Posts Tagged RESTful

Scaffold a RESTful API with Yeoman, Node, Restify, and MongoDB

Using Yeoman, scaffold a basic RESTful CRUD API service, based on Node, Restify, and MongoDB.

preview

Introduction

NOTE: Generator updated on 11-13-2016 to v0.2.1.

Yeoman generators reduce the repetitive coding of boilerplate functionality and ensure consistency between full-stack JavaScript projects. For several recent Node.js projects, I created the generator-node-restify-mongodb Yeoman generator. This Yeoman generator scaffolds a basic RESTful CRUD API service, a Node application, based on Node.js, Restify, and MongoDB.

According to their website, Restify, used most notably by Netflix, borrows heavily from Express. However, while Express is targeted at browser applications, with templating and rendering, Restify is keenly focused on building API services that are maintainable and observable.

Along with Node, Restify, and MongoDB, theNode application’s scaffolded by the Node-Restify-MongoDB Generator, also implements Bunyan, which includes DTrace, Jasmine, using jasmine-nodeMongoose, and Grunt.

Portions of the scaffolded Node application’s file structure and code are derived from what I consider the best parts of several different projects, including generator-express, generator-restify-mongo, and generator-restify.

Installation

To begin, install Yeoman and the generator-node-restify-mongodb using npm. The generator assumes you have pre-installed Node and MongoDB.

npm install -g yo
npm install -g generator-node-restify-mongodb

Then, generate the new project.

mkdir node-restify-mongodb
cd $_
yo node-restify-mongodb

Yeoman scaffolds the application, creating the directory structure, copying required files, and running ‘npm install’ to load the npm package dependencies.

preview

 

Using the Generated Application

Next, import the supplied set of sample widget documents into the local development instance of MongoDB from the supplied ‘data/widgets.json’ file.

NODE_ENV=development grunt mongoimport --verbose

Similar to Yeoman’s Express Generator, this application contains configuration for three typical environments: ‘Development’ (default), ‘Test’, and ‘Production’. If you want to import the sample widget documents into your Test or Production instances of MongoDB, first change the ‘NODE_ENV’ environment variable value.

NODE_ENV=production grunt mongoimport --verbose

To start the application in a new terminal window, use the following command.

npm start

The output should be similar to the example, below.

npm_start_output

To test the application, using jshint and the jasmine-node module, the sample documents must be imported into MongoDB and the application must be running (see above). To test the application, open a separate terminal window, and use the following command.

npm test

The project contains a set of jasmine-node tests, split between the ‘/widgets’ and the ‘/utils’ endpoints. If the application is running correctly, you should see the following output from the tests.

npm_test_output

Similarly, the following command displays a code coverage report, using the grunt, mocha, istanbul, and grunt-mocha-istanbul node modules.

grunt coverage

Grunt uses the grunt-mocha-istanbul module to execute the same set of jasmine-node tests as shown above. Based on those tests, the application’s code coverage (statement, line, function, and branch coverage) is displayed.

npm_coverage_output.png

You may test the running application, directly, by cURLing the ‘/widgets’ endpoints.

curl -X GET -H "Accept: application/json" "http://localhost:3000/widgets"

For more legible output, try prettyjson.

npm install -g prettyjson
curl -X GET -H "Accept: application/json" "http://localhost:3000/widgets" --silent | prettyjson
curl -X GET -H "Accept: application/json" "http://localhost:3000/widgets/SVHXPAWEOD" --silent | prettyjson

The JSON-formatted response body from the HTTP GET requests should look similar to the output, below.

curl_test_output

A much better RESTful API testing solution is Postman. Postman provides the ability to individually configure each environment and abstract that environment-specific configuration, such as host and port, from the actual HTTP requests.

Postman_Widget_example

Continuous Integration

As part of being published to both the npmjs and Yeoman registries, the generator-node-restify-mongodb generator is continuously integrated on Travis CI. This should provide an addition level of confidence to the generator’s end-users. Currently, Travis CI tests the generator against Node.js v4, v5, and v6, as well as IO.js. Older versions of Node.js may have compatibility issues with the application.

travisci_test_output

Additionally, Travis CI feeds test results to Coveralls, which displays the generator’s code coverage. Note the code coverage, shown below, is reported for the yeoman generator, not the generator’s scaffolded application. The scaffolded application’s coverage is shown above.

coveralls_results

Application Details

API Endpoints

The scaffolded application includes the following endpoints.

# widget resources
var PATH = '/widgets';
server.get({path: PATH, version: VERSION}, findDocuments);
server.get({path: PATH + '/:product_id', version: VERSION}, findOneDocument);
server.post({path: PATH, version: VERSION}, createDocument);
server.put({path: PATH, version: VERSION}, updateDocument);
server.del({path: PATH + '/:product_id', version: VERSION}, deleteDocument);

# utility resources
var PATH = '/utils';
server.get({path: PATH + '/ping', version: VERSION}, ping);
server.get({path: PATH + '/health', version: VERSION}, health);
server.get({path: PATH + '/info', version: VERSION}, information);
server.get({path: PATH + '/config', version: VERSION}, configuraton);
server.get({path: PATH + '/env', version: VERSION}, environment);

The Widget

The Widget is the basic document object used throughout the application. It is used, primarily, to demonstrate Mongoose’s Model and Schema. The Widget object contains the following fields, as shown in the sample widget, below.

{
  "product_id": "4OZNPBMIDR",
  "name": "Fapster",
  "color": "Orange",
  "size": "Medium",
  "price": "29.99",
  "inventory": 5
}

MongoDB

Use the mongo shell to access the application’s MongoDB instance and display the imported sample documents.

mongo
 > show dbs
 > use node-restify-mongodb-development
 > show tables
 > db.widgets.find()

The imported sample documents should be displayed, as shown below.

mongo_terminal_output

Environmental Variables

The scaffolded application relies on several environment variables to determine its environment-specific runtime configuration. If these environment variables are present, the application defaults to using the Development environment values, as shown below, in the application’s ‘config/config.js’ file.

var NODE_ENV   = process.env.NODE_ENV   || 'development';
var NODE_HOST  = process.env.NODE_HOST  || '127.0.0.1';
var NODE_PORT  = process.env.NODE_PORT  || 3000;
var MONGO_HOST = process.env.MONGO_HOST || '127.0.0.1';
var MONGO_PORT = process.env.MONGO_PORT || 27017;
var LOG_LEVEL  = process.env.LOG_LEVEL  || 'info';
var APP_NAME   = 'node-restify-mongodb-';

Future Project TODOs

Future project enhancements include the following:

  • Add filtering, sorting, field selection and paging
  • Add basic HATEOAS-based response features
  • Add authentication and authorization to production MongoDB instance
  • Convert from out-dated jasmine-node to Jasmine?

, , , , , , , , , , , , , ,

1 Comment

Building a Microservices-based REST API with RestExpress, Java EE, and MongoDB: Part 3

Develop a well-architected and well-documented REST API, built on a tightly integrated collection of Java EE-based microservices.

Virtual-Vehicles Architecture

Note: All code available on GitHub. For the version of the code that matches the details in this blog post, check out the master branch, v1.0.0 tag (after running git clone …, run a git checkout tags/v1.0.0 command).

Previous Posts

In Part One of this series, we introduced the microservices-based Virtual-Vehicles REST API example. The vehicle-themed Virtual-Vehicles microservices offers a comprehensive set of functionality, through a REST API, to application developers. In Part Two, we installed a copy of the Virtual-Vehicles project from GitHub. In Part Two, we also gained a basic understanding of how RestExpress works. Finally, we discovered how to get the Virtual-Vehicles microservices up and running.

Part Three

In part three of this series, we will take the Virtual-Vehicles for a test drive (get it? maybe it was funnier the first time…). There are several tools we can use to test the Virtual-Vehicles API. One of my favorite tools is Postman.  We will explore how to use Postman, along with the Virtual-Vehicles API documentation, to test the Virtual-Vehicles microservice’s endpoints, which compose the Virtual-Vehicles API.

Testing the API

There are three categories of tools available to test RESTful APIs, which are GUI-based applications, command line tools, and testing frameworks. Postman, Advanced REST ClientREST Console, and SmartBear’s SoapUI and SoapUI NG Pro, are examples of GUI-based applications, designed specifically to test RESTful APIs. cURL and GNU Wget are two examples of command line tools, which among other capabilities, can test APIs. Lastly, JUnit is an example of a testing framework that can be used to test a RESTful API. Surprisingly, JUnit is not only designed to manage unit tests. Each category of testing tools has their pros and cons, depending on your testing needs. We will explore all of these categories in this post as we test the Virtual-Vehicles REST API.

JUnit

JUnit is probably the best known of all Java unit testing frameworks. JUnit’s website describes JUnit as ‘a simple, open source framework to write and run repeatable tests. It is an instance of the xUnit architecture for unit testing frameworks.’ Most Java developers turn to JUnit for unit testing. However, JUnit is capable of other forms of testing, including integration testing. In his post, ‘Unit Testing with JUnit – Tutorial’, Lars Vogel states ‘an integration test has the target to test the behavior of a component or the integration between a set of components. The term functional test is sometimes used as a synonym for integration test. This kind of tests allow you to translate your user stories into a test suite, i.e., the test would resemble an expected user interaction with the application.’

Testing the Virtual-Vehicles RESTful API’s operations with JUnit would be considered integration (functional) testing. At a minimum, to complete requests, we call one microservice, which in turn authenticates the JWT by calling another microservice. If authenticated, the first microservice makes a request to its MongoDB database. As Vogel stated, whereas a unit test targets a small unit of code, such as a method, the request/response operation is integration between a set of components. testing an API call requires several dependencies.

The simplest example of testing the Virtual-Vehicles API with JUnit, would be to test an HTTP GET request to return a single instance of a vehicle. The code below demonstrates how this might be done. Notice the request depends on helper methods (not included, for brevity). To request the vehicle, assuming we already have a registered client, we need a valid JWT. We also need a valid vehicle ObjectId. To obtain these two pieces of data, we call helper methods, which in turn makes the necessary request to retrieve a JWT and vehicle ObjectId.

Below are the results of the above test, run in NetBeans IDE, using the built-in support for JUnit.

JUnit Test Results

JUnit can also be run from the command line using the Maven goal, surefire:test:

Running JUnit from Command Line

cURL

One of the best-known command line tools for calling for all types of operations centered around calling a URL is cURL. According to their website, ‘curl is a command line tool and library for transferring data with URL syntax, supporting…HTTP, HTTPS…curl supports SSL certificates, HTTP POST, HTTP PUT, FTP uploading, HTTP form based upload, proxies, HTTP/2, cookies, user+password authentication (Basic, Plain, Digest, CRAM-MD5, NTLM, Negotiate, and Kerberos), file transfer resume, proxy tunneling and more.’ I prefer the website’s  briefer description, cURL ‘groks those URLs’.

Using cURL, we could make an HTTP PUT request to the Vehicle microservice’s /vehicles/{oid}.{format} endpoint. With cURL, we have the ability to add the JWT-based Authorization header and the raw request body, containing the modified vehicle object. Below is an example of that cURL command, which can be run from a terminal prompt.

The response body contains the expected modified vehicle object in JSON-format, along with a 201 Created response status.

cURL  HTTP PUT Vehicle

The cURL commands may be incorporated into many types of automated testing processes. These might be as simple as a bash script. The script could a series of automated tests, including the following: register an API client, use the API key to create a JWT, use the JWT to create a new vehicle, use the new vehicle’s ObjectId to modify that same vehicle, delete that vehicle, confirm the vehicle is removed using the count operation and returns a test results report to the user.

cURL Commands from Chrome
Quick tip, instead of hand-coding complex cURL commands, containing form data, URL parameters, and Headers, use Chrome. First, open the Chrome Developer Tools (f12). Next, using the Postman – REST Client for Chrome, available in the Chrome App Store, execute your HTTP request. Finally, in the ‘Network’ tab of the Developers tools, find and right-click on the request and select ‘Copy as cURL’. You have a complete cURL command equivalent of your Postman request, which you can paste directly into the command line or insert into a script. Below is an example of using the Postman – REST Client for Chrome to generate a cURL command.

Using Postman in Chrome to get cURL

The generated command is a bit verbose. Compare this command to the cURL command, earlier.

Wget

Similar to cURL, GNU Wget provides the ability to call the Virtual-Vehicles API’s endpoints. According to their website, ‘GNU Wget is a free software package for retrieving files using HTTP, HTTPS and FTP, the most widely-used Internet protocols. It is a non-interactive command line tool, so it may easily be called from scripts, cron jobs, terminals without X-Windows support, etc.’ Again, like cURL, we can run Wget commands from the command line or incorporate them into scripted testing processes. The Wget website contains excellent documentation.

Using Wget, we could make the same HTTP PUT request to the Vehicle microservice /vehicles/{oid}.{format} endpoint. Like cURL, we have the ability to add the JWT-based Authorization header and the raw request body, containing the modified vehicle object.

The response body contains the expected modified vehicle object in JSON-format, along with a 201 Created response status.

Wget HTTP PUT Vehicle

cURL Bash Testing

We can combine cURL and Wget with several of the tools bash provides, to develop fairly complex integration tests. The bash-based script below just scratches the surface as a complete set of integration tests. However, the tests demonstrate an efficient multi-stage test approach to handling the complex nature of RESTful service request requirements. The tests build upon each other.

After setting up some variables and doing a quick health check on one service, the tests register a new API client by calling the Authentication service. Next, they use the new client’s API key to obtain a JWT. The tests then use the JWT to authenticate themselves and create a new vehicle. Finally, they use the new vehicle’s id and the JWT to verify the existence for the new vehicle.

Although some may consider using bash to test somewhat primitive, the following script demonstrates the effectiveness of bash’s  curl, grep, sed, awk, along with regular expressions, to test our RESTful services. Note how we grep certain values from the response, such as the new client’s API key, and then use that value as a parameter for the following test request, such as to obtain a JWT.

Since these tests are just a bash script, they can from the command line, or easily called from a continuous integration tool, Such as Jenkins CI or Hudson.

Running Integration Tests

Postman

Postman, like several similar tools, is an application designed specifically for test API endpoints. The Postman website describes Postman as tool that allows you to ‘build, test, and document your APIs faster.’  There are two versions of Postman in the Chrome Web Store. They are Postman – REST Client, the in-browser extension, which we mentioned above, and Postman, the standalone application. There is also Postman Interceptor, which helps you send requests that use browser cookies through the Postman application.

Postman and similar applications, have add-ons and extensions to extend their features. In particular, Postman, which is free, offers the Jetpacks paid extension. Jetpacks add the ability to ‘write and run tests inside Postman, extract data from responses, chain requests together and test requests with thousands of variations’. Jetpacks allow you to move beyond basic one-off API request-based testing, to automated regression and performance testing.

Using Postman
Let’s use the same HTTP PUT example we used with cURL and Wget, and see how we would perform the same task with Postman. In the first screen grab below, you can see all elements of the HTTP request, including the RESTful API’s URL, URI including the vehicle’s ObjectId (/vehicles/{ObjectId}.{format}), HTTP method (PUT), Authorization Header with JWT (Bearer), and the raw request body. The raw request body contains a JSON representation of the vehicle we want to update. Note how Postman saves the request in history so we can easily replay it later.

Postman HTTP PUT of Vehicle

In the next screen-grab, we see the response to the HTTP PUT request. Note the response body, response status, timing, and response headers.

Postman HTTP POST of Vehicle Response

Looking at the response body in Postman, you easily see the how RestExpress demonstrates the RESTful principle we discussed in Part Two of the series, HATEOAS (Hypermedia as the Engine of Application State). Note the link to this vehicle’s ‘self’ href) and the entire vehicles collection (‘up’ href).

Postman Collections
A great feature of Postman with Jetpacks is Collections. Collections are sets of requests, which can be saved, recalled, and shared. The Collection Runner runs requests in a collection, in the order in which you set them. Ordered collections are ideal for the Virtual-Vehicles API. The screen grab below shows a collection of requests, arranged in the order we would execute them to test the Virtual-Vehicles API, as it applies to specifically to vehicle CRUD operations:

  1. Execute HTTP POST request to register the new API client, passing the application name and a shared secret in the request
    Receive the new client’s API key in response
  2. Execute HTTP GET to request, passing the new client’s API key and the shared secret in the request
    Receive the new JWT in response
  3. Execute HTTP POST request to create a new vehicle, passing the JWT in the header for authentication (used for all following requests)
    Receive the new vehicle object in response
  4. Execute HTTP PUT request to modify the new vehicle, using the vehicle’s ObjectId
    Receive the modified vehicle object in response
  5. Execute HTTP GET to request the modified vehicle, to confirm it exists in the expected state
    Receive the vehicle object in response
  6. Execute HTTP DELETE request to delete the new vehicle, using the vehicle’s ObjectId
  7. Execute HTTP GET to request the new vehicle and to confirm it has been removed
    Receive a 404 Not Found status response, as expected

Postman Ordered Series of REST Calls

Using saved collections for testing the Virtual-Vehicles API is a real-time saving. However, the collections cannot easily be re-run without hand-editing or some advanced scripting. In the simple example above, we hard-coded a JWT and vehicle ObjectId in the requests. Unfortunately, the JWT has an expiration of only 10 hours by default. More immediately, the ObjectId is unique. The earlier collection test run created, then deleted, the vehicle with that ObjectId.

Negative Testing
You may also perform negative testing with Postman. For example, do you receive the expected response when you don’t include the Authorization Header with JWT in a request (401 Unauthorized status)? When you include a JWT, which has expired (401 Unauthorized status)? When you request a vehicle, whose ObjectId is incorrect or is not found in the database (400 Bad Request status)? Do you receive the expected response when you call an actual service, but an endpoint that doesn’t exist (405 Method Not Allowed)?

Negative Testing in Postman

Postman Test Automation

In addition to manually viewing the HTTP response, to verify the results of a request, Postman allows you to write and run automated tests for each request. According to their website, a ‘Postman test is essentially JavaScript code which sets values for the special tests object. You can set a descriptive key for an element in the object and then say if it’s true or false’. This allows you to write a set of response validation tests for each request.

Below is a quick example of testing the same HTTP POST request, used to create the new API client, above. In this example, we:

  1. Test that the Content-Type response header is present
  2. Test that the HTTP POST successfully returned a 201 status code
  3. Test that the new client’s API key was returned in the response body
  4. Test that the response time was less than 200ms

Postman Test Editor Example

Reviewing Postman’s ‘Tests’ tab, above, observe the four tests have run successfully. Using the Postman’s testing feature, you can create even more advanced tests, eliminating the need to manually validate responses.

This post demonstrates a small subset of the features Postman and other similar applications provide for testing RESTful API. The tools and processes you use to test your RESTful API will depend on the stage of development and testing you are in, as well as the existing technology stacks you build, and on which you host your services.

, , , , , , , , , , , , ,

1 Comment

Building a Microservices-based REST API with RestExpress, Java EE, and MongoDB: Part 2

Develop a well-architected and well-documented REST API, built on a tightly integrated collection of Java EE-based microservices.

Virtual-Vehicles Architecture

Note: All code available on GitHub. For the version of the code that matches the details in this blog post, check out the master branch, v1.0.0 tag (after running git clone …, run a ‘git checkout tags/v1.0.0’ command).

Previous Post

In Part One of this series, we introduced the microservices-based Virtual-Vehicles REST API example. The vehicle-themed Virtual-Vehicles microservices offers a comprehensive set of functionality, through a REST API, to application developers. The developers, in turn, will use the Virtual-Vehicles REST API’s functionality to build applications and games for their end-users.

In Part One, we also decided on the proper amount and responsibility of each microservice. We also determined the functionality of each microservice to meet the hypothetical functional and nonfunctional requirements of Virtual-Vehicles. To review, the four microservices we are building, are as follows:

Virtual-Vehicles REST API Resources

Microservice Purpose (Business Capability) Functions
Authentication
Manage API clients and
JWT authentication
  • Create a new API client (public)
  • Read, filter, sort, count, paginate API clients (admin)
  • Read a single API client (public)
  • Update an existing API client (public)
  • Delete an existing API client (admin)
  • Create new JWT (public)
  • Validate a JWT (internal)
  • Service health ping (admin)
Vehicle
Manage virtual vehicles
  • Create a new vehicle (public)
  • Read, filter, sort, count, paginate vehicles (admin)
  • Read a single vehicle (public)
  • Update an existing vehicle (public)
  • Delete an existing vehicle (admin)
  • Validate a JWT (internal)
  • Service health ping (admin)
Maintenance
Manage maintenance on vehicles
  • Create a new maintenance record (public)
  • Read, filter, sort, count, paginate maintenance records (admin)
  • Read a single maintenance record (public)
  • Update an existing maintenance record (public)
  • Delete an existing maintenance record (admin)
  • Validate a JWT (internal)
  • Service health ping (admin)
Valet Parking
Manage a valet service to park for vehicles
  • Create a new valet parking transaction (public)
  • Read, filter, sort, count, paginate valet parking transactions (admin)
  • Read a single valet parking transaction (public)
  • Update an existing valet parking transaction (public)
  • Delete an existing valet parking transaction (admin)
  • Validate a JWT (internal)
  • Service health ping (admin)

To review, the first five functions for each service are all basic CRUD operations: create (POST), read (GET), readAll (GET), update (PUT), delete (DELETE). The readAll function also has find, count, and pagination functionality using query parameters. Unfortunately, RestExpress does not support PATCH for updates. However, I have updated RestExpress’ PUT HTTP methods to return the modified object in the response body instead of the nothing (status of 201 Created vs. 200 OK). See StackOverflow for an explanation.

All services also have an internal authenticateJwt function, to authenticate the JWT, passed in the HTTP request header, before performing any operation. Additionally, all services have a basic health-check function, ping (GET). There are only a few other functions required for our Virtual-Vehicles example, such as for creating JWTs.

 Part Two Introduction

In Part Two, we will build our four Virtual-Vehicles microservices. Recall from our first post, we will be using RestExpress. RestExpress composes best-of-breed open-source tools to enable quickly creating RESTful microservices that embrace industry best practices. Those best-of-breed tools include Java EE, Maven, MongoDB, and Netty, among others.

In this post, we will accomplish the following:

  • Create a default microservice project in NetBeans using RestExpress MongoDB Maven Archetype
  • Understand the basic structure of a default RestExpress microservice project
  • Review the changes made to the default RestExpress microservice project to create the Virtual-Vehicles example
  • Compile and run the individual microservices directly from NetBeans

I used NetBeans IDE 8.0.2 on Linux Ubuntu 14.10 to build the microservices. You may also follow along in other IDE’s, such as Eclipse or IntelliJ, on Mac or Windows. We won’t cover installing MongoDB, Maven, and Java. I’ll assume if your building enterprise applications, you have the basics covered.

Using the RestExpress MongoDB Maven Archetype

All the code for this project is available on GitHub. However, to understand RestExpress, you should go through the exercise of scaffolding a new microservice using the RestExpress MongoDB Maven Archetype. You will also be able to use this default microservice project to compare and contrast to the modified versions, used in the Virtual-Vehicles example. The screen grabs below demonstrate how to create a new microservice project using the RestExpress MongoDB Maven Archetype. At the time of this post, the archetype version was restexpress-mongodb version 1.15.

New Maven Project from Archetype Step 1

New Maven Project from Archetype Step 2

New Maven Project from Archetype Step 2

Default Project Architecture

Reviewing the two screen grabs below (Project tab), note the key components of the RestExpress MongoDB Maven project, which we just created:

  • Base Package (com.example.vehicle)
    • Configuration class reads in environment properties (see Files tab) and instantiates controllers
    • Constants class contains project constants
    • Relationships class defines linking resource which aids service discoverability (HATEOAS)
    • Main executable class
    • Routes class defines the routes (endpoints) exposed by the service and the corresponding controller class
  • Model/Controllers Packages (com.example.vehicle.objectid and .uuid)
    • Entity class defines the data entity – a Vehicle in this case
    • Controller class contains the methods executed when the route (endpoint) is called
    • Repository class defines the connection details to MongoDB
    • Service class contains the calls to the persistence layer, validation, and business logic
  • Serialization Package (com.example.vehicle.serialization)
    • XML and JSON serialization classes
    • Object ID and UUID serialization and deserialization classes

New Maven Project from Archetype Project View

New Maven Project from Archetype Projects View

Again, I strongly recommend reviewing each of these package’s classes. To understand the core functionality of RestExpress, you must understand the relationships between RestExpress microservice’s Route, Controller, Service, Repository, Relationships, and Entity classes. In addition to reviewing the default Maven project, there are limited materials available on the Internet. I would recommend the RestExpress Website on GitHub, RestExpress Google Group Forum, and the YouTube 3-part video series, Instant REST Services with RESTExpress.

Unit Tests?
Disappointingly, the current RestExpress MongoDB Maven Archetype sample project does not come with sample JUnit unit tests. I am tempted to start writing my own unit tests if I decided to continue to use the RestExpress microservices framework for future projects.

Properties Files

Also included in the default RestExpress MongoDB Maven project is a Java properties file (environment.properties). This properties file is displayed in the Files tab, as shown below. The default properties file is located in the ‘dev’ environment config folder. Later, we will create an additional properties file for our production environment.

Default Properties File

Ports
Within the ‘dev’ environment, each microservice is configured to start on separate ports  (i.e. port = 8581). Feel free to change the service’s port mappings if they conflict with previously configured components running on your system. Be careful when changing the Authentication service’s port, 8587, since this port is also mapped in all other microservices using the authentication.port property (authentication.port = 8587). Make sure you change both properties, if you change Authentication service’s port mapping.

Base URL
Also, in the properties files is the base.url property. This property defines the URL the microservice’s endpoints will be expecting calls from, and making internal calls between services. In our post’s example, this property in the ‘dev’ environment is set to localhost (base.url = http://localhost). You could map an alternate hostname from your hosts file (/etc/hosts). We will do this in a later post, in our ‘prod’ environment, mapping the base.url property to Virtual-Vehicles (base.url = http://virtual-vehicles.com). In the ‘dev’ environment properties file, MongoDB is also mapped to localhost (i.e. mongodb.uri = mongodb://virtual-vehicles.com:27017/virtual_vehicle).

Metrics Plugin and Graphite
RestExpress also uses the properties file to hold configuration properties for Metrics Plugin and Graphite. The Metrics Plugin and Graphite are both first class citizens of RestExpress. Below is the copy of the Vehicles service environment.properties file for the ‘dev’ environment. Note, the Metrics Plugin and Graphite are both disabled in the ‘dev’ environment.

Choosing a Data Identification Method

RestExpress offers two identification models for managing data, the MongoDB ObjectId and a Universally Unique Identifier (UUID). MongoDB uses an ObjectId to identify uniquely a document within a collection. The ObjectId is a special 12-byte BSON type that guarantees uniqueness of the document within the collection. Alternately, you can use the UUID identification model. The UUID identification model in RestExpress uses a UUID, instead of a MongoDB ObjectId. The UUID also contains createdAt and updatedAt properties that are automatically maintained by the persistence layer. You may stick with ObjectId, as we will in the Virtual-Vehicles example, or choose the UUID. If you use multiple database engines for your projects, using UUID will give you a universal identification method.

Project Modifications

Many small code changes differentiate our Virtual-Vehicles microservices from the default RestExpress Maven Archetype project. Most changes are superficial; nothing changed about how RestExpress functions. Changes between the screen grabs above, showing the default project, and the screen grabs below, showing the final Virtual-Vehicles microservices, include:

  • Remove all packages, classes, and code references to the UUID identification methods (example uses ObjectId)
  • Rename several classes for convenience (dropped use of word ‘Entity’)
  • Add the Utilities (com.example.utilities) and Authentication (com.example.authenticate) packages

Final Virtual-Vehicles Microservices Projects

Final Virtual-Vehicles Microservices Projects

MongoDB

Following a key principle of microservices mentioned in the first post, Decentralized Data Management, each microservice will have its own instance of a MongoDB database associated with it. The below diagram shows each service and its corresponding database, collection, and fields.

Virtual-Vehicles Database Diagram
From the MongoDB shell, we can observe the individual instances of the four microservice’s databases.

MongoDB Virtual-Vehicles Databases

In the case of the Vehicle microservice, the associated MongoDB database is virtual_vehicle. This database contains a single collection, vehicles. While the properties file defines the database name, the Vehicles entity class defines the collection name, using the org.mongodb.morphia.annotations classes annotation functionality.

Looking at the virtual_vehicle database in the MongoDB shell, we see that the sample document’s fields correspond to the Vehicle entity classes properties.

MongoDB vehicles Document
Each of the microservice’s MongoDB databases are configured in the environments.properties file, using the mongodb.uri property. In the ‘dev’ environment we use localhost as our host URL (i.e. mongodb.uri = mongodb://localhost:27017/virtual_vehicle).

Authentication and JSON Web Tokens

The three microservices, Vehicle, Valet, and Maintenance, are almost identical. However, the Authentication microservice is unique. This service is called by each of the other three services, as well as also being called directly. The Authentication service provides a very basic level of authentication using JSON Web Tokens (JWT), pronounced ‘jot‘.

Why do we want authentication? We want to confirm that the requester using the Virtual-Vehicles REST API is the actual registered API client they are who they claim to be. JWT allows us to achieve this requirement with minimal effort.

According to jwt.io, ‘a JSON Web Token is a compact URL-safe means of representing claims to be transferred between two parties. The claims in a JWT are encoded as a JSON object that is digitally signed using JSON Web Signature (JWS).‘ I recommend reviewing the JWT draft standard to fully understand the structure, creation, and use of JWTs.

Virtual-Vehicles Authentication Process
There are different approaches to implementing JWT. In our Virtual-Vehicles REST API example, we use the following process for JWT authentication:

  1. Register the new API client by supplying the application name and a shared secret (one time only)
  2. Receive an API key in response (one time only)
  3. Obtain a JWT using the API key and the shared secret (each user session or renew when the previous JWT expires)
  4. Include the JWT in each API call

In our example, we are passing four JSON fields in our set of claims. Those fields are the issuer (‘iss’), API key, expiration (‘exp’), and the time the JWT was issued (‘ait’). Both the ‘iss’ and the ‘exp’ claims are defined in the Authentication service’s environment.properties file (jwt.expire.length and jwt.issuer).

Expiration and Issued date/time use the JWT standard recommended “Seconds Since the Epoch“.  The default expiration for a Virtual-Vehicles JWT is set to an arbitrary 10 hours from the time the JWT was issued (jwt.expire.length = 36000). That amount, 36,000, is equivalent to 10 hours x 60 minutes/hour x 60 seconds/minute.

Decoding a JWT
Using the jwt.io site’s JT Debugger tool, I have decoded a sample JWT issued by the Virtual-Vehicles REST API, generated by the Authentication service. Observe the three parts of the JWT, the JOSE Header, Claims Set, and the JSON Web Signature (JWS).

Decoded JWT

The JWT’s header indicates that our JWT is a JWS that is MACed using the HMAC SHA-256 algorithm. The shared secret, passed by the API client, represents the HMAC secret cryptographic key. The secret is used in combination with the cryptographic hash function to calculate the message authentication code (MAC). In the example below, note how the API client’s shared secret is used to validate our JWT’s JWS.

Sequence Diagrams of Authentication Process
Below are three sequence diagrams, which detail the following processes: API client registration process, obtaining a new JWT, and a REST call being authenticated using the JWT. The end-user of the API self-registers their application using the Authentication service and receives back an API key. The API key is unique to that client.

Register API Client (Authentication Service)

The end-user application then uses the API key and the shared secret to receive a JWT from the Authentication service.

Requesting a JWT (Authentication Service)After receiving the JWT, the end-user application passes the JWT in the header of each API request. The JWT is validated by calling the Authentication service. If the JWT is valid, the request is fulfilled. If not valid, a ‘401 Unauthorized’ status is returned.

API Call with JWT Passed in Header (Vehicle Service)JWT Validation
The JWT draft standard recommends how to validate a JWT. Our Virtual-Vehicles Authentication microservice uses many of those criteria to validate the JWT, which include:

  1. API Key – Retrieve API client’s shared secret from MongoDB, using API key contained in JWT’s claims set (secret is returned; therefore API key is valid)
  2. Algorithm – confirm the algorithm (‘alg’), found in the JWT Header, which used to encode JWT, was ‘HS256’ (HMAC SHA-256)
  3. Valid JWS – Use the client’s shared secret from #1 above, decode HMAC SHA-256 encrypted JWS
  4. Expiration – confirm JWT is not expired (‘exp’)

Inter-Service Communications

By default, the RestExpress Archetype project does not offer an example of communications between microservices. Service-to-service communications for microservices is most often done using the same HTTP-based REST calls used to by our Virtual-Vehicles REST API. Alternately, a message broker, such as RabbitMQ, Kafka, ActiveMQ, or Kestrel, is often used. Both methods of communicating between microservices, referred to as ‘inter-service communication mechanisms’ by InfoQ, have their pros and cons. The InfoQ website has an excellent microservices post, which discusses the topic of service-to-service communication.

For the Virtual-Vehicles microservices example, we will use HTTP-based REST calls for inter-service communications. The primary service-to-service communications in our example, is between the three microservices, Vehicle, Valet, and Maintenance, and the Authentication microservice. The three services validate the JWT passed in each request to a CRUD operation, by calling the Authentication service and passing the JWT, as shown in the sequence diagram, above. Validation is done using an HTTP GET request to the Authentication service’s .../jwts/{jwt} endpoint. The Authentication service’s method, called by this endpoint, minus some logging and error handling, looks like the following:

Primarily, we are using the java.net and java.io packages, along with the org.restexpress.Request class to build and send our HTTP request to the Authentication service. Alternately, you could use just the org.restexpress package to construct request and handle the response. This same basic method structure shown above can be used to create unit tests for your service’s endpoints.

Health Ping

Each of the Virtual-Vehicles microservices contain a DiagnosticController in the .utilities package. In our example, we have created a ping() method. This simple method, called through the .../utils/ping endpoint, should return a 200 OK status and a boolean value of ‘true’, indicating the microservice is running and reachable. This route’s associated method could not be simpler:

The ping health check can even be accessed with a simple curl command, curl localhost:8581/vehicles/utils/ping.

In a real-world application, we would add additional health checks to all services, providing additional insight into the health and performance of each microservice, as well as the service’s dependencies.

API Documentation

A well written RESTful API will not require extensive documentation to understand the API’s operations. Endpoints will be discoverable through linking (see Response Body links section in below example). API documentation should provide HTTP method, required headers and URL parameters, expected response body and response status, and so forth.

An API should be documented before any code is written, similar to TDD. The API documentation is the result of a clear understanding of requirements. The API documentation should make the coding even easier since the documentation serves as a further refinement of the requirements. The requirements are an architectural plan for the microservice’s code structure.

Sample Documentation
Below, is a sample of the Virtual-Vehicles REST API documentation. It details the function responsible for creating a new API client. The documentation provides a brief description of the function, the operation’s endpoint (URI), HTTP method, request parameters, expected response body, expected response status, and even a view of the MongoDB collection’s document for a new API client.

Virtual-Vehicles API Guide

You can download a PDF version of the Virtual-Vehicles RESTful API documentation on GitHub or review the source document on Google Docs. It contains general notes about the API, and details about every one of the API’s operations.

Running the Individual Microservices

For development and testing purposes, the easiest way to start the microservices is in NetBeans using the Run command. The Run command executes the Maven exec goal. Based on the DEFAULT_ENVIRONMENT constant in the org.restexpress.util Environment class, RestExpress will use the ‘dev’ environment’s environment.properties file, in the project’s /config/dev directory.

Alternately, you can use the RestExpress project’s recommended command from a terminal prompt to start each microservice from its root directory (mvn exec:java -Dexec.mainClass=test.Main -Dexec.args="dev"). You can also use this command to switch from the ‘dev’ to ‘prod’ environment properties (-Dexec.args="prod").

You may use a variety of commands to confirm all the microservices are running. I prefer something basic like sudo netstat -tulpn | grep 858[0-9]. This will find all the ports within the ‘dev’ port range. For more in-depth info, you can use a command like ps -aux | grep com.example | grep -v grep

Microservices Running

Part Three: Testing our Services

We now have a copy of the Virtual-Vehicles project pulled from GitHub, a basic understanding of how RestExpress works, and our four microservices running on different ports. In Part Three of this series, we will take them for a drive (get it?). There are many ways to test our service’s endpoints. One of my favorite tools is Postman. we will explore how to use several tools, including Postman, and our API documentation, to test our microservice’s endpoints.

Postman Preview

, , , , , , , , , , , , ,

5 Comments

Building a Microservices-based REST API with RestExpress, Java EE, and MongoDB: Part 1

Develop a well-architected and well-documented REST API, built on a tightly integrated collection of Java EE-based microservices.

Generic API Architecture

Microservices

Microservices are a popular and growing trend in software development. According to Wikipedia, microservices are “a software architecture style, in which complex applications are composed of small, independent processes communicating with each other using language-agnostic APIs. These services are small, highly decoupled and focus on doing a small task.

Martin Fowler and James Lewis (ThoughtWorks) have done an exemplary job capturing the essence of microservice architecture in their March 2014 post, microservices. Fowler has also discussed these principles in several presentations, including the January 2015 goto; Conference, Keynote: Microservices by Martin Fowler.

Additionally, noted technical consultant and speaker, Adrian Cockcroft (Battery Ventures), has made significant contributions to the definition of microservices, such as in his December 2014 dockercon14 | eu presentation, State of the Art in Microservices.

Lastly, Zhamak Dehghani (ThoughtWorks), delivered an in-depth discussion of microservices, including customer perspectives, in her October 2014 presentation, Real-World Microservices: Lessons from the Frontline.

Some of the major characteristics of microservices and REST cited by these experts, include:

  • Organized Around Business Capabilities
  • Single Responsibility
  • Loose Coupling / High Cohesion
  • Smart Endpoints and Dumb Pipes
  • Decentralized Data Management
  • Hypermedia as the Engine of Application State (HATEOAS)

As we develop this post’s example, I will demonstrate how all of the above characteristics are implemented.

REST API

A REST API is the mash-up of two common software concepts, Representational State Transfer (REST) and an application programming interface (API). Although even Wikipedia doesn’t have an exact definition of a REST API, they come close to their discussion of REST. According to Wikipedia“Web service APIs that adhere to the REST architectural constraints are called RESTful APIs. HTTP-based RESTful APIs are defined with these aspects: base URI, an Internet media type for the data, standard HTTP methods, hypertext links to a reference state, and hypertext links to reference related resources.

An important nuance and differentiator from SOA-based APIs, RESTful APIs do not require XML-based Web service protocols (SOAP and WSDL) to support their interfaces (Wikipedia).

The author of the WebConcepts channel does an excellent job capturing the essence of REST APIs in REST API concepts and examples. Two additional presentations I strongly recommend are REST+JSON API Design – Best Practices for Developers and Designing a Beautiful REST+JSON API, both by Les Hazlewood, CTO of Stormpath. Stormpath is a leader in the commercial REST API space.

Microservices-Based REST API

A microservices-based REST API is a REST API, whose HTTP requests call an orchestrated collection or collections of language-agnostic and platform-agnostic microservices. The combination of these two trends, microservices, and a REST API, offers a simple, reliable, and scalable solution for providing flexible functionality to an end-user, in a technology-agnostic manner.

REST API Example

There is a fast-growing volume of reference materials describing the characteristics, benefits, and general architecture of microservices and REST APIs. However, in researching these topics, I have found a shortage of practical examples or tutorials on building microservices-based REST API solutions.

Undoubtedly, the complexity of even the simplest microservices-based solution limits the number of available cases. A minimally viable solution require planning, coding, testing, and documentation. The addition of cross-cutting features such as security, logging, monitoring, and orchestration, creates an enormous task to build a practical microservices-based example.

In the following series of posts, we will use many of the characteristics of a modern microservice architecture as described by Fowler, Lewis, Cockcroft, and Dehghani. We will combine these microservice characteristics with the best practices of good REST API design, as described by Hazlewood and WebConcepts, to build a minimally viable microservices-based REST API.

In a future post, we will create an application, which leverages the microservices-based solution, through the REST API. Additionally, we will demonstrate how to ensure high-availability of the individual microservices and data sources.

Vehicle for Learning

In a similar vein to the publicly available Twitter, Facebook, and Google REST APIs, we will build the Virtual-Vehicles REST API. The Virtual-Vehicles REST API will constitute a collection of vehicle-themed microservices. Collectively, the microservices will offer a comprehensive set of functionality to the end-user, an application developer. They, in turn, will use the functionality of the Virtual-Vehicles REST API to build applications and games for their end-users.

Technology Choices

There are a seemingly infinite number of technology choices for building microservices and REST APIs. Your choice of development languages, databases, application servers, third-party libraries, API gateway, logging, monitoring, automated testing, ORM or ODM, and even the IDE, all define your technology stack.

For the Virtual-Vehicles solution, we will use the following key technologies:

What is RestExpress?

According to their website, RestExpress, composes best-of-breed open-source tools to enable quickly creating RESTful microservices that embrace industry best practices. Built from the ground-up for container-less, microservice architectures, RestExpress is the easiest way to create RESTful APIs in Java. RestExpress is an extremely lightweight, fast, REST engine and API for Java. RestExpress is a thin wrapper on Netty IO HTTP handling. RestExpress lets you create performant, stand-alone REST APIs rapidly. RestExpress provides several Maven archetypes, which we will use as a basis for our microservices.

RestExpress will also drive our technology decisions to use Java EE, Maven, MongoDB, and Netty.

Virtual-Vehicles Microservices

Adhering to the first few microservice architectural principles listed above, organized around business capabilities, single responsibility, and high cohesion, we first must determine the proper number of microservices, and their individual responsibilities. In the case of our solution, we will break down Virtual-Vehicles’ business capabilities into the following microservices:

Virtual-Vehicles Services

Microservice Purpose (Business Capability)
Authentication Service Manage API clients and JWT authentication
Vehicle Service Manage virtual vehicles
Maintenance Service Manage maintenance on vehicles
Valet Parking Service Manage a valet service to park for vehicles
Sales Service Manage the buying and selling of vehicles
Registration Service Manage registration of vehicles to owners
Auction Service Manage a virtual car auction
Car Show Service Manage a virtual car show
Interaction Service Manage interaction of users with vehicles

For simplicity in this post’s example, we will only be exploring the (4) services shown above in bold.

This segmentation of service functionality is unlike what we might encounter in traditional monolithic, n-tier applications, and SOA-based architecture. Traditional applications were built around application-centric functionality or business’ organizational structure. Microservices, however, are client-centric and built around business capabilities.

REST API Functionality

The next decision we need to make is required functionality. What are the operational requirements of each business segment, represented by the microservices? Additionally, what are the nonfunctional requirements, such as monitoring, logging, and authentication. Requirements are translated into functionality, which is translated into the available resources exposed via the service’s RESTful endpoints.

For the Virtual-Vehicles microservices solution, based on a hypothetical set of business and non-functional requirements, we will expose the following resources. Collectively, they will compose the REST API:

Virtual-Vehicles REST API Resources

Microservice Purpose (Business Capability) Functions
Authentication Service Manage API clients and
JWT authentication
  • Create a new API client (public)
  • Read, filter, sort, count, paginate API clients (admin)
  • Read a single API client (public)
  • Update an existing API client (public)
  • Delete an existing API client (admin)
  • Create new JWT (public)
  • Validate a JWT (internal)
  • Service health ping (admin)
Vehicle Service Manage virtual vehicles
  • Create a new vehicle (public)
  • Read, filter, sort, count, paginate vehicles (admin)
  • Read a single vehicle (public)
  • Update an existing vehicle (public)
  • Delete an existing vehicle (admin)
  • Validate a JWT (internal)
  • Service health ping (admin)
Maintenance Service Manage maintenance on vehicles
  • Create a new maintenance record (public)
  • Read, filter, sort, count, paginate maintenance records (admin)
  • Read a single maintenance record (public)
  • Update an existing maintenance record (public)
  • Delete an existing maintenance record (admin)
  • Validate a JWT (internal)
  • Service health ping (admin)
Valet Parking Service Manage a valet service to park for vehicles
  • Create a new valet parking transaction (public)
  • Read, filter, sort, count, paginate valet parking transactions (admin)
  • Read a single valet parking transaction (public)
  • Update an existing valet parking transaction (public)
  • Delete an existing valet parking transaction (admin)
  • Validate a JWT (internal)
  • Service health ping (admin)

Reviewing the table above, note the first five functions for each service are all basic CRUD operations: create (POST), read (GET), readAll (GET), update (PUT), delete (DELETE). The readAll function also has find, count, and pagination functionality using query parameters.

All services also have an internal authenticateJwt function, to authenticate the JWT, passed in the HTTP request header, before performing any operation. Additionally, all services have a basic health-check function, ping (GET). There are only a few other functions required for our Virtual-Vehicles example, such as for creating JWTs.

I’ve labeled each function as to suggested user scope. Scopes include public, admin, and internal. As a consumer of the REST API, you may only want to expose certain functionality to your general end-user (public). Additional functionality may be reserved for an administrative user (admin) or only yourself as a developer (internal). Creating a new vehicle might be a common end-user feature. However, the ability to permanently delete one or more vehicles may be reserved for an admin-level user, or not exposed at all.

REST API Patterns

We will not spend a lot of time discussing patterns for building REST APIs. There are many useful materials available on the Internet regarding industry-standard patterns for REST API resource URI construction. The two presentations I recommend above by Les Hazlewood, CTO of Stormpath, are excellent. Also, Microservices.ioRestApiTutorial.com, swagger.io, and raml.org websites offer solid overviews of REST patterns and RESTful standards.

A common RESTful anti-pattern, which is hard to avoid as a OOP developer, is the temptation to use verbs versus nouns and method-like names, in resource URIs. Remember, we are not designing an end-user application. We are building an API, used by API consumers (application developers), to build a variety of platform and language-agnostic applications. Functions like paintCar, changeOil, or parkVehicle are not something the API should define. The Vehicle microservice exposes the update operation, which allows an application developer to change the car’s paint color in their paintCar method. Similarly, the valet service exposes the create operation, which allows the application developer to create a function to park the vehicle (or car, or truck, in a garage, or parking lot, etc.). A good REST API allows for maximum end-user flexibility.

Part Two

In Part Two, we will install a copy of the Virtual-Vehicles project from GitHub. In Part Two, we will gain a basic understanding of how RestExpress works. Finally, we will discover how to get the Virtual-Vehicles microservices up and running.

Virtual-Vehicles Architecture

, , , , , , , , , , , , ,

1 Comment

Calling Third-Party HTTP-based RESTful APIs from the MEAN Stack

Example of calling Google’s Custom Search http-based RESTful API, using Node.js with Express and Request, from a MEAN.io-generated MEAN stack application. CustomSearchExample

Introduction

Most MEAN stack articles and tutorials demonstrate how AngularJS, on the client-side, calls Node.js with Express on the server-side, via a http-based RESTful API. In turn, on the server-side, Node.js with Express, and often a ODM like Mongoose, calls MongoDB. Below is a simple, high-level sequence diagram of a typical MEAN stack request/response data flow from the client to the server to the database, and back.

Typical MEAN Stack Request/Response Data Flow

Typical MEAN Stack Request/Response Data Flow

However in many situations, applications don’t only call into their own application stack. Applications often call third-party http-based RESTful APIs, including social networks, cloud providers, e-commerce, and news aggregators. Twitter’s REST API and Facebook Graph API are two popular social network examples. Within larger enterprise environments, applications call multiple internal applications. For example, an online retailer’s storefront application accesses their own inventory control system via RESTful URIs. This is the same RESTful API the retailer’s authorized resellers use to interact with the retailer’s own inventory control system.

Calling APIs from the MEAN Stack

From the Client-Side
There are two ways to call third-party http-based APIs from a MEAN stack application. The first approach is calling directly from the client-side. AngularJS calls the third-party API, directly. All logic is on the client-side, instead of on the server-side. Node.js and Express are not involved in the process. The approach requires less moving parts than the next approach, but is less secure and places more demand on the client to handle the application’s business logic. Below is a simple, high-level sequence diagram demonstrating a request/response data flow from AngularJS on the client-side to a third-party API, and back.

Example AngularJS/Third-Party API Request/Response Data Flow

Example AngularJS/Third-Party API Request/Response Data Flow

From the Server-Side
The second approach, using Node.js and Express, on the servers-side, is slightly more complex. However, this approach is also more architecturally sound, scalable, secure, and performant. AngularJS, on the client side, calls Node.js with Express, on the server-side. Node.js with Express then calls the service and pass the response back to the client-side, to AngularJS. Below is a simple, high-level sequence diagram demonstrating a request/response data flow from the client-side to the server-side, to a third-party API, and back.

Example Node.js/Third-Party API Request/Response Data Flow

Example Node.js/Third-Party API Request/Response Data Flow

Example

MEAN.io
Using the MEAN.io ‘FullStack JS Development’ framework, I have created a basic example of calling Google’s Custom Search http-based RESTful API, from Node.js with Express and Request. MEAN.io provides an ready-made MEAN stack boilerplate framework/generator, saving a lot of coding time. Irregardless of the generator or framework you choose, you would architect this example the same.

Google Custom Search API
Google provides the Custom Search API as part of their Custom Search, one of many API’s, available through the Google Developers portal. According to Google, “the JSON/Atom Custom Search API lets you develop websites and applications to retrieve and display search results from Google Custom Search programmatically. With this API, you can use RESTful requests to get either web search or image search results in JSON or Atom format.

Google APIs Explorer - Exploring Custom Search API

Google APIs Explorer – Exploring Custom Search API

In order to use the Custom Search API, you will need to first create a Google account, API project, API keyCustom Search Engine (CSE), and CSE ID, through Google’s Developers Console. If you have previously worked with Google, FaceBook, or Twitter APIs, creating an API project, CSE, API key, and CSE ID, if very similar.

Google Custom Search - Your Search Engine ID

Google Custom Search – Your Search Engine ID

Like most of Google’s APIs, the Custom Search API pricing and quotas depend on the engine’s edition. You have a choice of two engines. According to Google, the free Custom Search Engine provides 100 search queries per day for free. If you need more, you may sign up for billing in the Developers Console. Additional requests cost $5 per 1000 queries, up to 10k queries per day. The limit of 100 is more than enough for this demonstration.

Installing and Configuring the Project

All the code for this project is available on GitHub at /meanio-custom-search. Before continuing, make sure you have the prerequisite software installed – GitNode.js with npm, and MongoDB. To install the GitHub project, follow these commands:

git clone https://github.com/garystafford/meanio-custom-search.git
cd meanio-custom-search
npm install

Alternatively, if you want to code the project yourself, these are the commands I used to set up the base MEAN.io framework, and create ‘search‘ package:

sudo npm install -g mean-cli
mean init meanio-custom-search
cd meanio-custom-search
npm install
mean package search

After creating your own CSE ID and API key, create two environmental variables, GOOGLE_CSE_ID and GOOGLE_API_KEY, to hold the values.

echo "export GOOGLE_API_KEY=<YOUR_API_KEY_HERE>" >> ~/.bashrc
echo "export GOOGLE_CSE_ID=<YOUR_CSE_ID_HERE>"   >> ~/.bashrc

The code is run from a terminal prompt with the grunt command. Then, in the browser, go to http://localhost:3000. Once on the main home page, you can navigate to the ‘Search Example’ page, and input a search term, such as ‘MEAN Stack’. All the instructions on the MEAN.io Github site, apply to this project.

The Project’s Architecture

According to MEAN.io, everything in mean.io is a ‘package’. When extending mean with custom functionality, you create a new ‘package’. In this case, I have created a ‘search’ package, with the command above, ‘mean package search‘. Below is the basic file structure of the ‘search‘ package, within the overall MEAN.io project framework. The ‘public‘ folder contains all the client-side, AngularJS code. The ‘server‘ folder contains all the server-side, Node.js/Express/Request code. Note that each ‘package’ also has its own ‘package.json‘ npm file and ‘bower.json‘ Bower file.

Folder Structure of Search Package with Callouts

The simple, high-level sequence diagram below shows the flow of the custom search request from the ‘Search Example’ view to the Google Custom Search API. The diagram also shows the response from the Google Custom Search API all the way back up the MEAN stack to the client-side view.

High-Level Custom Search API Request/Response Data Flow

High-Level Custom Search API Request/Response Data Flow

Client-Side Request/Response
If you view the network traffic in your web browser, you will see a RESTful URI call is made between AngularJS’ service factory, on the client-side, and Node.js with Express, on the server-side. The RESTful endpoint, called with $http.jsonp(), will be similar to: http://localhost:3000/customsearch/MEAN.io/10?callback=angular.callbacks._0. In actuality, the callback parameter name, the AngularJS service factory, is ‘JSON_CALLBACK‘. This is replaced by AngularJS with an incremented ‘angular.callbacks._X‘ parameter name, making the response callback name incremental and unique.

The response returned to AngularJS from Node.js is a sub-set of full response from Google’s Custom Search API. Only the search results items and a ‘200’ status code are returned to AngularJS as JavaScript, JSONP wrapped in a callback. Below is a sample response, truncated to just a single search result. I have highlighted the four fields that are displayed in the ‘Search Example’ view, using AngularJS’ ng-repeat directive.

/**/
typeof angular.callbacks._0 === 'function' && angular.callbacks._0({
    "statusCode": 200,
    "items"     : [{
        "kind"            : "customsearch#result",
        "title"           : "MEAN.IO - MongoDB, Express, Angularjs Node.js powered fullstack ...",
        "htmlTitle"       : "<b>MEAN</b>.<b>IO</b> - MongoDB, Express, Angularjs Node.js powered fullstack <b>...</b>",
        "link"            : "http://mean.io/",
        "displayLink"     : "mean.io",
        "snippet"         : "MEAN - MongoDB, ExpressJS, AngularJS, NodeJS. based fullstack js framework.",
        "htmlSnippet"     : "<b>MEAN</b> - MongoDB, ExpressJS, AngularJS, NodeJS. based fullstack js framework.",
        "cacheId"         : "_CZQNNP6VMEJ",
        "formattedUrl"    : "mean.io/",
        "htmlFormattedUrl": "<b>mean</b>.<b>io</b>/",
        "pagemap"         : {
            "cse_image"    : [{"src": "http://i.ytimg.com/vi/oUtWtSF_VNY/hqdefault.jpg"}],
            "cse_thumbnail": [{
                "width" : "259",
                "height": "194",
                "src"   : "https://encrypted-tbn2.gstatic.com/images?q=tbn:ANd9GcSIVwPo7OcW9u_b3P3DGxv8M7rKifGZITi1Bhmpy10_I2tlUqjRUVVUBKNG"
            }],
            "metatags"     : [{
                "viewport"      : "width=1024",
                "fb:app_id"     : "APP_ID",
                "og:title"      : "MEAN.IO - MongoDB, Express, Angularjs Node.js powered fullstack web framework - MEAN.IO - MongoDB, Express, Angularjs Node.js powered fullstack web framework",
                "og:description": "MEAN  MongoDB, ExpressJS, AngularJS, NodeJS.",
                "og:type"       : "website",
                "og:url"        : "APP_URL",
                "og:image"      : "APP_LOGO",
                "og:site_name"  : "MEAN.IO",
                "fb:admins"     : "APP_ADMIN"
            }]
        }
    }]
});

Server-Side Request/Response
On the server-side, Node.js with Express and Request, calls the Google Custom Search API via a RESTful URI. The RESTful URI, called with request.get(), will be similar to: https://www.googleapis.com/customsearch/v1?cx=ed026i714398r53510g2ja1ru6741h:73&q=MEAN.io&num=10&key=jtHeNjIAtSa1NaWJzmVvBC7qoubrRSyIAmVJjpQu. Note the URI contains both the your CSE ID and API key (not my real ones, of course). The JSON response from Google’s Custom Search API has other data, which is not necessary to display the results.

Shown below is a sample response with a single search result. Like the URI above, the response from Google has your Custom Search Engine ID. Your CSE ID and API key should both be considered confidential and not visible to the client. The CSE ID could be easily intercepted in both the URI and the response object, and used without your authorization. Google has a page that suggests methods to keep your keys secure.

{
  kind: "customsearch#search",
  url: {
    type: "application/json",
    template: "https://www.googleapis.com/customsearch/v1?q={searchTerms}&num={count?}&start={startIndex?}&lr={language?}&safe={safe?}&cx={cx?}&cref={cref?}&sort={sort?}&filter={filter?}&gl={gl?}&cr={cr?}&googlehost={googleHost?}&c2coff={disableCnTwTranslation?}&hq={hq?}&hl={hl?}&siteSearch={siteSearch?}&siteSearchFilter={siteSearchFilter?}&exactTerms={exactTerms?}&excludeTerms={excludeTerms?}&linkSite={linkSite?}&orTerms={orTerms?}&relatedSite={relatedSite?}&dateRestrict={dateRestrict?}&lowRange={lowRange?}&highRange={highRange?}&searchType={searchType}&fileType={fileType?}&rights={rights?}&imgSize={imgSize?}&imgType={imgType?}&imgColorType={imgColorType?}&imgDominantColor={imgDominantColor?}&alt=json"
  },
  queries: {
    nextPage: [
      {
        title: "Google Custom Search - MEAN.io",
        totalResults: "12100000",
        searchTerms: "MEAN.io",
        count: 10,
        startIndex: 11,
        inputEncoding: "utf8",
        outputEncoding: "utf8",
        safe: "off",
        cx: "ed026i714398r53510g2ja1ru6741h:73"
      }
    ],
    request: [
      {
        title: "Google Custom Search - MEAN.io",
        totalResults: "12100000",
        searchTerms: "MEAN.io",
        count: 10,
        startIndex: 1,
        inputEncoding: "utf8",
        outputEncoding: "utf8",
        safe: "off",
        cx: "ed026i714398r53510g2ja1ru6741h:73"
      }
    ]
  },
  context: {
    title: "my_search_engine"
  },
  searchInformation: {
    searchTime: 0.237431,
    formattedSearchTime: "0.24",
    totalResults: "12100000",
    formattedTotalResults: "12,100,000"
  },
  items: [
    {
      kind: "customsearch#result",
      title: "MEAN.IO - MongoDB, Express, Angularjs Node.js powered fullstack ...",
      htmlTitle: "<b>MEAN</b>.<b>IO</b> - MongoDB, Express, Angularjs Node.js powered fullstack <b>...</b>",
      link: "http://mean.io/",
      displayLink: "mean.io",
      snippet: "MEAN - MongoDB, ExpressJS, AngularJS, NodeJS. based fullstack js framework.",
      htmlSnippet: "<b>MEAN</b> - MongoDB, ExpressJS, AngularJS, NodeJS. based fullstack js framework.",
      cacheId: "_CZQNNP6VMEJ",
      formattedUrl: "mean.io/",
      htmlFormattedUrl: "<b>mean</b>.<b>io</b>/",
      pagemap: {
        cse_image: [
          {
            src: "http://i.ytimg.com/vi/oUtWtSF_VNY/mqdefault.jpg"
          }
        ],
        cse_thumbnail: [
          {
            width: "256",
            height: "144",
            src: "https://encrypted-tbn1.gstatic.com/images?q=tbn:ANd9GcTXm3rYwGdWs9Cx3s5VvooATKlgtrVZoP83hxfAOjGvsRMqLpMKuycVl_sF"
          }
        ],
        metatags: [
          {
            viewport: "width=1024",
            fb:app_id: "APP_ID",
            og:title: "MEAN.IO - MongoDB, Express, Angularjs Node.js powered fullstack web framework - MEAN.IO - MongoDB, Express, Angularjs Node.js powered fullstack web framework",
            og:description: "MEAN  MongoDB, ExpressJS, AngularJS, NodeJS.",
            og:type: "website",
            og:url: "APP_URL",
            og:image: "APP_LOGO",
            og:site_name: "MEAN.IO",
            fb:admins: "APP_ADMIN"
          }
        ]
      }
    }
  ]
}

The best way to understand the project’s sample code is to clone the GitHub repo, and explore the files directly associated with the search, starting in the ‘packages/custom/search‘ subdirectory.

Helpful Links

Learn REST: A RESTful Tutorial
Using an AngularJS Factory to Interact with a RESTful Service
Google APIs Client Library for JavaScript (Beta)
REST-ful URI design
Creating a CRUD App in Minutes with Angular’s $resource

, , , , , , , , , , , , , ,

9 Comments