SMS phone number" \
  --overwrite

Run the following command to execute the shell script, parameter_store_values.sh, which will put the necessary parameters into Parameter Store.

sh ./parameter_store_values.sh

CloudFormation Templates

The GitHub repository includes two CloudFormation templates, cfn-templates/event.template and cfn-templates/rds.template. This event template contains two resources, which are an AWS SNS Topic and an AWS RDS Event Subscription. The RDS template also includes several resources, including a VPC, Internet Gateway, VPC security group, two public subnets, one RDS master database instance, and an AWS RDS Read Replica database instance.

The resources are split into two CloudFormation templates so we can create the notification resources, first, independently of creating or deleting the RDS instances. This will ensure we get all our SMS alerts about both the creation and deletion of the databases.

Template Parameters

The two CloudFormation templates contain a total of approximately fifteen parameters. For most, you can use the default values I have set or chose to override them. Four of the parameters will be fulfilled from Parameter Store. Of these, the master database password is treated slightly differently because it is secure (encrypted in Parameter Store). Below is a snippet of the template showing both types of parameters. The last two are fulfilled from Parameter Store.

DBInstanceClass:
  Type: String
  Default: "db.t3.small"
DBStorageType:
  Type: String
  Default: "gp2"
DBUser:
  Type: String
  Default: "{{resolve:ssm:/rds_demo/master_username:1}}"
DBPassword:
  Type: String
  Default: "{{resolve:ssm-secure:/rds_demo/master_password:1}}"
  NoEcho: True

Choosing the default CloudFormation parameter values will result in two minimally-configured RDS instances running the PostgreSQL 11.4 database engine on a db.t3.small instance with 10 GiB of General Purpose (SSD) storage. The db.t3 DB instance is part of the latest generation burstable performance instance class. The master instance is not configured for Multi-AZ high availability. However, the master and read replica each run in a different Availability Zone (AZ) within the same AWS Region.

Parameter Versioning

When placing parameters into Parameter Store, subsequent updates to a parameter result in the version number of that parameter being incremented. Note in the examples above, the version of the parameter is required by CloudFormation, here, ‘1’. If you chose to update a value in Parameter Store, thus incrementing the parameter’s version, you will also need to update the corresponding version number in the CloudFormation template’s parameter.

{
    "Parameter": {
        "Name": "/rds_demo/rds_username",
        "Type": "String",
        "Value": "masteruser",
        "Version": 1,
        "LastModifiedDate": 1564962073.774,
        "ARN": "arn:aws:ssm:us-east-1:1234567890:parameter/rds_demo/rds_username"
    }
}

Validating Templates

Although I have tested both templates, I suggest validating the templates yourself, as you usually would for any CloudFormation template you are creating. You can use the AWS CLI CloudFormation validate-template CLI command to validate the template. Alternately, or I suggest additionally, you can use CloudFormation Lintercfn-lint command.

aws cloudformation validate-template \
  --template-body file://cfn-templates/rds.template

cfn-lint -t cfn-templates/cfn-templates/rds.template

Create the Stacks

To execute the first CloudFormation template and create a CloudFormation Stack containing the two event notification resources, run the following create-stack CLI command.

aws cloudformation create-stack \
  --template-body file://cfn-templates/event.template \
  --stack-name RDSEventDemoStack

The first stack only takes less than one minute to create. Using the AWS CloudFormation Console, make sure the first stack completes successfully before creating the second stack with the command, below.

aws cloudformation create-stack \
  --template-body file://cfn-templates/rds.template \
  --stack-name RDSDemoStack

screen_shot_2019-08-04_at_10_35_20_pm

Wait for my Text

In my tests, the CloudFormation RDS stack takes an average of 25–30 minutes to create and 15–20 minutes to delete, which can seem like an eternity. You could use the AWS CloudFormation console (shown below) or continue to use the CLI to follow the progress of the RDS stack creation.

screen_shot_2019-08-08_at_7_39_45_pm.png

However, if you recall, the CloudFormation event template creates an AWS RDS Event Subscription. This resource will notify us when the databases are ready by sending text messages to our mobile device.

screen_shot_2019-08-04_at_11_06_31_pm

In the CloudFormation events template, the RDS Event Subscription is configured to generate Amazon Simple Notification Service (SNS) notifications for several specific event types, including RDS instance creation and deletion.

  MyEventSubscription:
    Properties:
      Enabled: true
      EventCategories:
        - availability
        - configuration change
        - creation
        - deletion
        - failover
        - failure
        - recovery
      SnsTopicArn:
        Ref: MyDBSNSTopic
      SourceType: db-instance
    Type: AWS::RDS::EventSubscription

Amazon SNS will send SMS messages to the mobile number you placed into Parameter Store. Below, we see messages generated during the creation of the two instances, displayed on an Apple iPhone.

img-2839

Amazon RDS Dashboard

Once the RDS CloudFormation stack has successfully been built, the easiest way to view the results is using the Amazon RDS Dashboard, as shown below. Here we see both the master and read replica instances have been created and are available for our use.

screen_shot_2019-08-08_at_7_05_24_pm

The RDS dashboard offers CloudWatch monitoring of each RDS instance.

screen_shot_2019-08-08_at_7_06_17_pm

The RDS dashboard also provides detailed configuration information about each RDS instance.

screen_shot_2019-08-08_at_7_06_26_pm

The RDS dashboard’s Connection & security tab is where we can obtain connection information about our RDS instances, including the RDS instance’s endpoints. Endpoints information will be required in the next part of the demonstration.

screen_shot_2019-08-08_at_7_06_01_pm

Sample Data

Now that we have our PostgreSQL database instance and read replica successfully provisioned and configured on AWS, with an empty database, we need some test data. There are several sources of sample PostgreSQL databases available on the internet to explore. We will use the Pagila sample movie rental database by pgFoundry. Although the database is several years old, it provides a relatively complex relational schema (table relationships shown below) and plenty of sample data to query, about 100 database objects and 46K rows of data.

pagila_tablespng

In the GitHub repository, I have included the two Pagila database SQL scripts required to install the sample database’s data structures (DDL), sql-scripts/pagila-schema.sql, and the data itself (DML), sql-scripts/pagila-insert-data.sql.

To execute the Pagila SQL scripts and install the sample data, I have included a Python script. If you do not want to use Python, you can skip to the Adminer section of this post. Adminer also has the capability to import SQL scripts.

Before running any of the included Python scripts, you will need to install the required Python packages and configure the database.ini file.

Python Packages

To install the required Python packages using the supplied python-scripts/requirements.txt file, run the below commands.

cd python-scripts
pip3 install --upgrade -r requirements.txt

We are using two packages, psycopg2 and configparser, for the scripts. Psycopg is a PostgreSQL database adapter for Python. According to their website, Psycopg is the most popular PostgreSQL database adapter for the Python programming language. The configparser module allows us to read configuration from files similar to Microsoft Windows INI files. The unittest package is required for a set of unit tests includes the project, but not discussed as part of the demo.

screen_shot_2019-08-13_at_11_06_10_pm

Database Configuration

The python-scripts/database.ini file, read by configparser, provides the required connection information to our RDS master and read replica instance’s databases. Use the input parameters and output values from the CloudFormation RDS template, or the Amazon RDS Dashboard to obtain the required connection information, as shown in the example, below. Your host values will be unique for your master and read replica. The host values are the instance’s endpoint, listed in the RDS Dashboard’s Configuration tab.

[docker]
host=localhost
port=5432
database=pagila
user=masteruser
password=5up3r53cr3tPa55w0rd

[master]
host=demo-instance.dkfvbjrazxmd.us-east-1.rds.amazonaws.com
port=5432
database=pagila
user=masteruser
password=5up3r53cr3tPa55w0rd

[replica]
host=demo-replica.dkfvbjrazxmd.us-east-1.rds.amazonaws.com
port=5432
database=pagila
user=masteruser
password=5up3r53cr3tPa55w0rd

With the INI file configured, run the following command, which executes a supplied Python script, python-scripts/create_pagila_data.py, to create the data structure and insert sample data into the master RDS instance’s Pagila database. The database will be automatically replicated to the RDS read replica instance. From my local laptop, I found the Python script takes approximately 40 seconds to create all 100 database objects and insert 46K rows of movie rental data. That is compared to about 13 seconds locally, using a Docker-based instance of PostgreSQL.

python3 ./create_pagila_data.py

The Python script’s primary function, create_pagila_db(), reads and executes the two external SQL scripts.

def create_pagila_db():
    """
    Creates Pagila database by running DDL and DML scripts
    """

    try:
        global conn
        with conn:
            with conn.cursor() as curs:
                curs.execute(open("../sql-scripts/pagila-schema.sql", "r").read())
                curs.execute(open("../sql-scripts/pagila-insert-data.sql", "r").read())
                conn.commit()
                print('Pagila SQL scripts executed')
    except (psycopg2.OperationalError, psycopg2.DatabaseError, FileNotFoundError) as err:
        print(create_pagila_db.__name__, err)
        close_conn()
        exit(1)

If the Python script executes correctly, you should see output indicating there are now 28 tables in our master RDS instance’s database.

screen_shot_2019-08-08_at_7_13_11_pm

pgAdmin

pgAdmin is a favorite tool for interacting with and managing PostgreSQL databases. According to its website, pgAdmin is the most popular and feature-rich Open Source administration and development platform for PostgreSQL.

The project includes an optional Docker Swarm stack.yml file. The stack will create a set of three Docker containers, including a local copy of PostgreSQL 11.4, Adminer, and pgAdmin 4. Having a local copy of PostgreSQL, using the official Docker image, is helpful for development and trouble-shooting RDS issues.

screen_shot_2019-08-10_at_1_43_24_pm.png

Use the following commands to deploy the Swarm stack.

# create stack
docker swarm init
docker stack deploy -c stack.yml postgres

# get status of new containers
docker stack ps postgres --no-trunc
docker container ls

If you do not want to spin up the whole Docker Swarm stack, you could use the docker run command to create just a single pgAdmin Docker container. The pgAdmin 4 Docker image being used is the image recommended by pgAdmin.

docker pull dpage/pgadmin4

docker run -p 81:80 \
  -e "PGADMIN_DEFAULT_EMAIL=user@domain.com" \
  -e "PGADMIN_DEFAULT_PASSWORD=SuperSecret" \
  -d dpage/pgadmin4

docker container ls | grep pgadmin4

Database Server Configuration

Once pgAdmin is up and running, we can configure the master and read replica database servers (RDS instances) using the connection string information from your database.ini file or from the Amazon RDS Dashboard. Below, I am configuring the master RDS instance (server).

screen_shot_2019-08-08_at_7_25_27_pm

With that task complete, below, we see the master RDS instance and the read replica, as well as my local Docker instance configured in pgAdmin (left side of screengrab). Note how the Pagila database has been replicated automatically, from the RDS master to the read replica instance.

screen_shot_2019-08-08_at_7_29_00_pm

Building SQL Queries

Switching to the Query tab, we can run regular SQL queries against any of the database instances. Below, I have run a simple SELECT query against the master RDS instance’s Pagila database, returning the complete list of movie titles, along with their genre and release date.

screen_shot_2019-08-08_at_7_27_58_pm

The pgAdmin Query tool even includes an Explain tab to view a graphical representation of the same query, very useful for optimization. Here we see the same query, showing an analysis of the execution order. A popup window displays information about the selected object.

screen_shot_2019-08-08_at_7_28_35_pm

Query the Read Replica

To demonstrate the use of the read replica, below I’ve run the same query against the RDS read replica’s copy of the Pagila database. Any schema and data changes against the master instance are replicated to the read replica(s).

screen_shot_2019-08-08_at_7_30_14_pm

Adminer

Adminer is another good general-purpose database management tool, similar to pgAdmin, but with a few different capabilities. According to its website, with Adminer, you get a tidy user interface, rich support for multiple databases, performance, and security, all from a single PHP file. Adminer is my preferred tool for database admin tasks. Amazingly, Adminer works with MySQL, MariaDB, PostgreSQL, SQLite, MS SQL, Oracle, SimpleDB, Elasticsearch, and MongoDB.

Below, we see the Pagila database’s tables and views displayed in Adminer, along with some useful statistical information about each database object.

screen_shot_2019-08-09_at_7_04_07_am

Similar to pgAdmin, we can also run queries, along with other common development and management tasks, from within the Adminer interface.

screen_shot_2019-08-09_at_7_05_16_am

Import Pagila with Adminer

Another great feature of Adminer is the ability to easily import and export data. As an alternative to Python, you could import the Pagila data using Adminer’s SQL file import function. Below, you see an example of importing the Pagila database objects into the Pagila database, using the file upload function.

screen_shot_2019-08-09_at_7_27_53_am.png

IDE

For writing my AWS infrastructure as code files and Python scripts, I prefer JetBrains PyCharm Professional Edition (v19.2). PyCharm, like all the JetBrains IDEs, has the ability to connect to and manage PostgreSQL database. You can write and run SQL queries, including the Pagila SQL import scripts. Microsoft Visual Studio Code is another excellent, free choice, available on multiple platforms.

screen_shot_2019-08-11_at_9_40_57_pm

Python and RDS

Although our IDE, pgAdmin, and Adminer are useful to build and test our queries, ultimately, we still need to connect to the Amazon RDS PostgreSQL instances and perform data manipulation from our application code. The GitHub repository includes a sample python script, python-scripts/query_postgres.py. This script uses the same Python packages and connection functions as our Pagila data creation script we ran earlier. This time we will perform the same SELECT query using Python as we did previously with pgAdmin and Adminer.

cd python-scripts
python3 ./query_postgres.py

With a successful database connection established, the scripts primary function, get_movies(return_count), performs the SELECT query. The function accepts an integer representing the desired number of movies to return from the SELECT query. A separate function within the script handles closing the database connection when the query is finished.

def get_movies(return_count=100):
    """
    Queries for all films, by genre and year
    """

    try:
        global conn
        with conn:
            with conn.cursor() as curs:
                curs.execute("""
                    SELECT title AS title, name AS genre, release_year AS released
                    FROM film f
                             JOIN film_category fc
                                  ON f.film_id = fc.film_id
                             JOIN category c
                                  ON fc.category_id = c.category_id
                    ORDER BY title
                    LIMIT %s;
                """, (return_count,))

                movies = []
                row = curs.fetchone()
                while row is not None:
                    movies.append(row)
                    row = curs.fetchone()

                return movies
    except (psycopg2.OperationalError, psycopg2.DatabaseError) as err:
        print(get_movies.__name__, err)
    finally:
        close_conn()


def main():
    set_connection('docker')
    for movie in get_movies(10):
        print('Movie: {0}, Genre: {1}, Released: {2}'
              .format(movie[0], movie[1], movie[2]))

Below, we see an example of the Python script’s formatted output, limited to only the first ten movies.

screen_shot_2019-08-13_at_10_51_47_pm.png

Using the Read Replica

For better application performance, it may be optimal to redirect some or all of the database reads to the read replica, while leaving writes, updates, and deletes to hit the master instance. The script can be easily modified to execute the same query against the read replica rather than the master RDS instance by merely passing the desired section, ‘replica’ versus ‘master’, in the call to the set_connection(section) function. The section parameter refers to one of the two sections in the database.ini file. The configparser module will handle retrieving the correct connection information.

set_connection('replica')

Cleaning Up

When you are finished with the demonstration, the easiest way to clean up all the AWS resources and stop getting billed is to delete the two CloudFormation stacks using the AWS CLI, in the following order.

aws cloudformation delete-stack \
  --stack-name RDSDemoStack

# wait until the above resources are completely deleted
aws cloudformation delete-stack \
  --stack-name RDSEventDemoStack

You should receive the following SMS notifications as the first CloudFormation stack is being deleted.

img-2841

You can delete the running Docker stack using the following command. Note, you will lose all your pgAdmin server connection information, along with your local Pagila database.

docker stack rm postgres

Conclusion

In this brief post, we just scraped the surface of the many benefits and capabilities of Amazon RDS for PostgreSQL. The best way to learn PostgreSQL and the benefits of Amazon RDS is by setting up your own RDS instance, insert some sample data, and start writing queries in your favorite database client or programming language.

All opinions expressed in this post are my own and not necessarily the views of my current or past employers or their clients.

, , , , , , , ,

Leave a comment