Posts Tagged Service Mesh

Observing gRPC-based Microservices on Amazon EKS running Istio

Observing a gRPC-based Kubernetes application using Jaeger, Zipkin, Prometheus, Grafana, and Kiali on Amazon EKS running Istio service mesh

Introduction

In the previous two-part post, Kubernetes-based Microservice Observability with Istio Service Mesh, we explored a set of popular open source observability tools easily integrated with the Istio service mesh. Tools included Jaeger and Zipkin for distributed transaction monitoring, Prometheus for metrics collection and alerting, Grafana for metrics querying, visualization, and alerting, and Kiali for overall observability and management of Istio. We rounded out the toolset with the addition of Fluent Bit for log processing and aggregation to Amazon CloudWatch Container Insights. We used these tools to observe a distributed, microservices-based, RESTful application deployed to an Amazon Elastic Kubernetes Service (Amazon EKS) cluster. The application platform, running on EKS, used Amazon DocumentDB as a persistent data store and Amazon MQ to exchange messages.

In this post, we will examine those same observability tools to monitor an alternate set of Go-based microservices that use Protocol Buffers (aka Protobuf) over gRPC (gRPC Remote Procedure Calls) and HTTP/2 for client-server communications as opposed to the more common RESTful JSON over HTTP. We will learn how Kubernetes, Istio, and the observability tools work seamlessly with gRPC, just as they do with JSON over HTTP on Amazon EKS.

Kiali Management Console showing gRPC-based reference application platform

Technologies

gRPC

According to the gRPC project, gRPC is a modern open source high-performance Remote Procedure Call (RPC) framework that can run in any environment. It can efficiently connect services in and across data centers with pluggable support for load balancing, tracing, health checking, and authentication. gRPC is also applicable in the last mile of distributed computing to connect devices, mobile applications, and browsers to backend services.

gRPC was initially created by Google, which has used a single general-purpose RPC infrastructure called Stubby to connect the large number of microservices running within and across its data centers for over a decade. In March 2015, Google decided to build the next version of Stubby and make it open source. gRPC is now used in many organizations outside of Google, including Square, Netflix, CoreOS, Docker, CockroachDB, Cisco, and Juniper Networks. gRPC currently supports over ten languages, including C#, C++, Dart, Go, Java, Kotlin, Node, Objective-C, PHP, Python, and Ruby.

According to widely-cited 2019 tests published by Ruwan Fernando, “gRPC is roughly 7 times faster than REST when receiving data & roughly 10 times faster than REST when sending data for this specific payload. This is mainly due to the tight packing of the Protocol Buffers and the use of HTTP/2 by gRPC.”

Protocol Buffers

With gRPC, you define your service using Protocol Buffers (aka Protobuf), a powerful binary serialization toolset and language. According to Google, Protocol buffers are Google’s language-neutral, platform-neutral, extensible mechanism for serializing structured data — think XML, but smaller, faster, and simpler. Google’s previous documentation claimed protocol buffers were “3 to 10 times smaller and 20 to 100 times faster than XML.

Once you have defined your messages, you run the protocol buffer compiler for your application’s language on your .proto file to generate data access classes. With the proto3 language version, protocol buffers currently support generated code in Java, Python, Objective-C, C++, Dart, Go, Ruby, and C#, with more languages to come. For this post, we have compiled our protobufs for Go. You can read more about the binary wire format of Protobuf on Google’s Developers Portal.

Reference Application Platform

To demonstrate the use of the observability tools, we will deploy a reference application platform to Amazon EKS on AWS. The application platform was developed to demonstrate different Kubernetes platforms, such as EKS, GKE, AKS, and concepts such as service meshes, API management, observability, CI/CD, DevOps, and Chaos Engineering. The platform comprises a backend of eight Go-based microservices labeled generically as Service A — Service H, one Angular 12 TypeScript-based frontend UI, one Go-based gRPC Gateway reverse proxy, four MongoDB databases, and one RabbitMQ message queue.

Reference Application Platform’s Angular-based UI

The reference application platform is designed to generate gRPC-based, synchronous service-to-service IPC (inter-process communication), asynchronous TCP-based service-to-queue-to-service communications, and TCP-based service-to-database communications. For example, Service A calls Service B and Service C; Service B calls Service D and Service E; Service D produces a message to a RabbitMQ queue, which Service F consumes and writes to MongoDB, and so on. The platform’s distributed service communications can be observed using the observability tools when the application is deployed to a Kubernetes cluster running the Istio service mesh.

High-level architecture of the gRPC-based Reference Application Platform

Converting to gRPC and Protocol Buffers

For this post, the eight Go microservices have been modified to use gRPC with protocol buffers over HTTP/2 instead of JSON over HTTP. Specifically, the services use version 3 (aka proto3) of protocol buffers. With gRPC, a gRPC client calls a gRPC server. Some of the platform’s services are gRPC servers, others are gRPC clients, while some act as both client and server.

gRPC Gateway

In the revised platform architecture diagram above, note the addition of the gRPC Gateway reverse proxy that replaces Service A at the edge of the API. The proxy, which translates a RESTful HTTP API into gRPC, sits between the Angular-based Web UI and Service A. Assuming for the sake of this demonstration that most consumers of an API require a RESTful JSON over HTTP API, we have added a gRPC Gateway reverse proxy to the platform. The gRPC Gateway proxies communications between the JSON over HTTP-based clients and the gRPC-based microservices. The gRPC Gateway helps to provide APIs with both gRPC and RESTful styles at the same time.

A diagram from the grpc-gateway GitHub project site demonstrates how the reverse proxy works.

Diagram courtesy: https://github.com/grpc-ecosystem/grpc-gateway

Alternatives to gRPC Gateway

As an alternative to the gRPC Gateway reverse proxy, we could convert the TypeScript-based Angular UI client to communicate via gRPC and protobufs and communicate directly with Service A. One option to achieve this is gRPC Web, a JavaScript implementation of gRPC for browser clients. gRPC Web clients connect to gRPC services via a special proxy, which by default is Envoy. The project’s roadmap includes plans for gRPC Web to be supported in language-specific web frameworks for languages such as Python, Java, and Node.

Demonstration

To follow along with this post’s demonstration, review the installation instructions detailed in part one of the previous post, Kubernetes-based Microservice Observability with Istio Service Mesh, to deploy and configure the Amazon EKS cluster, Istio, Amazon MQ, and DocumentDB. To expedite the deployment of the revised gRPC-based platform to the dev namespace, I have included a Helm chart, ref-app-grpc, in the project. Using the chart, you can ignore any instructions in the previous post that refer to deploying resources to the dev namespace. See the chart’s README file for further instructions.

Deployed gRPC-based Reference Application Platform as seen from Argo CD

Source Code

The gRPC-based microservices source code, Kubernetes resources, and Helm chart are located in the k8s-istio-observe-backend project repository in the 2021-istio branch. This project repository is the only source code you will need for this demonstration.

git clone --branch 2021-istio --single-branch \
https://github.com/garystafford/k8s-istio-observe-backend.git

Optionally, the Angular-based web client source code is located in the k8s-istio-observe-frontend repository on the new 2021-grpc branch. The source protobuf .proto file and the Buf-compiled protobuf files are located in the pb-greeting and protobuf project repositories. You do not need to clone any of these projects for this post’s demonstration.

All Docker images for the services, UI, and the reverse proxy are pulled from Docker Hub.

All images for this post are located on Docker Hub

Code Changes

Although this post is not specifically about writing Go for gRPC and protobuf, to better understand the observability requirements and capabilities of these technologies compared to the previous JSON over HTTP-based services, it is helpful to review the code changes.

Microservices

First, compare the revised source code for Service A, shown below to the original code in the previous post. The service’s code is almost completely rewritten. For example, note the following code changes to Service A, which are synonymous with the other backend services:

  • Import of the v3 greeting protobuf package;
  • Local Greeting struct replaced with pb.Greeting struct;
  • All services are now hosted on port 50051;
  • The HTTP server and all API resource handler functions are removed;
  • Headers used for distributed tracing have moved from HTTP request object to metadata passed in a gRPC Context type;
  • Service A is both a gRPC client and a server, which is called by the gRPC Gateway reverse proxy;
  • The primary GreetingHandler function is replaced by the protobuf package’s Greeting function;
  • gRPC clients, such as Service A, call gRPC servers using the CallGrpcService function;
  • CORS handling is offloaded from the services to Istio;
  • Logging methods are largely unchanged;

Source code for revised gRPC-based Service A:

// author: Gary A. Stafford
// site: https://programmaticponderings.com
// license: MIT License
// purpose: Service A – gRPC/Protobuf
package main
import (
"context"
lrf "github.com/banzaicloud/logrus-runtime-formatter"
"github.com/google/uuid"
"github.com/sirupsen/logrus"
"google.golang.org/grpc"
"google.golang.org/grpc/metadata"
"net"
"os"
"time"
pb "github.com/garystafford/protobuf/greeting/v3"
)
var (
logLevel = getEnv("LOG_LEVEL", "info")
port = getEnv("PORT", ":50051")
serviceName = getEnv("SERVICE_NAME", "Service A")
message = getEnv("GREETING", "Hello, from Service A!")
URLServiceB = getEnv("SERVICE_B_URL", "service-b:50051")
URLServiceC = getEnv("SERVICE_C_URL", "service-c:50051")
greetings []*pb.Greeting
log = logrus.New()
)
type greetingServiceServer struct {
pb.UnimplementedGreetingServiceServer
}
func (s *greetingServiceServer) Greeting(ctx context.Context, _ *pb.GreetingRequest) (*pb.GreetingResponse, error) {
greetings = nil
requestGreeting := pb.Greeting{
Id: uuid.New().String(),
Service: serviceName,
Message: message,
Created: time.Now().Local().String(),
Hostname: getHostname(),
}
greetings = append(greetings, &requestGreeting)
callGrpcService(ctx, &requestGreeting, URLServiceB)
callGrpcService(ctx, &requestGreeting, URLServiceC)
return &pb.GreetingResponse{
Greeting: greetings,
}, nil
}
func callGrpcService(ctx context.Context, requestGreeting *pb.Greeting, address string) {
conn, err := createGRPCConn(ctx, address)
if err != nil {
log.Fatal(err)
}
defer func(conn *grpc.ClientConn) {
err := conn.Close()
if err != nil {
log.Error(err)
}
}(conn)
headersIn, _ := metadata.FromIncomingContext(ctx)
log.Debugf("headersIn: %s", headersIn)
client := pb.NewGreetingServiceClient(conn)
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
ctx = metadata.NewOutgoingContext(context.Background(), headersIn)
headersOut, _ := metadata.FromOutgoingContext(ctx)
log.Debugf("headersOut: %s", headersOut)
defer cancel()
responseGreetings, err := client.Greeting(ctx, &pb.GreetingRequest{Greeting: requestGreeting})
if err != nil {
log.Fatal(err)
}
log.Info(responseGreetings.GetGreeting())
for _, responseGreeting := range responseGreetings.GetGreeting() {
greetings = append(greetings, responseGreeting)
}
}
func createGRPCConn(ctx context.Context, addr string) (*grpc.ClientConn, error) {
var opts []grpc.DialOption
opts = append(opts,
grpc.WithInsecure(),
grpc.WithBlock())
conn, err := grpc.DialContext(ctx, addr, opts)
if err != nil {
log.Fatal(err)
return nil, err
}
return conn, nil
}
func getHostname() string {
hostname, err := os.Hostname()
if err != nil {
log.Error(err)
}
return hostname
}
func getEnv(key, fallback string) string {
if value, ok := os.LookupEnv(key); ok {
return value
}
return fallback
}
func run() error {
lis, err := net.Listen("tcp", port)
if err != nil {
log.Fatal(err)
}
grpcServer := grpc.NewServer()
pb.RegisterGreetingServiceServer(grpcServer, &greetingServiceServer{})
return grpcServer.Serve(lis)
}
func init() {
childFormatter := logrus.JSONFormatter{}
runtimeFormatter := &lrf.Formatter{ChildFormatter: &childFormatter}
runtimeFormatter.Line = true
log.Formatter = runtimeFormatter
log.Out = os.Stdout
level, err := logrus.ParseLevel(logLevel)
if err != nil {
log.Error(err)
}
log.Level = level
}
func main() {
if err := run(); err != nil {
log.Fatal(err)
os.Exit(1)
}
}
view raw main.go hosted with ❤ by GitHub

Greeting Protocol Buffers

Shown below is the greeting v3 protocol buffers .proto file. The fields within the Greeting, originally defined in the RESTful JSON-based services as a struct, remains largely unchanged, however, we now have a message— an aggregate containing a set of typed fields. The GreetingRequest is composed of a single Greeting message, while the GreetingResponse message is composed of multiple (repeated) Greeting messages. Services pass a Greeting message in their request and receive an array of one or more messages in response.

syntax = "proto3";
package greeting.v3;
import "google/api/annotations.proto";
option go_package = "github.com/garystafford/pb-greeting/gen/go/greeting/v3";
message Greeting {
string id = 1;
string service = 2;
string message = 3;
string created = 4;
string hostname = 5;
}
message GreetingRequest {
Greeting greeting = 1;
}
message GreetingResponse {
repeated Greeting greeting = 1;
}
service GreetingService {
rpc Greeting (GreetingRequest) returns (GreetingResponse) {
option (google.api.http) = {
get: "/api/greeting"
};
}
}
view raw greeting.proto hosted with ❤ by GitHub

The protobuf is compiled with Buf, the popular Go-based protocol compiler tool. Using Buf, four files are generated: Go, Go gRPC, gRPC Gateway, and Swagger (OpenAPI v2).

.
├── greeting.pb.go
├── greeting.pb.gw.go
├── greeting.swagger.json
└── greeting_grpc.pb.go

Buf is configured using two files, buf.yaml:

version: v1beta1
name: buf.build/garystafford/pb-greeting
deps:
- buf.build/beta/googleapis
- buf.build/grpc-ecosystem/grpc-gateway
build:
roots:
- proto
lint:
use:
- DEFAULT
breaking:
use:
- FILE

And, and buf.gen.yaml:

version: v1beta1
plugins:
- name: go
out: ../protobuf
opt:
- paths=source_relative
- name: go-grpc
out: ../protobuf
opt:
- paths=source_relative
- name: grpc-gateway
out: ../protobuf
opt:
- paths=source_relative
- generate_unbound_methods=true
- name: openapiv2
out: ../protobuf
opt:
- logtostderr=true

The compiled protobuf code is included in the protobuf project on GitHub, and the v3 version is imported into each microservice and the reverse proxy. Below is a snippet of the greeting.pb.go compiled Go file.

// Code generated by protoc-gen-go. DO NOT EDIT.
// versions:
// protoc-gen-go v1.27.1
// protoc v3.17.1
// source: greeting/v3/greeting.proto
package v3
import (
_ "google.golang.org/genproto/googleapis/api/annotations"
protoreflect "google.golang.org/protobuf/reflect/protoreflect"
protoimpl "google.golang.org/protobuf/runtime/protoimpl"
reflect "reflect"
sync "sync"
)
const (
// Verify that this generated code is sufficiently up-to-date.
_ = protoimpl.EnforceVersion(20 protoimpl.MinVersion)
// Verify that runtime/protoimpl is sufficiently up-to-date.
_ = protoimpl.EnforceVersion(protoimpl.MaxVersion 20)
)
type Greeting struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
Id string `protobuf:"bytes,1,opt,name=id,proto3" json:"id,omitempty"`
Service string `protobuf:"bytes,2,opt,name=service,proto3" json:"service,omitempty"`
Message string `protobuf:"bytes,3,opt,name=message,proto3" json:"message,omitempty"`
Created string `protobuf:"bytes,4,opt,name=created,proto3" json:"created,omitempty"`
Hostname string `protobuf:"bytes,5,opt,name=hostname,proto3" json:"hostname,omitempty"`
}
func (x *Greeting) Reset() {
*x = Greeting{}
if protoimpl.UnsafeEnabled {
mi := &file_greeting_v3_greeting_proto_msgTypes[0]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *Greeting) String() string {
return protoimpl.X.MessageStringOf(x)
}
view raw greeting.pb.go hosted with ❤ by GitHub

Using Swagger, we can view the greeting protocol buffers’ single RESTful API resource, exposed with an HTTP GET method. You can use the Docker-based version of Swagger UI for viewing protoc generated swagger definitions.

docker run -p 8080:8080 -d --name swagger-ui \
-e SWAGGER_JSON=/tmp/greeting/v3/greeting.swagger.json \
-v ${GOAPTH}/src/protobuf:/tmp swaggerapi/swagger-ui

The Angular UI makes an HTTP GET request to the /api/greeting resource, which is transformed to gRPC and proxied to Service A, where it is handled by the Greeting function.

Swagger UI view of the Greeting protobuf

gRPC Gateway Reverse Proxy

As explained earlier, the gRPC Gateway reverse proxy, which translates the RESTful HTTP API into gRPC, is new. In the code sample below, note the following code features:

  1. Import of the v3 greeting protobuf package;
  2. ServeMux, a request multiplexer, matches http requests to patterns and invokes the corresponding handler;
  3. RegisterGreetingServiceHandlerFromEndpoint registers the http handlers for service GreetingService to mux. The handlers forward requests to the gRPC endpoint;
  4. x-b3 request headers, used for distributed tracing, are collected from the incoming HTTP request and propagated to the upstream services in the gRPC Context type;
// author: Gary A. Stafford
// site: https://programmaticponderings.com
// license: MIT License
// purpose: gRPC Gateway / Reverse Proxy
// reference: https://github.com/grpc-ecosystem/grpc-gateway
package main
import (
"context"
"flag"
lrf "github.com/banzaicloud/logrus-runtime-formatter"
pb "github.com/garystafford/protobuf/greeting/v3"
"github.com/grpc-ecosystem/grpc-gateway/v2/runtime"
"github.com/sirupsen/logrus"
"google.golang.org/grpc"
"google.golang.org/grpc/metadata"
"net/http"
"os"
)
var (
logLevel = getEnv("LOG_LEVEL", "info")
port = getEnv("PORT", ":50051")
URLServiceA = getEnv("SERVICE_A_URL", "service-a:50051")
log = logrus.New()
)
func injectHeadersIntoMetadata(ctx context.Context, req *http.Request) metadata.MD {
//https://aspenmesh.io/2018/04/tracing-grpc-with-istio/
otHeaders := []string{
"x-request-id",
"x-b3-traceid",
"x-b3-spanid",
"x-b3-parentspanid",
"x-b3-sampled",
"x-b3-flags",
"x-ot-span-context"}
var pairs []string
for _, h := range otHeaders {
if v := req.Header.Get(h); len(v) > 0 {
pairs = append(pairs, h, v)
}
}
return metadata.Pairs(pairs)
}
type annotator func(context.Context, *http.Request) metadata.MD
func chainGrpcAnnotators(annotators annotator) annotator {
return func(c context.Context, r *http.Request) metadata.MD {
var mds []metadata.MD
for _, a := range annotators {
mds = append(mds, a(c, r))
}
return metadata.Join(mds)
}
}
func run() error {
ctx := context.Background()
ctx, cancel := context.WithCancel(ctx)
defer cancel()
annotators := []annotator{injectHeadersIntoMetadata}
mux := runtime.NewServeMux(
runtime.WithMetadata(chainGrpcAnnotators(annotators)),
)
opts := []grpc.DialOption{grpc.WithInsecure()}
err := pb.RegisterGreetingServiceHandlerFromEndpoint(ctx, mux, URLServiceA, opts)
if err != nil {
return err
}
return http.ListenAndServe(port, mux)
}
func getEnv(key, fallback string) string {
if value, ok := os.LookupEnv(key); ok {
return value
}
return fallback
}
func init() {
childFormatter := logrus.JSONFormatter{}
runtimeFormatter := &lrf.Formatter{ChildFormatter: &childFormatter}
runtimeFormatter.Line = true
log.Formatter = runtimeFormatter
log.Out = os.Stdout
level, err := logrus.ParseLevel(logLevel)
if err != nil {
log.Error(err)
}
log.Level = level
}
func main() {
flag.Parse()
if err := run(); err != nil {
log.Fatal(err)
}
}
view raw main.go hosted with ❤ by GitHub

Istio VirtualService and CORS

With the RESTful services in the previous post, CORS was handled by Service A. Service A allowed the UI to make cross-origin requests to the backend API’s domain. Since the gRPC Gateway does not directly support Cross-Origin Resource Sharing (CORS) policy, we have offloaded the CORS responsibility to Istio using the reverse proxy’s VirtualService resource’s CorsPolicy configuration. Moving this responsibility makes CORS much easier to manage as YAML-based configuration and part of the Helm chart. See lines 20–28 below.

apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:
name: rev-proxy
spec:
hosts:
{{ YOUR_API_HOSTNAME_HERE }}
gateways:
istio-gateway
http:
match:
uri:
prefix: /
route:
destination:
host: rev-proxy.dev.svc.cluster.local
port:
number: 80
weight: 100
corsPolicy:
allowOrigin:
{{ YOUR_UI_HOSTNAME_HERE }}
allowMethods:
OPTIONS
GET
allowCredentials: true
allowHeaders:
"*"

Pillar One: Logs

To paraphrase Jay Kreps on the LinkedIn Engineering Blog, a log is an append-only, totally ordered sequence of records ordered by time. The ordering of records defines a notion of “time” since entries to the left are defined to be older than entries to the right. Logs are a historical record of events that happened in the past. Logs have been around almost as long as computers and are at the heart of many distributed data systems and real-time application architectures.

Go-based Microservice Logging

An effective logging strategy starts with what you log, when you log, and how you log. As part of the platform’s logging strategy, the eight Go-based microservices use Logrus, a popular structured logger for Go, first released in 2014. The platform’s services also implement Banzai Cloud’s logrus-runtime-formatter. These two logging packages give us greater control over what you log, when you log, and how you log information about the services. The recommended configuration of the packages is minimal. Logrus’ JSONFormatter provides for easy parsing by third-party systems and injects additional contextual data fields into the log entries.

func init() {
childFormatter := logrus.JSONFormatter{}
runtimeFormatter := &lrf.Formatter{ChildFormatter: &childFormatter}
runtimeFormatter.Line = true
log.Formatter = runtimeFormatter
log.Out = os.Stdout
level, err := logrus.ParseLevel(logLevel)
if err != nil {
log.Error(err)
}
log.Level = level
}
view raw main.go hosted with ❤ by GitHub

Logrus provides several advantages over Go’s simple logging package, log. For example, log entries are not only for Fatal errors, nor should all verbose log entries be output in a Production environment. Logrus has the capability to log at seven levels: Trace, Debug, Info, Warning, Error, Fatal, and Panic. The log level of the platform’s microservices can be changed at runtime using an environment variable.

Banzai Cloud’s logrus-runtime-formatter automatically tags log messages with runtime and stack information, including function name and line number — extremely helpful when troubleshooting. There is an excellent post on the Banzai Cloud (now part of Cisco) formatter, Golang runtime Logrus Formatter.

Service A log entries as viewed from Amazon CloudWatch Insights

In 2020, Logus entered maintenance mode. The author, Simon Eskildsen (Principal Engineer at Shopify), stated they would not be introducing new features. This does not mean Logrus is dead. With over 18,000 GitHub Stars, Logrus will continue to be maintained for security, bug fixes, and performance. The author states that many fantastic alternatives to Logus now exist, such as Zerolog, Zap, and Apex.

Client-side Angular UI Logging

Likewise, I have enhanced the logging of the Angular UI using NGX Logger. NGX Logger is a simple logging module for angular (currently supports Angular 6+). It allows “pretty print” to the console and allows log messages to be POSTed to a URL for server-side logging. For this demo, the UI will only log to the web browser’s console. Similar to Logrus, NGX Logger supports multiple log levels: Trace, Debug, Info, Warning, Error, Fatal, and Off. However, instead of just outputting messages, NGX Logger allows us to output properly formatted log entries to the browser’s console.

The level of logs output is configured to be dependent on the environment, Production or not Production. Below is an example of the log output from the Angular UI in Chrome. Since the UI’s Docker Image was built with the Production configuration, the log level is set to INFO. You would not want to expose potentially sensitive information in verbose log output to our end-users in Production.

Client-side logs from the platforms’ Angular UI

Controlling logging levels is accomplished by adding the following ternary operator to the app.module.ts file.

imports: [
BrowserModule,
HttpClientModule,
FormsModule,
LoggerModule.forRoot({
level: !environment.production ?
NgxLoggerLevel.DEBUG : NgxLoggerLevel.INFO,
serverLogLevel: NgxLoggerLevel.INFO
})
]
view raw logs.js hosted with ❤ by GitHub

Platform Logs

Based on the platform built, configured, and deployed in part one, you now have access logs from multiple sources.

  1. Amazon DocumentDB: Amazon CloudWatch Audit and Profiler logs;
  2. Amazon MQ: Amazon CloudWatch logs;
  3. Amazon EKS: API server, Audit, Authenticator, Controller manager, and Scheduler CloudWatch logs;
  4. Kubernetes Dashboard: Individual EKS Pod and Replica Set logs;
  5. Kiali: Individual EKS Pod and Container logs;
  6. Fluent Bit: EKS performance, host, dataplane, and application CloudWatch logs;

Fluent Bit

According to a recent AWS Blog post, Fluent Bit Integration in CloudWatch Container Insights for EKS, Fluent Bit is an open source, multi-platform log processor and forwarder that allows you to collect data and logs from different sources and unify and send them to different destinations, including CloudWatch Logs. Fluent Bit is also fully compatible with Docker and Kubernetes environments. Using the newly launched Fluent Bit DaemonSet, you can send container logs from your EKS clusters to CloudWatch logs for logs storage and analytics.

Running Fluent Bit, the EKS cluster’s performance, host, dataplane, and application logs will also be available in Amazon CloudWatch.

Amazon CloudWatch log groups from the demonstration’s EKS cluster

Within the application log groups, you can access the individual log streams for each reference application’s components.

Amazon CloudWatch log streams from the application log group

Within each CloudWatch log stream, you can view individual log entries.

Amazon CloudWatch log stream for Service A

CloudWatch Logs Insights enables you to interactively search and analyze your log data in Amazon CloudWatch Logs. You can perform queries to help you more efficiently and effectively respond to operational issues. If an issue occurs, you can use CloudWatch Logs Insights to identify potential causes and validate deployed fixes.

Amazon CloudWatch Log Insights — latest errors found in logs for Service F

CloudWatch Logs Insights supports CloudWatch Logs Insights query syntax, a query language you can use to perform queries on your log groups. Each query can include one or more query commands separated by Unix-style pipe characters (|). For example:

fields @timestamp, @message
| filter kubernetes.container_name = "service-f"
and @message like "error"
| sort @timestamp desc
| limit 20

Pillar Two: Metrics

For metrics, we will examine CloudWatch Container Insights, Prometheus, and Grafana. Prometheus and Grafana are industry-leading tools you installed as part of the Istio deployment.

Prometheus

Prometheus is an open source system monitoring and alerting toolkit originally built at SoundCloud circa 2012. Prometheus joined the Cloud Native Computing Foundation (CNCF) in 2016 as the second project hosted after Kubernetes.

Prometheus Graph of container memory usage during load test

According to Istio, the Prometheus addon is a Prometheus server that comes preconfigured to scrape Istio endpoints to collect metrics. You can use Prometheus with Istio to record metrics that track the health of Istio and applications within the service mesh. You can visualize metrics using tools like Grafana and Kiali. The Istio Prometheus addon is intended for demonstration only and is not tuned for performance or security.

The istioctl dashboardcommand provides access to all of the Istio web UIs. With the EKS cluster running, Istio installed, and the reference application platform deployed, access Prometheus using the istioctl dashboard prometheus command from your terminal. You must be logged into AWS from your terminal to connect to Prometheus successfully. If you are not logged in to AWS, you will often see the following error: Error: not able to locate <tool_name> pod: Unauthorized. Since we used the non-production demonstration versions of the Istio Addons, there is no authentication and authorization required to access Prometheus.

According to Prometheus, users select and aggregate time-series data in real-time using a functional query language called PromQL (Prometheus Query Language). The result of an expression can either be shown as a graph, viewed as tabular data in Prometheus’s expression browser, or consumed by external systems through Prometheus’ HTTP API. The expression browser includes a drop-down menu with all available metrics as a starting point for building queries. Shown below are a few PromQL examples that were developed as part of writing this post.

istio_agent_go_info{kubernetes_namespace="dev"}
istio_build{kubernetes_namespace="dev"}
up{alpha_eksctl_io_cluster_name="istio-observe-demo", job="kubernetes-nodes"}
sum by (pod) (rate(container_network_transmit_packets_total{stack="reference-app",namespace="dev",pod=~"service-.*"}[5m]))
sum by (instance) (istio_requests_total{source_app="istio-ingressgateway",connection_security_policy="mutual_tls",response_code="200"})
sum by (response_code) (istio_requests_total{source_app="istio-ingressgateway",connection_security_policy="mutual_tls",response_code!~"200|0"})

Prometheus APIs

Prometheus has both an HTTP API and a Management API. There are many useful endpoints in addition to the Prometheus UI, available at http://localhost:9090/graph. For example, the Prometheus HTTP API endpoint that lists all the command-line configuration flags is available at http://localhost:9090/api/v1/status/flags. The endpoint that lists all the available Prometheus metrics is available at http://localhost:9090/api/v1/label/__name__/values; over 951 metrics in this demonstration.

The Prometheus endpoint that lists many available metrics with HELP and TYPE to explain their function can be found at http://localhost:9090/metrics.

Understanding Metrics

In addition to these endpoints, the standard service level metrics exported by Istio and available via Prometheus can be found in the Istio Standard Metrics documentation. An explanation of many of the metrics available in Prometheus is also found in the cAdvisor README on their GitHub site. As mentioned in this AWS Blog Post, the cAdvisor metrics are also available from the command line using the following commands:

export NODE=$(kubectl get nodes | sed -n '2 p' | awk {'print $1'})
kubectl get --raw "/api/v1/nodes/${NODE}/proxy/metrics/cadvisor"

Observing Metrics

Below is an example graph of the backend microservice containers deployed to EKS. The graph PromQL expression returns the amount of working set memory, including recently accessed memory, dirty memory, and kernel memory (container_memory_working_set_bytes), summed by pod, in megabytes (MB). There was no load on the services during the period displayed.

sum by (pod) (container_memory_working_set_bytes{namespace="dev", container=~"service-.*|rev-proxy|angular-ui"}) / (1024^2)

The container_memory_working_set_bytes metric is the same metric used by the kubectl top command (not container_memory_usage_bytes). Omitting the --containers=true flag will output pod stats versus containers.

> kubectl top pod -n dev --containers=true | \
grep -v istio-proxy | sort -k 4 -r
POD                           NAME          CPU(cores) MEMORY(bytes)
service-d-69d7469cbf-ts4t7 service-d 135m 13Mi
service-d-69d7469cbf-6thmz service-d 156m 13Mi
service-d-69d7469cbf-nl7th service-d 118m 12Mi
service-d-69d7469cbf-fz5bh service-d 118m 12Mi
service-d-69d7469cbf-89995 service-d 136m 11Mi
service-d-69d7469cbf-g4pfm service-d 106m 10Mi
service-h-69576c4c8c-x9ccl service-h 33m 9Mi
service-h-69576c4c8c-gtjc9 service-h 33m 9Mi
service-h-69576c4c8c-bjgfm service-h 45m 9Mi
service-h-69576c4c8c-8fk6z service-h 38m 9Mi
service-h-69576c4c8c-55rld service-h 36m 9Mi
service-h-69576c4c8c-4xpb5 service-h 41m 9Mi
...

In another Prometheus example, the PromQL query expression returns the per-second rate of CPU resources measured in CPU units (1 CPU = 1 AWS vCPU), as measured over the last 5 minutes, per time series in the range vector, summed by the pod. During this period, the backend services were under a consistent, simulated load of 15 concurrent users using hey. Four instances of Service D pods were consuming the most CPU units during this time period.

sum by (pod) (rate(container_cpu_usage_seconds_total{namespace="dev", container=~"service-.*|rev-proxy|angular-ui"}[5m])) * 1000

The container_cpu_usage_seconds_total metric is the same metric used by the kubectl top command. The above PromQL expression multiplies the query results by 1,000 to match the results from kubectl top, shown below.

> kubectl top pod -n dev --sort-by=cpu
NAME                          CPU(cores)   MEMORY(bytes)
service-d-69d7469cbf-6thmz 159m 60Mi
service-d-69d7469cbf-89995 143m 61Mi
service-d-69d7469cbf-ts4t7 140m 59Mi
service-d-69d7469cbf-fz5bh 135m 58Mi
service-d-69d7469cbf-nl7th 132m 61Mi
service-d-69d7469cbf-g4pfm 119m 62Mi
service-g-c7d68fd94-w5t66 59m 58Mi
service-f-7dc8f64799-qj8qv 56m 55Mi
service-c-69fbc964db-knggt 56m 58Mi
service-h-69576c4c8c-8fk6z 55m 58Mi
service-h-69576c4c8c-4xpb5 55m 58Mi
service-g-c7d68fd94-5cdc2 54m 58Mi
...

Limits

Prometheus also exposes container resource limits. For example, the memory limits set on the reference platform’s backend services, displayed in megabytes (MB), using the container_spec_memory_limit_bytes metric. When viewed alongside the real-time resources consumed by the services, these metrics are useful to properly configure and monitor Kubernetes management features such as the Horizontal Pod Autoscaler.

sum by (container) (container_spec_memory_limit_bytes{namespace="dev", container=~"service-.*|rev-proxy|angular-ui"}) / (1024^2) / count by (container) (container_spec_memory_limit_bytes{namespace="dev", container=~"service-.*|rev-proxy|angular-ui"})

Or, memory limits by Pod:

sum by (pod) (container_spec_memory_limit_bytes{namespace="dev"}) / (1024^2)

Cluster Metrics

Prometheus also contains metrics about Istio components, Kubernetes components, and the EKS cluster. For example, the total available memory in gigabytes (GB) of each of the five m5.large EC2 worker nodes in the istio-observe-demo EKS cluster’s managed-ng-1 Managed Node Group.

machine_memory_bytes{alpha_eksctl_io_cluster_name="istio-observe-demo", alpha_eksctl_io_nodegroup_name="managed-ng-1"} / (1024^3)

For total physical cores, use the machine_cpu_physical_core metric, and for vCPU cores use the machine_cpu_cores metric.

Grafana

Grafana describes itself as the leading open source software for time-series analytics. According to Grafana Labs, Grafana allows you to query, visualize, alert on, and understand your metrics no matter where they are stored. You can easily create, explore, and share visually rich, data-driven dashboards. Grafana also allows users to define alert rules for their most important metrics visually. Grafana will continuously evaluate rules and can send notifications.

If you deployed Grafana using the Istio addons process demonstrated in part one of the previous post, access Grafana similar to the other tools:

istioctl dashboard grafana
Grafana Home page

According to Istio, Grafana is an open source monitoring solution used to configure dashboards for Istio. You can use Grafana to monitor the health of Istio and applications within the service mesh. While you can build your own dashboards, Istio offers a set of preconfigured dashboards for all of the most important metrics for the mesh and the control plane. The preconfigured dashboards use Prometheus as the data source.

Below is an example of the Istio Mesh Dashboard, filtered to show the eight backend service workloads running in the dev namespace. During this period, the backend services were under a consistent simulated load of approximately 20 concurrent users using hey. You can observe the p50, p90, and p99 latency of requests to these workloads.

View of the Istio Mesh Dashboard

Dashboards are built from Panels, the basic visualization building blocks in Grafana. Each panel has a query editor specific to the data source (Prometheus in this case) selected. The query editor allows you to write your (PromQL) query. For example, below is the PromQL expression query responsible for the p50 latency Panel displayed in the Istio Mesh Dashboard.

label_join((histogram_quantile(0.50, sum(rate(istio_request_duration_milliseconds_bucket{reporter="source"}[1m])) by (le, destination_workload, destination_workload_namespace)) / 1000) or histogram_quantile(0.50, sum(rate(istio_request_duration_seconds_bucket{reporter="source"}[1m])) by (le, destination_workload, destination_workload_namespace)), "destination_workload_var", ".", "destination_workload", "destination_workload_namespace")

Below is an example of the Istio Workload Dashboard. The dashboard contains three sections: General, Inbound Workloads, and Outbound Workloads. We have filtered outbound traffic from the reference platform’s backend services in the dev namespace.

View of the Istio Workload Dashboard

Below is a different view of the Istio Workload Dashboard, the dashboard’s Inbound Workloads section filtered to a single workload, the gRPC Gateway. The gRPC Gateway accepts incoming traffic from the Istio Ingress Gateway, as shown in the dashboard’s panels.

View of the Istio Workload Dashboard

Grafana provides the ability to Explore a Panel. Explore strips away the dashboard and panel options so that you can focus on the query. Below is an example of the Panel showing a steady stream of TCP-based egress traffic for Service F, based on the istio_tcp_sent_bytes_total metric. Service F consumes messages off on the RabbitMQ queue (Amazon MQ) and writes messages to MongoDB (DocumentDB).

Exploring a Grafana dashboard panel

Istio Performance

You can monitor the resource usage of Istio with the Istio Performance Dashboard.

View of the Istio Performance Dashboard

Additional Dashboards

Grafana provides a site containing official and community-built dashboards, including the above-mentioned Istio dashboards. Importing dashboards into your Grafana instance is as simple as copying the dashboard URL or the ID provided from the Grafana dashboard site and pasting it into the dashboard import option of your Grafana instance. However, be aware that not every Kubernetes dashboard in Grafan’s site is compatible with your specific version of Kubernetes, Istio, or EKS, nor relies on Prometheus as a data source. As a result, you might have to test and tweak imported dashboards to get them working.

Below is an example of an imported community dashboard, Kubernetes cluster monitoring (via Prometheus) by Instrumentisto Team (dashboard ID 315).

Alerting

An effective observability strategy must include more than just the ability to visualize results. An effective strategy must also detect anomalies and notify (alert) the appropriate resources or directly resolve incidents. Grafana, like Prometheus, is capable of alerting and notification. You visually define alert rules for your critical metrics. Then, Grafana will continuously evaluate metrics against the rules and send notifications when pre-defined thresholds are breached.

Prometheus supports multiple popular notification channels, including PagerDuty, HipChat, Email, Kafka, and Slack. Below is an example of a Prometheus notification channel that sends alert notifications to a Slack support channel.

Below is an example of an alert based on an arbitrarily high CPU usage of 300 millicpu or millicores (m). When the CPU usage of a single pod goes above that value for more than 3 minutes, an alert is sent. The high CPU usage could be caused by the Horizontal Pod Autoscaler not functioning, or the HPA has reached its maxReplicas limit, or there are not enough resources available within the cluster’s existing worker nodes to schedule additional pods.

Triggered by the alert, Prometheus sends detailed notifications to the designated Slack channel.

Amazon CloudWatch Container Insights

Lastly, in the category of Metrics, Amazon CloudWatch Container Insights collects, aggregates, summarizes, and visualizes metrics and logs from your containerized applications and microservices. CloudWatch alarms can be set on metrics that Container Insights collects. Container Insights is available for Amazon Elastic Container Service (Amazon ECS), including Fargate, Amazon EKS, and Kubernetes platforms on Amazon EC2.

In Amazon EKS, Container Insights uses a containerized version of the CloudWatch agent to discover all running containers in a cluster. It then collects performance data at every layer of the performance stack. Container Insights collects data as performance log events using the embedded metric format. These performance log events are entries that use a structured JSON schema that enables high-cardinality data to be ingested and stored at scale.

In the previous post, we also installed CloudWatch Container Insights monitoring for Prometheus, which automates the discovery of Prometheus metrics from containerized systems and workloads.

Below is an example of a basic Performance Monitoring CloudWatch Container Insights Dashboard. The dashboard is filtered to the dev namespace of the EKS cluster, where the reference application platform is running. During this period, the backend services were put under a simulated load using hey. As the load on the application increased, the ‘Number of Pods’ increased from 20 pods to 56 pods based on the container’s requested resources and HPA configurations. There is also a CloudWatch Alarm, shown on the right of the screen. An alarm was triggered for an arbitrarily high level of network transmission activity.

Next is an example of Container Insights’ Container Map view in CPU mode. You see a visual representation of the dev namespace, with each of the backend service’s Service and Deployment resources shown.

Below, there is a warning icon indicating an Alarm on the cluster was triggered.

Lastly, CloudWatch Insights allows you to jump from the CloudWatch Insights to the CloudWatch Log Insights console. CloudWatch Insights will also write the CloudWatch Insights query for you. Below, we went from the Service D container metrics view in the CloudWatch Insights Performance Monitoring console directly to the CloudWatch Log Insights console with a query, ready to run.

Pillar 3: Traces

According to the Open Tracing website, distributed tracing, also called distributed request tracing, is used to profile and monitor applications, especially those built using a microservices architecture. Distributed tracing helps pinpoint where failures occur and what causes poor performance.

Header Propagation

According to Istio, header propagation may be accomplished through client libraries, such as Zipkin or Jaeger. Header propagation may also be accomplished manually, referred to as trace context propagation, documented in the Distributed Tracing Task. Alternately, Istio proxies can automatically send spans. Applications need to propagate the appropriate HTTP headers so that when the proxies send span information, the spans can be correlated correctly into a single trace. To accomplish this, an application needs to collect and propagate the following headers from the incoming request to any outgoing requests.

  • x-request-id
  • x-b3-traceid
  • x-b3-spanid
  • x-b3-parentspanid
  • x-b3-sampled
  • x-b3-flags
  • x-ot-span-context

The x-b3 headers originated as part of the Zipkin project. The B3 portion of the header is named for the original name of Zipkin, BigBrotherBird. Passing these headers across service calls is known as B3 propagation. According to Zipkin, these attributes are propagated in-process and eventually downstream (often via HTTP headers) to ensure all activity originating from the same root are collected together.

To demonstrate distributed tracing with Jaeger and Zipkin, the gRPC Gateway passes the b3 headers. While the RESTful JSON-based services passed these headers in the HTTP request object, with gRPC, the heders are passed in the gRPC Context object. The following code has been added to the gRPC Gateway. The Istio sidecar proxy (Envoy) generates the initial headers, which are then propagated throughout the service call chain. It is critical only to propagate the headers present in the downstream request with values, as the code below does.

func injectHeadersIntoMetadata(ctx context.Context, req *http.Request) metadata.MD {
headers := []string{
"x-request-id",
"x-b3-traceid",
"x-b3-spanid",
"x-b3-parentspanid",
"x-b3-sampled",
"x-b3-flags",
"x-ot-span-context"}
var pairs []string
for _, h := range headers {
if v := req.Header.Get(h); len(v) > 0 {
pairs = append(pairs, h, v)
}
}
return metadata.Pairs(pairs)
}
view raw main.go hosted with ❤ by GitHub

Below, in the CloudWatch logs, we see an example of the HTTP request headers recorded in a log message for Service A. The b3 headers are propagated from the gRPC Gateway reverse proxy to gRPC-based Go services. Header propagation ensures a complete distributed trace across the entire service call chain.

CloudWatch Log Insights Console showing Service A’s log entries

Headers propagated from Service A are shown below. Note the b3 headers propagated from the gRPC Gateway reverse proxy.

{
"function": "callGrpcService",
"level": "debug",
"line": "84",
"msg": "headersOut: map[:
authority:[service-a.dev.svc.cluster.local:50051]
content-type:[application/grpc]
grpcgateway-accept:[application/json, text/plain, */*]
grpcgateway-accept-language:[en-US,en;q=0.9]
grpcgateway-content-type:[application/json]
grpcgateway-origin:[https://ui.example-api.com]
grpcgateway-referer:[https://ui.example-api.com/]
grpcgateway-user-agent:[Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36]
user-agent:[grpc-go/1.39.0]
x-b3-parentspanid:[3b30be08b7a6bad0]
x-b3-sampled:[1]
x-b3-spanid:[c1f63e34996770c9]
x-b3-traceid:[7b084bbca0bade97bdc76741c3973ed6]
x-envoy-attempt-count:[1]
x-forwarded-client-cert:[By=spiffe://cluster.local/ns/dev/sa/default;Hash=9c02df616b245e7ada5394db109cb1fa4086c08591e668e5a67fc3e0520713cf;Subject=\"\";URI=spiffe://cluster.local/ns/dev/sa/default]
x-forwarded-for:[73.232.228.42,192.168.63.73, 127.0.0.6]
x-forwarded-host:[api.example-api.com]
x-forwarded-proto:[http]
x-request-id:[e83b565f-23ca-9f91-953e-03175bdafaa0]
]",
"time": "2021-07-04T13:54:06Z"
}

Jaeger

According to their website, Jaeger, inspired by Dapper and OpenZipkin, is a distributed tracing system released as open source by Uber Technologies. Jaeger is used for monitoring and troubleshooting microservices-based distributed systems, including distributed context propagation, distributed transaction monitoring, root cause analysis, service dependency analysis, and performance and latency optimization. The Jaeger website contains a helpful overview of Jaeger’s architecture and general tracing-related terminology.

If you deployed Jaeger using the Istio addons process demonstrated in part one of the previous post, access Jaeger similar to the other tools:

istioctl dashboard jaeger

Below are examples of the Jaeger UI’s Search view, displaying the results of a search for the Angular UI and the Istio Ingress Gateway services over a period of time. We see a timeline of traces across the top with a list of trace results below. As discussed on the Jaeger website, a trace is composed of spans. A span represents a logical unit of work in Jaeger that has an operation name. A trace is an execution path through the system and can be thought of as a directed acyclic graph (DAG) of spans. If you have worked with systems like Apache Spark, you are probably already familiar with the concept of DAGs.

Latest Angular UI traces
Latest Istio Ingress Gateway traces

Below is a detailed view of a single trace in Jaeger’s Trace Timeline mode. The 16 spans encompass nine of the reference platform’s components: seven backend services, gRPC Gateway, and Istio Ingress Gateway. The spans each have individual timings, with an overall trace time of 195.49 ms. The root span in the trace is the Istio Ingress Gateway. The Angular UI, loaded in the end user’s web browser, calls gRPC Gateway via the Istio Ingress Gateway. From there, we see the expected flow of our service-to-service IPC. Service A calls Services B and Service C. Service B calls Service E, which calls Service G and Service H.

In this demonstration, traces are not instrumented to span the RabbitMQ message queue nor MongoDB. You will not see a trace that includes a call from Service D to Service F via the RabbitMQ.

Detailed view of an Istio Ingress Gateway distributed trace

The visualization of the trace’s timeline demonstrates the synchronous nature of the reference platform’s service-to-service IPC instead of the asynchronous nature of the decoupled communications using the RabbitMQ messaging queue. Service A waits for each service in its call chain to respond before returning its response to the requester.

Within Jaeger’s Trace Timeline view, you have the ability to drill into a single span, which contains additional metadata. The span’s metadata includes the API endpoint URL being called, HTTP method, response status, and several other headers.

Detailed view of an Istio Ingress Gateway distributed trace

A Trace Statistics view is also available.

Trace statistics for an Istio Ingress Gateway distributed trace

Additionally, Jaeger has an experimental Trace Graph mode that displays a graph view of the same trace.

Jaeger also includes a Compare Trace feature and two dependency views: Force-Directed Graph and DAG. I find both views rather primitive compared to Kiali. Lacking access to Kiali, the views are marginally useful as a dependency graph.

Zipkin

Zipkin is a distributed tracing system, which helps gather timing data needed to troubleshoot latency problems in service architectures. According to a 2012 post on Twitter’s Engineering Blog, Zipkin started as a project during Twitter’s first Hack Week. During that week, they implemented a basic version of the Google Dapper paper for Thrift.

Results of a search for the latest traces in Zipkin

Zipkin and Jaeger are very similar in terms of capabilities. I have chosen to focus on Jaeger in this post as I prefer it over Zipkin. If you want to try Zipkin instead of Jaeger, you can use the following commands to remove Jaeger and install Zipkin from the Istio addons extras directory. In part one of the post, we did not install Zipkin by default when we deployed the Istio addons. Be aware that running both tools simultaneously in the same Kubernetes cluster will cause unpredictable tracing results.

kubectl delete -f https://raw.githubusercontent.com/istio/istio/release-1.10/samples/addons/jaeger.yaml
kubectl apply -f https://raw.githubusercontent.com/istio/istio/release-1.10/samples/addons/extras/zipkin.yaml

Access Zipkin similar to the other observability tools:

istioctl dashboard zipkin

Below is an example of a distributed trace visualized in Zipkin’s UI, containing 16 spans, similar to the trace visualized in Jaeger, shown above. The spans encompass eight of the reference platform’s components: seven of the eight backend services and the Istio Ingress Gateway. The spans each have individual timings, with an overall trace time of ~221 ms.

Detailed view of a distributed trace in Zipkin

Zipkin can also visualize a dependency graph based on the distributed trace. Below is an example of a traffic simulation over a 24-hour period, showing network traffic flowing between the reference platform’s components, illustrated as a dependency graph.

Zipkin‘s dependency graph showing traffic over a 24-hour period

Kiali: Microservice Observability

According to their website, Kiali is a management console for an Istio-based service mesh. It provides dashboards and observability, and lets you operate your mesh with robust configuration and validation capabilities. It shows the structure of a service mesh by inferring traffic topology and displaying the mesh’s health. Kiali provides detailed metrics, powerful validation, Grafana access, and strong integration for distributed tracing with Jaeger.

If you deployed Kaili using the Istio addons process demonstrated in part one of the previous post, access Kiali similar to the other tools:

istioctl dashboard kaili

For improved security, install the latest version of Kaili using the customizable install mentioned in Istio’s documentation. Using Kiali’s Install via Kiali Server Helm Chart option adds token-based authentication, similar to the Kubernetes Dashboard.

Kiali’s Overview tab provides a global view of all namespaces within the Istio service mesh and the number of applications within each namespace.

The Graph tab in the Kiali UI represents the components running in the Istio service mesh. Below, filtering on the cluster’s dev Namespace, we can observe that Kiali has mapped 11 applications (workloads), 11 services, and 24 edges (a graph term). Specifically, we see the Istio Ingres Proxy at the edge of the service mesh, gRPC Gateway, Angular UI, and eight backend services, all with their respective Envoy proxy sidecars that are taking traffic (Service F did not take any direct traffic from another service in this example), the external DocumentDB egress point, and the external Amazon MQ egress point. Note how service-to-service traffic flows with Istio, from the service to its sidecar proxy, to the other service’s sidecar proxy, and finally to the service.

Kiali allows you to zoom in and focus on a single component in the graph and its individual metrics.

Kiali can also display average request times and other metrics for each edge in the graph (communication between two components). Kaili can even show those metrics over a given period of time, using Kiali’s Replay feature, shown below.

The Applications tab lists all the applications, their namespace, and labels.

You can drill into an individual component on both the Applications and Workloads tabs and view additional details. Details include the overall health, Pods, and Istio Config status. Below is an overview of the Service A workload in the dev Namespace.

The Workloads detailed view also includes inbound and outbound network metrics. Below is an example of the outbound for Service A in the dev Namespace.

Kiali also gives you access to the individual pod’s container logs. Although log access is not as user-friendly as other log sources discussed previously, having logs available alongside metrics (integration with Grafana), traces (integration with Jaeger), and mesh visualization, all in Kiali, can act as a very effective single pane of glass for observability.

Kiali also has an Istio Config tab. The Istio Config tab displays a list of all of the available Istio configuration objects that exist in the user’s environment.

You can use Kiali to configure and manage the Istio service mesh and its installed resources. Using Kiali, you can actually modify the deployed resources, similar to using the kubectl edit command.

Oftentimes, I find Kiali to be my first stop when troubleshooting platform issues. Once I identify the specific components or communication paths having issues, I then review the specific application logs and Prometheus metrics through the Grafana dashboard.

Tear Down

To tear down the EKS cluster, DocumentDB cluster, and Amazon MQ broker, use the following commands:

# EKS cluster
eksctl delete cluster --name $CLUSTER_NAME
# Amazon MQ
aws mq list-brokers | jq -r '.BrokerSummaries[] | .BrokerId'aws mq delete-broker --broker-id {{ your_broker_id }}
# DocumentDB
aws docdb describe-db-clusters \
| jq -r '.DBClusters[] | .DbClusterResourceId'aws docdb delete-
db-cluster \
--db-cluster-identifier {{ your_cluster_id }}

Conclusion

In this post, we explored a set of popular open source observability tools, easily integrated with the Istio service mesh. These tools included Jaeger and Zipkin for distributed transaction monitoring, Prometheus for metrics collection and alerting, Grafana for metrics querying, visualization, and alerting, and Kiali for overall observability and management of Istio. We rounded out the toolset using Fluent Bit for log processing and forwarding to Amazon CloudWatch Container Insights. Using these tools, we successfully observed a gRPC-based, distributed reference application platform deployed to Amazon EKS.


This blog represents my own viewpoints and not of my employer, Amazon Web Services (AWS). All product names, logos, and brands are the property of their respective owners.

, , , , ,

Leave a comment

Kubernetes-based Microservice Observability with Istio Service Mesh: Part 2 of 2

In part two of this two-part post, we will continue to explore the set of popular open-source observability tools that are easily integrated with the Istio service mesh. While these tools are not a part of Istio, they are essential to making the most of Istio’s observability features. The tools include Jaeger and Zipkin for distributed transaction monitoring, Prometheus for metrics collection and alerting, Grafana for metrics querying, visualization, and alerting, and Kiali for overall observability and management of Istio. We will round out the toolset with the addition of Fluent Bit for log processing and aggregation. We will observe a distributed, microservices-based reference application platform deployed to an Amazon Elastic Kubernetes Service (Amazon EKS) cluster using these tools. The platform, running on EKS, will use Amazon DocumentDB as a persistent data store and Amazon MQ to exchange messages.

Kiali Management Console showing reference application platform

Observability

The O’Reilly book, Distributed Systems Observability, by Cindy Sridharan, describes The Three Pillars of Observability in Chapter 4: “Logs, metrics, and traces are often known as the three pillars of observability. While plainly having access to logs, metrics, and traces doesn’t necessarily make systems more observable, these are powerful tools that, if understood well, can unlock the ability to build better systems.

Reference Application Platform

To demonstrate Istio’s observability tools, we deployed a reference application platform to EKS on AWS. I have developed the application platform to demonstrate different Kubernetes platforms, such as EKS, GKE, AKS, and concepts such as service mesh, API management, observability, DevOps, and Chaos Engineering. The platform comprises a backend containing eight Go-based microservices, labeled generically as Service A — Service H, one Angular 12 TypeScript-based frontend UI, four MongoDB databases, and one RabbitMQ message queue. The platform and all its source code are open-sourced on GitHub.

Reference Application Platform’s Angular-based UI

The reference application platform is designed to generate HTTP-based service-to-service, TCP-based service-to-database, and TCP-based service-to-queue-to-service IPC (inter-process communication). For example, Service A calls Service B and Service C; Service B calls Service D and Service E; Service D produces a message to a RabbitMQ queue, which Service F consumes message off on the RabbitMQ queue, and writes to MongoDB, and so on. The platform’s distributed service communications can be observed using Istio’s observability tools when the system is deployed to a Kubernetes cluster running the Istio service mesh.

High-level architecture of Reference Application Platform

Part Two

In part one of the post, we configured and deployed the reference application platform to an Amazon EKS development-grade cluster on AWS. The reference application, running on EKS, communicates with two external systems, Amazon DocumentDB (with MongoDB compatibility) and Amazon MQ.

Deployed Reference Application Platform as seen from Argo CD

In part two of the post, we will explore each of the observability tools we installed in greater detail. We will understand how each tool contributes to the three pillars of observability: logs, metrics, and traces.

Logs, metrics, and traces are often known as the three pillars of observability.
 — Cindy Sridharan

Pillar One: Logs

To paraphrase Jay Kreps on the LinkedIn Engineering Blog, a log is an append-only, totally-ordered sequence of records ordered by time. The ordering of records defines a notion of “time” since entries to the left are defined to be older than entries to the right. Logs are a historical record of events that happened in the past. Logs have been around almost as long as computers and are at the heart of many distributed data systems and real-time application architectures.

Go-based Microservice Logging

An effective logging strategy starts with what you log, when you log, and how you log. As part of our logging strategy, the eight Go-based microservices use Logrus, a popular structured logger for Go first released in 2014. The microservices also implement Banzai Cloud’s logrus-runtime-formatter. There is an excellent article on the formatter, Golang runtime Logrus Formatter. These two logging packages give us greater control over what you log, when you log, and how you log information about our microservices. The recommended configuration of the packages is minimal.

func init() {
formatter := runtime.Formatter{ChildFormatter: &log.JSONFormatter{}}
formatter.Line = true
log.SetFormatter(&formatter)
log.SetOutput(os.Stdout)
level, err := log.ParseLevel(logLevel)
if err != nil {
log.Error(err)
}
log.SetLevel(level)
}

Logrus provides several advantages over Go’s simple logging package, log. For example, log entries are not only for Fatal errors, nor should all verbose log entries be output in a Production environment. The post’s microservices are taking advantage of Logrus’ ability to log at seven levels: Trace, Debug, Info, Warning, Error, Fatal, and Panic. I have also variabilized the log level, allowing it to be easily changed in the Kubernetes Deployment resource at deploy-time.

The microservices also take advantage of Banzai Cloud’s logrus-runtime-formatter. The Banzai formatter automatically tags log messages with runtime and stack information, including function name and line number; extremely helpful when troubleshooting. I am also using Logrus’ JSON formatter.

Service A log entries in CloudWatch Insights

In 2020, Logus entered maintenance mode. The author, Simon Eskildsen (Principal Engineer at Shopify), stated they will not be introducing new features. This does not mean Logrus is dead. With over 18,000 GitHub Stars, Logrus will continue to be maintained for security, bug fixes, and performance. The author states that many fantastic alternatives to Logus now exist, such as Zerolog, Zap, and Apex.

Client-side Angular UI Logging

Likewise, I have enhanced the logging of the Angular UI using NGX Logger. NGX Logger is a simple logging module for angular (currently supports Angular 6+). It allows “pretty print” to the console and allows log messages to be POSTed to a URL for server-side logging. For this demo, the UI will only log to the web browser’s console. Similar to Logrus, NGX Logger supports multiple log levels: Trace, Debug, Info, Warning, Error, Fatal, and Off. However, instead of just outputting messages, NGX Logger allows us to output properly formatted log entries to the browser’s console.

The level of logs output is configured to be dependent on the environment, Production or not Production. Below is an example of the log output from the Angular UI in Chrome. Since the UI’s Docker Image was built with the Production configuration, the log level is set to INFO. You would not want to expose potentially sensitive information in verbose log output to our end-users in Production.

Controlling logging levels is accomplished by adding the following ternary operator to the app.module.ts file.

imports: [
BrowserModule,
HttpClientModule,
FormsModule,
LoggerModule.forRoot({
level: !environment.production ?
NgxLoggerLevel.DEBUG : NgxLoggerLevel.INFO,
serverLogLevel: NgxLoggerLevel.INFO
})
],

Platform Logs

Based on the platform built, configured, and deployed in , you now have access logs from multiple sources.

  1. Amazon DocumentDB: Amazon CloudWatch Audit and Profiler logs;
  2. Amazon MQ: Amazon CloudWatch logs;
  3. Amazon EKS: API server, Audit, Authenticator, Controller manager, and Scheduler CloudWatch logs;
  4. Kubernetes Dashboard: Individual EKS Pod and Replica Set logs;
  5. Kiali: Individual EKS Pod and Container logs;
  6. Fluent Bit: EKS performance, host, dataplane, and application CloudWatch logs;

Fluent Bit

According to a recent AWS Blog post, Fluent Bit Integration in CloudWatch Container Insights for EKS, Fluent Bit is an open-source, multi-platform log processor and forwarder that allows you to collect data and logs from different sources and unify and send them to different destinations, including CloudWatch Logs. Fluent Bit is also fully compatible with Docker and Kubernetes environments. Using the newly launched Fluent Bit DaemonSet, you can send container logs from your EKS clusters to CloudWatch logs for logs storage and analytics.

With Fluent Bit, deployed in part one, the EKS cluster’s performance, host, dataplane, and application logs will also be available in Amazon CloudWatch.

Within the application log groups, you have access to the individual log streams for each reference application’s components.

Within each CloudWatch log stream, you can view individual log entries.

CloudWatch Logs Insights enables you to interactively search and analyze your log data in Amazon CloudWatch Logs. You can perform queries to help you more efficiently and effectively respond to operational issues. If an issue occurs, you can use CloudWatch Logs Insights to identify potential causes and validate deployed fixes.

CloudWatch Logs Insights supports CloudWatch Logs Insights query syntax, a query language you can use to perform queries on your log groups. Each query can include one or more query commands separated by Unix-style pipe characters (|). For example:

fields @timestamp, @message
| filter kubernetes.container_name = "service-f"
and @message like "error"
| sort @timestamp desc
| limit 20

Pillar Two: Metrics

For metrics, we will examine CloudWatch Container Insights, Prometheus, and Grafana. Prometheus and Grafana are industry-leading tools you installed as part of the Istio deployment.

Prometheus

Prometheus is an open-source systems monitoring and alerting toolkit originally built at SoundCloud circa 2012. Prometheus joined the Cloud Native Computing Foundation (CNCF) in 2016 as the second project hosted after Kubernetes.

According to Istio, the Prometheus addon is a Prometheus server that comes preconfigured to scrape Istio endpoints to collect metrics. You can use Prometheus with Istio to record metrics that track the health of Istio and applications within the service mesh. You can visualize metrics using tools like Grafana and Kiali. The Istio Prometheus addon is intended for demonstration only and is not tuned for performance or security.

The istioctl dashboardcommand provides access to all of the Istio web UIs. With the EKS cluster running, Istio installed, and the reference application platform deployed, access Prometheus using the istioctl dashboard prometheus command from your terminal. You must be logged into AWS from your terminal to connect to Prometheus successfully. If you are not logged in to AWS, you will often see the following error: Error: not able to locate <tool_name> pod: Unauthorized. Since we used the non-production demonstration versions of the Istio Addons, there is no authentication and authorization required to access Prometheus.

According to Prometheus, users select and aggregate time-series data in real-time using a functional query language called PromQL (Prometheus Query Language). The result of an expression can either be shown as a graph, viewed as tabular data in Prometheus’s expression browser, or consumed by external systems through Prometheus’ HTTP API. The expression browser includes a drop-down menu with all available metrics as a starting point for building queries. Shown below are a few PromQL examples that were developed as part of writing this post.

istio_agent_go_info{kubernetes_namespace="dev"}
istio_build{kubernetes_namespace="dev"}
up{alpha_eksctl_io_cluster_name="istio-observe-demo", job="kubernetes-nodes"}
sum by (pod) (rate(container_network_transmit_packets_total{stack="reference-app",namespace="dev",pod=~"service-.*"}[5m]))
sum by (instance) (istio_requests_total{source_app="istio-ingressgateway",connection_security_policy="mutual_tls",response_code="200"})
sum by (response_code) (istio_requests_total{source_app="istio-ingressgateway",connection_security_policy="mutual_tls",response_code!~"200|0"})

Prometheus APIs

Prometheus has both an HTTP API and a Management API. There are many useful endpoints in addition to the Prometheus UI, available at http://localhost:9090/graph. For example, the Prometheus HTTP API endpoint that lists all the command-line configuration flags is available at http://localhost:9090/api/v1/status/flags. The endpoint that lists all the available Prometheus metrics is available at http://localhost:9090/api/v1/label/__name__/values; a total of 951 metrics in this demonstration!

The Prometheus endpoint that lists many available metrics with HELP and TYPE to explain their function is found at http://localhost:9090/metrics.

Understanding Metrics

In addition to these endpoints, the standard service level metrics exported by Istio and available via Prometheus are found in the Istio Standard Metrics documentation. An explanation of many of the metrics available via Prometheus are also found in the cAdvisor README on their GitHub site. As mentioned in this AWS Blog Post, the cAdvisor metrics are also available from the command line using the following commands:

export NODE=$(kubectl get nodes | sed -n '2 p') | awk {'print $1'}
kubectl get --raw "/api/v1/nodes/${NODE}/proxy/metrics/cadvisor"

Observing Metrics

Below is an example graph of the backend microservice containers deployed to EKS. The graph PromQL expression returns the amount of working set memory, including recently accessed memory, dirty memory, and kernel memory (container_memory_working_set_bytes), summed by pod, in megabytes (MB). There was no load on the services during the period displayed.

sum by (pod) (container_memory_working_set_bytes{image=~"registry.hub.docker.com/garystafford/.*"}) / (1024^2)

The container_memory_working_set_bytes metric is the same metric used by the kubectl top command (not container_memory_usage_bytes).

> kubectl top pod -n dev --containers=true --use-protocol-buffer
POD                          NAME          CPU(cores)   MEMORY(bytes)
service-a-546fbd558d-28jlm service-a 1m 6Mi
service-a-546fbd558d-2lcsg service-a 1m 6Mi
service-b-545c85df9-dl9h8 service-b 1m 6Mi
service-b-545c85df9-q99xm service-b 1m 5Mi
service-c-58996574-58wd8 service-c 1m 7Mi
service-c-58996574-6q7n4 service-c 1m 7Mi
service-d-867796bb47-87ps5 service-d 1m 6Mi
service-d-867796bb47-fh6wl service-d 1m 6Mi
...

In another Prometheus example, the PromQL query expression returns the per-second rate of CPU resources measured in CPU units (1 CPU = 1 AWS vCPU), as measured over the last 5 minutes, per time series in the range vector, summed by the pod. During this period, the backend services were under a consistent, simulated load of 25 concurrent users using hey. The four Service D pods were consuming the most CPU units during this time period.

sum by (pod) (rate(container_cpu_usage_seconds_total{image=~"registry.hub.docker.com/garystafford/.*"}[5m])) * 1000

The container_cpu_usage_seconds_total metric is the same metric used by the kubectl top command. The above PromQL expression multiplies the query results by 1,000 to match the results from kubectl top, shown below.

> kubectl top pod -n dev --containers=true --use-protocol-buffer
POD                          NAME          CPU(cores)   MEMORY(bytes)
service-a-546fbd558d-28jlm service-a 25m 9Mi
service-a-546fbd558d-2lcsg service-a 27m 8Mi
service-b-545c85df9-dl9h8 service-b 29m 11Mi
service-b-545c85df9-q99xm service-b 23m 8Mi
service-c-58996574-c8hkn service-c 62m 9Mi
service-c-58996574-kx895 service-c 55m 8Mi
service-d-867796bb47-87ps5 service-d 285m 12Mi
service-d-867796bb47-9ln7p service-d 226m 11Mi
...

Limits

Prometheus also exposes container resource limits. For example, the memory limits set on the reference platform’s backend services, displayed in megabytes (MB), using the container_spec_memory_limit_bytes metric. When viewed alongside the real-time resources consumed by the services, these metrics are useful to properly configure and monitor Kubernetes management features such as the Horizontal Pod Autoscaler.

sum by (container) (container_spec_memory_limit_bytes{image=~"registry.hub.docker.com/garystafford/.*"}) / (1024^2) / count by (container) (container_spec_memory_limit_bytes{image=~"registry.hub.docker.com/garystafford/.*"})

Or, memory limits by Pod:

sum by (pod) (container_spec_memory_limit_bytes{image=~"registry.hub.docker.com/garystafford/.*"}) / (1024^2)

Cluster Metrics

Prometheus also contains metrics about Istio components, Kubernetes components, and the EKS cluster. For example, the total memory in gigabytes (GB) of each m5.large EC2 worker nodes in the istio-observe-demo EKS cluster’s managed-ng-1 Managed Node Group.

machine_memory_bytes{alpha_eksctl_io_cluster_name="istio-observe-demo", alpha_eksctl_io_nodegroup_name="managed-ng-1"} / (1024^3)

For total physical cores, use the machine_cpu_physical_core metric, and for vCPU cores use the machine_cpu_cores metric.

Grafana

Grafana describes itself as the leading open-source software for time-series analytics. According to Grafana Labs, Grafana allows you to query, visualize, alert on, and understand your metrics no matter where they are stored. You can easily create, explore, and share visually rich, data-driven dashboards. Grafana also allows users to visually define alert rules for their most important metrics. Grafana will continuously evaluate rules and can send notifications.

If you deployed Grafana using the Istio addons process demonstrated in part one of the post, access Grafana similar to the other tools:

istioctl dashboard grafana

According to Istio, Grafana is an open-source monitoring solution used to configure dashboards for Istio. You can use Grafana to monitor the health of Istio and applications within the service mesh. While you can build your own dashboards, Istio offers a set of preconfigured dashboards for all of the most important metrics for the mesh and the control plane. The preconfigured dashboards use Prometheus as the data source.

Below is an example of the Istio Mesh Dashboard, filtered to show the eight backend services workloads running in the dev namespace. During this period, the backend services were under a consistent simulated load of approximately 20 concurrent users using hey. You can observe the p50, p90, and p99 latency of requests to these workloads.

Dashboards are built from Panels, the basic visualization building blocks in Grafana. Each panel has a query editor specific to the data source (Prometheus in this case) selected. The query editor allows you to write your (PromQL) query. Below is the PromQL expression query responsible for the p50 latency Panel displayed in the Istio Mesh Dashboard.

 label_join((histogram_quantile(0.50, sum(rate(istio_request_duration_milliseconds_bucket{reporter="source"}[1m])) by (le, destination_workload, destination_workload_namespace)) / 1000) or histogram_quantile(0.50, sum(rate(istio_request_duration_seconds_bucket{reporter="source"}[1m])) by (le, destination_workload, destination_workload_namespace)), "destination_workload_var", ".", "destination_workload", "destination_workload_namespace")

Below is an example of the Outbound Workloads section of the Istio Workload Dashboard. The complete dashboard contains three sections: General, Inbound Workloads, and Outbound Workloads. Here we have filtered the on reference platform’s backend services in the dev namespace.

Here is a different view of the Istio Workload Dashboard, the dashboard’s Inbound Workloads section filtered to a single workload, Service A, the backend’s edge service. Service A accepts incoming traffic from the Istio Ingress Gateway as shown in the dashboard’s panels.

Grafana provides the ability to Explore a Panel. Explore strips away the dashboard and panel options so that you can focus on the query. It helps you iterate until you have a working query and then think about building a dashboard. Below is an example of the Panel showing the egress TCP traffic, based on the istio_tcp_sent_bytes_total metric, for Service F. Service F consumes messages off on the RabbitMQ queue (Amazon MQ) and writes messages to MongoDB (DocumentDB).

You can monitor the resource usage of Istio with the Performance Dashboard.

Additional Dashboards

Grafana provides a site containing official and community-built dashboards, including the above-mentioned Istio dashboards. Importing dashboards into your Grafana instance is as simple as copying the dashboard URL or the ID provided from the Grafana dashboard site and pasting it into the dashboard import option of your Grafana instance. Be aware that not every Kubernetes dashboard in Grafan’s site is compatible with your specific version of Kubernetes, Istio, or EKS, nor relies on Prometheus as a data source. As a result, you might have to test and tweak imported dashboards to get them working.

Below is an example of an imported community dashboard, Kubernetes cluster monitoring (via Prometheus) by Instrumentisto Team (dashboard ID 315).

Alerting

An effective observability strategy must include more than just the ability to visualize results. An effective strategy must also detect anomalies and notify (alert) the appropriate resources or directly resolve incidents. Grafana, like Prometheus, is capable of alerting and notification. You visually define alert rules for your critical metrics. Grafana will continuously evaluate metrics against the rules and send notifications when pre-defined thresholds are breached.

Prometheus supports multiple popular notification channels, including PagerDuty, HipChat, Email, Kafka, and Slack. Below is an example of a Prometheus notification channel that sends alert notifications to a Slack support channel.

Below is an example of an alert based on an arbitrarily high CPU usage of 300 milliCPUs (m). When the CPU usage of a single pod goes above that value for more than 3 minutes, an alert is sent. The high CPU usage could be caused by the Horizontal Pod Autoscaler not functioning, or the HPA has reached its maxReplicas limit, or there are not enough resources available within the cluster to schedule additional pods.

Triggered by the alert, Prometheus sends detailed notifications to the designated Slack channel.

Amazon CloudWatch Container Insights

Lastly in the category of Metrics, Amazon CloudWatch Container Insights collects, aggregates, and summarizes metrics and logs from your containerized applications and microservices. CloudWatch alarms can be set on metrics that Container Insights collects. Container Insights is available for Amazon Elastic Container Service (Amazon ECS) including Fargate, Amazon EKS, and Kubernetes platforms on Amazon EC2.

In Amazon EKS, Container Insights uses a containerized version of the CloudWatch agent to discover all running containers in a cluster. It then collects performance data at every layer of the performance stack. Container Insights collects data as performance log events using the embedded metric format. These performance log events are entries that use a structured JSON schema that enables high-cardinality data to be ingested and stored at scale.

In part one of the post, we also installed CloudWatch Container Insights monitoring for Prometheus, which automates the discovery of Prometheus metrics from containerized systems and workloads.

Below is an example of a basic Performance Monitoring CloudWatch Container Insights Dashboard. The dashboard is filtered to the dev namespace of the EKS cluster, where the reference application platform is running. During this period, the backend services were put under a simulated load using hey. As the load on the application increases, observe the Number of Pods increases from 19 to 34 pods, based on the Deployment resources and HPA configurations. There is also an Alert, shown on the right of the screen. An alarm was triggered for an arbitrarily high level of network transmission activity.

Next is an example of Container Insights’ Container Map view in Memory mode. You see a visual representation of the dev namespace, with each of the backend service’s Service and Deployment resources shown.

There is a warning icon indicating an Alarm on the cluster was triggered.

Lastly, CloudWatch Insights allows you to jump from the CloudWatch Insights to the CloudWatch Log Insights console. CloudWatch Insights will also write the CloudWatch Insights query for you. Below, we went from the Service D container metrics view in the CloudWatch Insights Performance Monitoring console directly to the CloudWatch Log Insights console with a query, ready to run.

Pillar 3: Traces

According to the Open Tracing website, distributed tracing, also called distributed request tracing, is used to profile and monitor applications, especially those built using a microservices architecture. Distributed tracing helps pinpoint where failures occur and what causes poor performance.

According to Istio, header propagation may be accomplished through client libraries, such as Zipkin or Jaeger. It may also be accomplished manually, referred to as trace context propagation, documented in the Distributed Tracing Task. Istio proxies can automatically send spans. Applications need to propagate the appropriate HTTP headers so that when the proxies send span information, the spans can be correlated correctly into a single trace. To accomplish this, an application needs to collect and propagate the following headers from the incoming request to any outgoing requests.

  • x-request-id
  • x-b3-traceid
  • x-b3-spanid
  • x-b3-parentspanid
  • x-b3-sampled
  • x-b3-flags
  • x-ot-span-context

The x-b3 headers originated as part of the Zipkin project. The B3 portion of the header is named for the original name of Zipkin, BigBrotherBird. Passing these headers across service calls is known as B3 propagation. According to Zipkin, these attributes are propagated in-process and eventually downstream (often via HTTP headers) to ensure all activity originating from the same root are collected together.

To demonstrate distributed tracing with Jaeger and Zipkin, Service A, Service B, and Service E have been modified to pass the b3 headers. These are the three services that make HTTP requests to other upstream services. The following code has been added to propagate the headers from one service to the next. The Istio sidecar proxy (Envoy) generates the first headers. It is critical to only propagate the headers that are present in the downstream request and have a value, as the code below does. Propagating an empty header will break the distributed tracing.

incomingHeaders := []string{
"x-b3-flags",
"x-b3-parentspanid",
"x-b3-sampled",
"x-b3-spanid",
"x-b3-traceid",
"x-ot-span-context",
"x-request-id",
}
for _, header := range incomingHeaders {
if r.Header.Get(header) != "" {
req.Header.Add(header, r.Header.Get(header))
}
}

Below, the highlighted section of the response payload from a call to Service A’s /api/request-echo endpoint reveals the b3 headers originating from the Istio proxy and passed to Service A.

Jaeger

According to their website, Jaeger, inspired by Dapper and OpenZipkin, is a distributed tracing system released as open source by Uber Technologies. Jaeger is used for monitoring and troubleshooting microservices-based distributed systems, including distributed context propagation, distributed transaction monitoring, root cause analysis, service dependency analysis, and performance and latency optimization. The Jaeger website contains a helpful overview of Jaeger’s architecture and general tracing-related terminology.

If you deployed Jaeger using the Istio addons process demonstrated in part one of the post, access Jaeger similar to the other tools:

istioctl dashboard jaeger

Below is an example of the Jaeger UI’s Search view, displaying the results of a search for the Istio Ingress Gateway service over a period of time. We see a timeline of traces across the top with a list of trace results below. As discussed on the Jaeger website, a trace is composed of spans. A span represents a logical unit of work in Jaeger that has an operation name. A trace is an execution path through the system and can be thought of as a directed acyclic graph (DAG) of spans. If you have worked with systems like Apache Spark, you are probably already familiar with the concept of DAGs.

Below is a detailed view of a single trace in Jaeger’s Trace Timeline mode. The 14 spans encompass eight of the reference platform’s components: seven of the eight backend services and the Istio Ingress Gateway. The spans each have individual timings, with an overall trace time of 160 ms. The root span in the trace is the Istio Ingress Gateway. The Angular UI, loaded in the end user’s web browser, calls Service A via the Istio Ingress Gateway. From there, we see the expected flow of our service-to-service IPC. Service A calls Services B and Service C. Service B calls Service E, which calls Service G and Service H.

In this demonstration, traces are not instrumented to span the RabbitMQ message queue nor MongoDB. This means you would not see a trace that includes a call from Service D to Service F via the RabbitMQ.

The visualization of the trace’s timeline demonstrates the synchronous nature of the reference platform’s service-to-service IPC instead of the asynchronous nature of the decoupled communications using the RabbitMQ messaging queue. Note how Service A waits for each service in its call chain to respond before returning its response to the requester.

Within Jaeger’s Trace Timeline view, you have the ability to drill into a single span, which contains additional metadata. The span’s metadata includes the API endpoint URL being called, HTTP method, response status, and several other headers.

Jaeger also has an experimental Trace Graph mode, which displays a graph view of the same trace.

Jaeger also includes a Compare Trace feature and two Dependencies views: Force-Directed Graph and DAG. I find both views rather primitive compared to Kiali. Lacking access to Kiali, the views are marginally useful as a dependency graph.

Zipkin

Zipkin is a distributed tracing system, which helps gather timing data needed to troubleshoot latency problems in service architectures. According to a 2012 post on Twitter’s Engineering Blog, Zipkin started as a project during Twitter’s first Hack Week. During that week, they implemented a basic version of the Google Dapper paper for Thrift.

Zipkin and Jaeger are very similar in terms of capabilities. I have chosen to focus on Jaeger in this post as I prefer it over Zipkin. If you want to try Zipkin instead of Jaeger, you can use the following commands to remove Jaeger and install Zipkin from the Istio addons extras directory. In part one of the post, we did not install Zipkin by default when we deployed the Istio addons. Be aware that running both tools at the same time in the same Kubernetes cluster will cause unpredictable tracing results.

kubectl delete -f https://raw.githubusercontent.com/istio/istio/release-1.10/samples/addons/jaeger.yaml
kubectl apply -f https://raw.githubusercontent.com/istio/istio/release-1.10/samples/addons/extras/zipkin.yaml

Access Zipkin similar to the other observability tools:

istioctl dashboard zipkin

Below is an example of a distributed trace visualized in Zipkin’s UI, containing 14 spans. This is very similar to the trace visualized in Jaeger, shown above. The spans encompass eight of the reference platform’s components: seven of the eight backend services and the Istio Ingress Gateway. The spans each have individual timings, with an overall trace time of 154 ms.

Zipkin can also visualize a dependency graph based on the distributed trace. Below is an example of a traffic simulation over a two-minute period, showing network traffic flowing between the reference platform’s components, illustrated as a dependency graph.

Kiali: Microservice Observability

According to their website, Kiali is a management console for an Istio-based service mesh. It provides dashboards, observability, and lets you operate your mesh with robust configuration and validation capabilities. It shows the structure of a service mesh by inferring traffic topology and displaying the mesh’s health. Kiali provides detailed metrics, powerful validation, Grafana access, and strong integration for distributed tracing with Jaeger.

If you deployed Kaili using the Istio addons process demonstrated in part one of the post, access Kiali similar to the other tools:

istioctl dashboard kaili

For improved security, I optionally chose to install the latest version of Kaili using the customizable install mentioned in Istio’s documentation. Using Kiali’s Install via Kiali Server Helm Chart option adds token-based authentication, similar to the Kubernetes Dashboard.

Logging into Kiali, we see the Overview tab, which provides a global view of all namespaces within the Istio service mesh and the number of applications within each namespace.

The Graph tab in the Kiali UI represents the components running in the Istio service mesh. Below, filtering on the cluster’s dev Namespace, we can observe that Kiali has mapped 8 applications (Workloads), 10 services, and 22 edges (a graph term). Specifically, we see the Istio Ingres Proxy at the edge of the service mesh, the Angular UI and eight backend services all with their respective Envoy proxy sidecars that are taking traffic (Service F did not take any direct traffic from another service in this example), the external DocumentDB egress point, and the external Amazon MQ egress point. Finally, note how service-to-service traffic flows, with Istio, from the service to its sidecar proxy, to the other service’s sidecar proxy, and finally to the service.

Below is a similar view of the service mesh, but this time, there are failures between the Istio Ingress Gateway and Service A, shown in red. We can also observe overall metrics for the HTTP traffic, such as the request per second inbound and outbound, total requests, success and error rates, and HTTP status codes.

Kiali allows you to zoom in and focus on a single component in the graph and its individual metrics.

Kiali can also display average request times and other metrics for each edge in the graph (communication between two components). Kaili can even show those metrics over a given period of time, using Kiali’s Replay feature, shown below.

Focusing on the external DocumentDB cluster, Kiali also allows us to view TCP traffic between the four services within the service mesh that connect to the external cluster.

The Applications tab lists all the applications, their namespace, and labels.

You can drill into an individual component on both the Applications and Workloads tabs and view additional details. Details include the overall health, Pods, and Istio Config status. Below is an overview of the Service A workload in the dev Namespace.

The Workloads detailed view also includes inbound and outbound metrics. Below is an example of the outbound request volume, duration, throughput, and size metrics, for Service A in the dev Namespace.

Kiali also gives you access to the individual pod’s container logs. Although log access is not as user-friendly as other log sources discussed previously, having logs available alongside metrics (integration with Grafana), traces (integration with Jaeger), and mesh visualization, all in Kiali, can be very effective as a single source for observability.

Kiali also has an Istio Config tab. The Istio Config tab displays a list of all of the available Istio configuration objects that exist in the user’s environment.

You can use Kiali to configure and manage the Istio service mesh and its installed resources. Using Kiali, you can actually modify the deployed resources, similar to using the kubectl edit command.

Oftentimes, I find Kiali to be my first stop when troubleshooting platform issues. Once I identify the specific components or communication paths having issues, I can query the CloudWatch logs and Prometheus metrics through the Grafana dashboard.

Conclusion

In this two-part post, we explored a set of popular open-source observability tools, easily integrated with the Istio service mesh. These tools included Jaeger and Zipkin for distributed transaction monitoring, Prometheus for metrics collection and alerting, Grafana for metrics querying, visualization, and alerting, and Kiali for overall observability and management of Istio. We rounded out the toolset with the addition of Fluent Bit for log processing and forwarding to Amazon CloudWatch Container Insights. Using these tools, we successfully observed a microservices-based, distributed reference application platform deployed to Amazon EKS.


This blog represents my own viewpoints and not of my employer, Amazon Web Services (AWS). All product names, logos, and brands are the property of their respective owners.

, , , , ,

1 Comment

Istio Observability with Go, gRPC, and Protocol Buffers-based Microservices on Google Kubernetes Engine (GKE)

In the last two posts, Kubernetes-based Microservice Observability with Istio Service Mesh and Azure Kubernetes Service (AKS) Observability with Istio Service Mesh, we explored the observability tools which are included with Istio Service Mesh. These tools currently include Prometheus and Grafana for metric collection, monitoring, and alerting, Jaeger for distributed tracing, and Kiali for Istio service-mesh-based microservice visualization and monitoring. Combined with cloud platform-native monitoring and logging services, such as Stackdriver on GCP, CloudWatch on AWS, Azure Monitor logs on Azure, and we have a complete observability solution for modern, distributed, Cloud-based applications.

In this post, we will examine the use of Istio’s observability tools to monitor Go-based microservices that use Protocol Buffers (aka Protobuf) over gRPC (gRPC Remote Procedure Calls) and HTTP/2 for client-server communications, as opposed to the more traditional, REST-based JSON (JavaScript Object Notation) over HTTP (Hypertext Transfer Protocol). We will see how Kubernetes, Istio, Envoy, and the observability tools work seamlessly with gRPC, just as they do with JSON over HTTP, on Google Kubernetes Engine (GKE).

screen_shot_2019-04-18_at_6_03_38_pm

Technologies

Image result for grpc logogRPC

According to the gRPC project, gRPC, a CNCF incubating project, is a modern, high-performance, open-source and universal remote procedure call (RPC) framework that can run anywhere. It enables client and server applications to communicate transparently and makes it easier to build connected systems. Google, the original developer of gRPC, has used the underlying technologies and concepts in gRPC for years. The current implementation is used in several Google cloud products and Google externally facing APIs. It is also being used by Square, Netflix, CoreOS, Docker, CockroachDB, Cisco, Juniper Networks and many other organizations.

Image result for google developerProtocol Buffers

By default, gRPC uses Protocol Buffers. According to Google, Protocol Buffers (aka Protobuf) are a language- and platform-neutral, efficient, extensible, automated mechanism for serializing structured data for use in communications protocols, data storage, and more. Protocol Buffers are 3 to 10 times smaller and 20 to 100 times faster than XML. Once you have defined your messages, you run the protocol buffer compiler for your application’s language on your .proto file to generate data access classes.

Protocol Buffers are 3 to 10 times smaller and 20 to 100 times faster than XML.

Protocol buffers currently support generated code in Java, Python, Objective-C, and C++, Dart, Go, Ruby, and C#. For this post, we have compiled for Go. You can read more about the binary wire format of Protobuf on Google’s Developers Portal.

Envoy Proxy

According to the Istio project, Istio uses an extended version of the Envoy proxy. Envoy is deployed as a sidecar to a relevant service in the same Kubernetes pod. Envoy, created by Lyft, is a high-performance proxy developed in C++ to mediate all inbound and outbound traffic for all services in the service mesh. Istio leverages Envoy’s many built-in features, including dynamic service discovery, load balancing, TLS termination, HTTP/2 and gRPC proxies, circuit-breakers, health checks, staged rollouts, fault injection, and rich metrics.

According to the post by Harvey Tuch of Google, Evolving a Protocol Buffer canonical API, Envoy proxy adopted Protocol Buffers, specifically proto3, as the canonical specification of for version 2 of Lyft’s gRPC-first API.

Reference Microservices Platform

In the last two posts, we explored Istio’s observability tools, using a RESTful microservices-based API platform written in Go and using JSON over HTTP for service to service communications. The API platform was comprised of eight Go-based microservices and one sample Angular 7, TypeScript-based front-end web client. The various services are dependent on MongoDB, and RabbitMQ for event queue-based communications. Below, the is JSON over HTTP-based platform architecture.

Golang Service Diagram with Proxy v2

Below, the current Angular 7-based web client interface.

screen_shot_2019-04-15_at_10_23_47_pm

Converting to gRPC and Protocol Buffers

For this post, I have modified the eight Go microservices to use gRPC and Protocol Buffers, Google’s data interchange format. Specifically, the services use version 3 release (aka proto3) of Protocol Buffers. With gRPC, a gRPC client calls a gRPC server. Some of the platform’s services are gRPC servers, others are gRPC clients, while some act as both client and server, such as Service A, B, and E. The revised architecture is shown below.

Golang-Service-Diagram-with-gRPC

gRPC Gateway

Assuming for the sake of this demonstration, that most consumers of the API would still expect to communicate using a RESTful JSON over HTTP API, I have added a gRPC Gateway reverse proxy to the platform. The gRPC Gateway is a gRPC to JSON reverse proxy, a common architectural pattern, which proxies communications between the JSON over HTTP-based clients and the gRPC-based microservices. A diagram from the grpc-gateway GitHub project site effectively demonstrates how the reverse proxy works.

grpc_gateway.png

Image courtesy: https://github.com/grpc-ecosystem/grpc-gateway

In the revised platform architecture diagram above, note the addition of the reverse proxy, which replaces Service A at the edge of the API. The proxy sits between the Angular-based Web UI and Service A. Also, note the communication method between services is now Protobuf over gRPC instead of JSON over HTTP. The use of Envoy Proxy (via Istio) is unchanged, as is the MongoDB Atlas-based databases and CloudAMQP RabbitMQ-based queue, which are still external to the Kubernetes cluster.

Alternatives to gRPC Gateway

As an alternative to the gRPC Gateway reverse proxy, we could convert the TypeScript-based Angular UI client to gRPC and Protocol Buffers, and continue to communicate directly with Service A as the edge service. However, this would limit other consumers of the API to rely on gRPC as opposed to JSON over HTTP, unless we also chose to expose two different endpoints, gRPC, and JSON over HTTP, another common pattern.

Demonstration

In this post’s demonstration, we will repeat the exact same installation process, outlined in the previous post, Kubernetes-based Microservice Observability with Istio Service Mesh. We will deploy the revised gRPC-based platform to GKE on GCP. You could just as easily follow Azure Kubernetes Service (AKS) Observability with Istio Service Mesh, and deploy the platform to AKS.

Source Code

All source code for this post is available on GitHub, contained in three projects. The Go-based microservices source code, all Kubernetes resources, and all deployment scripts are located in the k8s-istio-observe-backend project repository, in the new grpc branch.

git clone \
  --branch grpc --single-branch --depth 1 --no-tags \
  https://github.com/garystafford/k8s-istio-observe-backend.git

The Angular-based web client source code is located in the k8s-istio-observe-frontend repository on the new grpc branch. The source protocol buffers .proto file and the generated code, using the protocol buffers compiler, is located in the new pb-greeting project repository. You do not need to clone either of these projects for this post’s demonstration.

All Docker images for the services, UI, and the reverse proxy are located on Docker Hub.

Code Changes

This post is not specifically about writing Go for gRPC and Protobuf. However, to better understand the observability requirements and capabilities of these technologies, compared to JSON over HTTP, it is helpful to review some of the source code.

Service A

First, compare the source code for Service A, shown below, to the original code in the previous post. The service’s code is almost completely re-written. I relied on several references for writing the code, including, Tracing gRPC with Istio, written by Neeraj Poddar of Aspen Mesh and Distributed Tracing Infrastructure with Jaeger on Kubernetes, by Masroor Hasan.

Specifically, note the following code changes to Service A:

  • Import of the pb-greeting protobuf package;
  • Local Greeting struct replaced with pb.Greeting struct;
  • All services are now hosted on port 50051;
  • The HTTP server and all API resource handler functions are removed;
  • Headers, used for distributed tracing with Jaeger, have moved from HTTP request object to metadata passed in the gRPC context object;
  • Service A is coded as a gRPC server, which is called by the gRPC Gateway reverse proxy (gRPC client) via the Greeting function;
  • The primary PingHandler function, which returns the service’s Greeting, is replaced by the pb-greeting protobuf package’s Greeting function;
  • Service A is coded as a gRPC client, calling both Service B and Service C using the CallGrpcService function;
  • CORS handling is offloaded to Istio;
  • Logging methods are unchanged;

Source code for revised gRPC-based Service A (gist):


// author: Gary A. Stafford
// site: https://programmaticponderings.com
// license: MIT License
// purpose: Service A – gRPC/Protobuf
package main
import (
"context"
"github.com/banzaicloud/logrus-runtime-formatter"
"github.com/google/uuid"
"github.com/grpc-ecosystem/go-grpc-middleware/tracing/opentracing"
ot "github.com/opentracing/opentracing-go"
log "github.com/sirupsen/logrus"
"google.golang.org/grpc"
"google.golang.org/grpc/metadata"
"net"
"os"
"time"
pb "github.com/garystafford/pb-greeting"
)
const (
port = ":50051"
)
type greetingServiceServer struct {
}
var (
greetings []*pb.Greeting
)
func (s *greetingServiceServer) Greeting(ctx context.Context, req *pb.GreetingRequest) (*pb.GreetingResponse, error) {
greetings = nil
tmpGreeting := pb.Greeting{
Id: uuid.New().String(),
Service: "Service-A",
Message: "Hello, from Service-A!",
Created: time.Now().Local().String(),
}
greetings = append(greetings, &tmpGreeting)
CallGrpcService(ctx, "service-b:50051")
CallGrpcService(ctx, "service-c:50051")
return &pb.GreetingResponse{
Greeting: greetings,
}, nil
}
func CallGrpcService(ctx context.Context, address string) {
conn, err := createGRPCConn(ctx, address)
if err != nil {
log.Fatalf("did not connect: %v", err)
}
defer conn.Close()
headersIn, _ := metadata.FromIncomingContext(ctx)
log.Infof("headersIn: %s", headersIn)
client := pb.NewGreetingServiceClient(conn)
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
ctx = metadata.NewOutgoingContext(context.Background(), headersIn)
defer cancel()
req := pb.GreetingRequest{}
greeting, err := client.Greeting(ctx, &req)
log.Info(greeting.GetGreeting())
if err != nil {
log.Fatalf("did not connect: %v", err)
}
for _, greeting := range greeting.GetGreeting() {
greetings = append(greetings, greeting)
}
}
func createGRPCConn(ctx context.Context, addr string) (*grpc.ClientConn, error) {
//https://aspenmesh.io/2018/04/tracing-grpc-with-istio/
var opts []grpc.DialOption
opts = append(opts, grpc.WithStreamInterceptor(
grpc_opentracing.StreamClientInterceptor(
grpc_opentracing.WithTracer(ot.GlobalTracer()))))
opts = append(opts, grpc.WithUnaryInterceptor(
grpc_opentracing.UnaryClientInterceptor(
grpc_opentracing.WithTracer(ot.GlobalTracer()))))
opts = append(opts, grpc.WithInsecure())
conn, err := grpc.DialContext(ctx, addr, opts)
if err != nil {
log.Fatalf("Failed to connect to application addr: ", err)
return nil, err
}
return conn, nil
}
func getEnv(key, fallback string) string {
if value, ok := os.LookupEnv(key); ok {
return value
}
return fallback
}
func init() {
formatter := runtime.Formatter{ChildFormatter: &log.JSONFormatter{}}
formatter.Line = true
log.SetFormatter(&formatter)
log.SetOutput(os.Stdout)
level, err := log.ParseLevel(getEnv("LOG_LEVEL", "info"))
if err != nil {
log.Error(err)
}
log.SetLevel(level)
}
func main() {
lis, err := net.Listen("tcp", port)
if err != nil {
log.Fatalf("failed to listen: %v", err)
}
s := grpc.NewServer()
pb.RegisterGreetingServiceServer(s, &greetingServiceServer{})
log.Fatal(s.Serve(lis))
}

view raw

main.go

hosted with ❤ by GitHub

Greeting Protocol Buffers

Shown below is the greeting source protocol buffers .proto file. The greeting response struct, originally defined in the services, remains largely unchanged (gist). The UI client responses will look identical.


syntax = "proto3";
package greeting;
import "google/api/annotations.proto";
message Greeting {
string id = 1;
string service = 2;
string message = 3;
string created = 4;
}
message GreetingRequest {
}
message GreetingResponse {
repeated Greeting greeting = 1;
}
service GreetingService {
rpc Greeting (GreetingRequest) returns (GreetingResponse) {
option (google.api.http) = {
get: "/api/v1/greeting"
};
}
}

view raw

greeting.proto

hosted with ❤ by GitHub

When compiled with protoc,  the Go-based protocol compiler plugin, the original 27 lines of source code swells to almost 270 lines of generated data access classes that are easier to use programmatically.

# Generate gRPC stub (.pb.go)
protoc -I /usr/local/include -I. \
  -I ${GOPATH}/src \
  -I ${GOPATH}/src/github.com/grpc-ecosystem/grpc-gateway/third_party/googleapis \
  --go_out=plugins=grpc:. \
  greeting.proto

# Generate reverse-proxy (.pb.gw.go)
protoc -I /usr/local/include -I. \
  -I ${GOPATH}/src \
  -I ${GOPATH}/src/github.com/grpc-ecosystem/grpc-gateway/third_party/googleapis \
  --grpc-gateway_out=logtostderr=true:. \
  greeting.proto

# Generate swagger definitions (.swagger.json)
protoc -I /usr/local/include -I. \
  -I ${GOPATH}/src \
  -I ${GOPATH}/src/github.com/grpc-ecosystem/grpc-gateway/third_party/googleapis \
  --swagger_out=logtostderr=true:. \
  greeting.proto

Below is a small snippet of that compiled code, for reference. The compiled code is included in the pb-greeting project on GitHub and imported into each microservice and the reverse proxy (gist). We also compile a separate version for the reverse proxy to implement.


// Code generated by protoc-gen-go. DO NOT EDIT.
// source: greeting.proto
package greeting
import (
context "context"
fmt "fmt"
proto "github.com/golang/protobuf/proto"
_ "google.golang.org/genproto/googleapis/api/annotations"
grpc "google.golang.org/grpc"
codes "google.golang.org/grpc/codes"
status "google.golang.org/grpc/status"
math "math"
)
// Reference imports to suppress errors if they are not otherwise used.
var _ = proto.Marshal
var _ = fmt.Errorf
var _ = math.Inf
// This is a compile-time assertion to ensure that this generated file
// is compatible with the proto package it is being compiled against.
// A compilation error at this line likely means your copy of the
// proto package needs to be updated.
const _ = proto.ProtoPackageIsVersion3 // please upgrade the proto package
type Greeting struct {
Id string `protobuf:"bytes,1,opt,name=id,proto3" json:"id,omitempty"`
Service string `protobuf:"bytes,2,opt,name=service,proto3" json:"service,omitempty"`
Message string `protobuf:"bytes,3,opt,name=message,proto3" json:"message,omitempty"`
Created string `protobuf:"bytes,4,opt,name=created,proto3" json:"created,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *Greeting) Reset() { *m = Greeting{} }
func (m *Greeting) String() string { return proto.CompactTextString(m) }
func (*Greeting) ProtoMessage() {}
func (*Greeting) Descriptor() ([]byte, []int) {
return fileDescriptor_6acac03ccd168a87, []int{0}
}
func (m *Greeting) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_Greeting.Unmarshal(m, b)
}
func (m *Greeting) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_Greeting.Marshal(b, m, deterministic)

view raw

greeting.pb.go

hosted with ❤ by GitHub

Using Swagger, we can view the greeting protocol buffers’ single RESTful API resource, exposed with an HTTP GET method. I use the Docker-based version of Swagger UI for viewing protoc generated swagger definitions.

docker run -p 8080:8080 -d --name swagger-ui \
  -e SWAGGER_JSON=/tmp/greeting.swagger.json \
  -v ${GOAPTH}/src/pb-greeting:/tmp swaggerapi/swagger-ui

The Angular UI makes an HTTP GET request to the /api/v1/greeting resource, which is transformed to gRPC and proxied to Service A, where it is handled by the Greeting function.

screen_shot_2019-04-15_at_9_05_23_pm

gRPC Gateway Reverse Proxy

As explained earlier, the gRPC Gateway reverse proxy service is completely new. Specifically, note the following code features in the gist below:

  • Import of the pb-greeting protobuf package;
  • The proxy is hosted on port 80;
  • Request headers, used for distributed tracing with Jaeger, are collected from the incoming HTTP request and passed to Service A in the gRPC context;
  • The proxy is coded as a gRPC client, which calls Service A;
  • Logging is largely unchanged;

The source code for the Reverse Proxy (gist):


// author: Gary A. Stafford
// site: https://programmaticponderings.com
// license: MIT License
// purpose: gRPC Gateway / Reverse Proxy
// reference: https://github.com/grpc-ecosystem/grpc-gateway
package main
import (
"context"
"flag"
lrf "github.com/banzaicloud/logrus-runtime-formatter"
gw "github.com/garystafford/pb-greeting"
"github.com/grpc-ecosystem/grpc-gateway/runtime"
log "github.com/sirupsen/logrus"
"google.golang.org/grpc"
"google.golang.org/grpc/metadata"
"net/http"
"os"
)
func injectHeadersIntoMetadata(ctx context.Context, req *http.Request) metadata.MD {
//https://aspenmesh.io/2018/04/tracing-grpc-with-istio/
var (
otHeaders = []string{
"x-request-id",
"x-b3-traceid",
"x-b3-spanid",
"x-b3-parentspanid",
"x-b3-sampled",
"x-b3-flags",
"x-ot-span-context"}
)
var pairs []string
for _, h := range otHeaders {
if v := req.Header.Get(h); len(v) > 0 {
pairs = append(pairs, h, v)
}
}
return metadata.Pairs(pairs)
}
type annotator func(context.Context, *http.Request) metadata.MD
func chainGrpcAnnotators(annotators annotator) annotator {
return func(c context.Context, r *http.Request) metadata.MD {
var mds []metadata.MD
for _, a := range annotators {
mds = append(mds, a(c, r))
}
return metadata.Join(mds)
}
}
func run() error {
ctx := context.Background()
ctx, cancel := context.WithCancel(ctx)
defer cancel()
annotators := []annotator{injectHeadersIntoMetadata}
mux := runtime.NewServeMux(
runtime.WithMetadata(chainGrpcAnnotators(annotators)),
)
opts := []grpc.DialOption{grpc.WithInsecure()}
err := gw.RegisterGreetingServiceHandlerFromEndpoint(ctx, mux, "service-a:50051", opts)
if err != nil {
return err
}
return http.ListenAndServe(":80", mux)
}
func getEnv(key, fallback string) string {
if value, ok := os.LookupEnv(key); ok {
return value
}
return fallback
}
func init() {
formatter := lrf.Formatter{ChildFormatter: &log.JSONFormatter{}}
formatter.Line = true
log.SetFormatter(&formatter)
log.SetOutput(os.Stdout)
level, err := log.ParseLevel(getEnv("LOG_LEVEL", "info"))
if err != nil {
log.Error(err)
}
log.SetLevel(level)
}
func main() {
flag.Parse()
if err := run(); err != nil {
log.Fatal(err)
}
}

view raw

main.go

hosted with ❤ by GitHub

Below, in the Stackdriver logs, we see an example of a set of HTTP request headers in the JSON payload, which are propagated upstream to gRPC-based Go services from the gRPC Gateway’s reverse proxy. Header propagation ensures the request produces a complete distributed trace across the complete service call chain.

screen_shot_2019-04-15_at_11_10_50_pm

Istio VirtualService and CORS

According to feedback in the project’s GitHub Issues, the gRPC Gateway does not directly support Cross-Origin Resource Sharing (CORS) policy. In my own experience, the gRPC Gateway cannot handle OPTIONS HTTP method requests, which must be issued by the Angular 7 web UI. Therefore, I have offloaded CORS responsibility to Istio, using the VirtualService resource’s CorsPolicy configuration. This makes CORS much easier to manage than coding CORS configuration into service code (gist):


apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
name: service-rev-proxy
spec:
hosts:
api.dev.example-api.com
gateways:
demo-gateway
http:
match:
uri:
prefix: /
route:
destination:
port:
number: 80
host: service-rev-proxy.dev.svc.cluster.local
weight: 100
corsPolicy:
allowOrigin:
"*"
allowMethods:
OPTIONS
GET
allowCredentials: true
allowHeaders:
"*"

Set-up and Installation

To deploy the microservices platform to GKE, follow the detailed instructions in part one of the post, Kubernetes-based Microservice Observability with Istio Service Mesh: Part 1, or Azure Kubernetes Service (AKS) Observability with Istio Service Mesh for AKS.

  1. Create the external MongoDB Atlas database and CloudAMQP RabbitMQ clusters;
  2. Modify the Kubernetes resource files and bash scripts for your own environments;
  3. Create the managed GKE or AKS cluster on GCP or Azure;
  4. Configure and deploy Istio to the managed Kubernetes cluster, using Helm;
  5. Create DNS records for the platform’s exposed resources;
  6. Deploy the Go-based microservices, gRPC Gateway reverse proxy, Angular UI, and associated resources to Kubernetes cluster;
  7. Test and troubleshoot the platform deployment;
  8. Observe the results;

The Three Pillars

As introduced in the first post, logs, metrics, and traces are often known as the three pillars of observability. These are the external outputs of the system, which we may observe. As modern distributed systems grow ever more complex, the ability to observe those systems demands equally modern tooling that was designed with this level of complexity in mind. Traditional logging and monitoring systems often struggle with today’s hybrid and multi-cloud, polyglot language-based, event-driven, container-based and serverless, infinitely-scalable, ephemeral-compute platforms.

Tools like Istio Service Mesh attempt to solve the observability challenge by offering native integrations with several best-of-breed, open-source telemetry tools. Istio’s integrations include Jaeger for distributed tracing, Kiali for Istio service mesh-based microservice visualization and monitoring, and Prometheus and Grafana for metric collection, monitoring, and alerting. Combined with cloud platform-native monitoring and logging services, such as Stackdriver for GKE, CloudWatch for Amazon’s EKS, or Azure Monitor logs for AKS, and we have a complete observability solution for modern, distributed, Cloud-based applications.

Pillar 1: Logging

Moving from JSON over HTTP to gRPC does not require any changes to the logging configuration of the Go-based service code or Kubernetes resources.

Stackdriver with Logrus

As detailed in part two of the last post, Kubernetes-based Microservice Observability with Istio Service Mesh, our logging strategy for the eight Go-based microservices and the reverse proxy continues to be the use of Logrus, the popular structured logger for Go, and Banzai Cloud’s logrus-runtime-formatter.

If you recall, the Banzai formatter automatically tags log messages with runtime/stack information, including function name and line number; extremely helpful when troubleshooting. We are also using Logrus’ JSON formatter. Below, in the Stackdriver console, note how each log entry below has the JSON payload contained within the message with the log level, function name, lines on which the log entry originated, and the message.

screen_shot_2019-04-15_at_11_10_36_pm

Below, we see the details of a specific log entry’s JSON payload. In this case, we can see the request headers propagated from the downstream service.

screen_shot_2019-04-15_at_11_10_50_pm

Pillar 2: Metrics

Moving from JSON over HTTP to gRPC does not require any changes to the metrics configuration of the Go-based service code or Kubernetes resources.

Prometheus

Prometheus is a completely open source and community-driven systems monitoring and alerting toolkit originally built at SoundCloud, circa 2012. Interestingly, Prometheus joined the Cloud Native Computing Foundation (CNCF) in 2016 as the second hosted-project, after Kubernetes.

screen_shot_2019-04-15_at_11_04_54_pm

Grafana

Grafana describes itself as the leading open source software for time series analytics. According to Grafana Labs, Grafana allows you to query, visualize, alert on, and understand your metrics no matter where they are stored. You can easily create, explore, and share visually-rich, data-driven dashboards. Grafana allows users to visually define alert rules for your most important metrics. Grafana will continuously evaluate rules and can send notifications.

According to Istio, the Grafana add-on is a pre-configured instance of Grafana. The Grafana Docker base image has been modified to start with both a Prometheus data source and the Istio Dashboard installed. Below, we see two of the pre-configured dashboards, the Istio Mesh Dashboard and the Istio Performance Dashboard.

screen_shot_2019-04-15_at_10_45_38_pm

screen_shot_2019-04-15_at_10_46_03_pm

Pillar 3: Traces

Moving from JSON over HTTP to gRPC did require a complete re-write of the tracing logic in the service code. In fact, I spent the majority of my time ensuring the correct headers were propagated from the Istio Ingress Gateway to the gRPC Gateway reverse proxy, to Service A in the gRPC context, and upstream to all the dependent, gRPC-based services. I am sure there are a number of optimization in my current code, regarding the correct handling of traces and how this information is propagated across the service call stack.

Jaeger

According to their website, Jaeger, inspired by Dapper and OpenZipkin, is a distributed tracing system released as open source by Uber Technologies. It is used for monitoring and troubleshooting microservices-based distributed systems, including distributed context propagation, distributed transaction monitoring, root cause analysis, service dependency analysis, and performance and latency optimization. The Jaeger website contains an excellent overview of Jaeger’s architecture and general tracing-related terminology.

Below we see the Jaeger UI Traces View. In it, we see a series of traces generated by hey, a modern load generator and benchmarking tool, and a worthy replacement for Apache Bench (ab). Unlike abhey supports HTTP/2. The use of hey was detailed in the previous post.

screen_shot_2019-04-18_at_6_08_21_pm

A trace, as you might recall, is an execution path through the system and can be thought of as a directed acyclic graph (DAG) of spans. If you have worked with systems like Apache Spark, you are probably already familiar with DAGs.

screen_shot_2019-04-15_at_11_06_13_pm

Below we see the Jaeger UI Trace Detail View. The example trace contains 16 spans, which encompasses nine components – seven of the eight Go-based services, the reverse proxy, and the Istio Ingress Gateway. The trace and the spans each have timings. The root span in the trace is the Istio Ingress Gateway. In this demo, traces do not span the RabbitMQ message queues. This means you would not see a trace which includes the decoupled, message-based communications between Service D to Service F, via the RabbitMQ.

screen_shot_2019-04-15_at_11_08_07_pm

Within the Jaeger UI Trace Detail View, you also have the ability to drill into a single span, which contains additional metadata. Metadata includes the URL being called, HTTP method, response status, and several other headers.

screen_shot_2019-04-15_at_11_08_22_pm

Microservice Observability

Moving from JSON over HTTP to gRPC does not require any changes to the Kiali configuration of the Go-based service code or Kubernetes resources.

Kiali

According to their website, Kiali provides answers to the questions: What are the microservices in my Istio service mesh, and how are they connected? Kiali works with Istio, in OpenShift or Kubernetes, to visualize the service mesh topology, to provide visibility into features like circuit breakers, request rates and more. It offers insights about the mesh components at different levels, from abstract Applications to Services and Workloads.

The Graph View in the Kiali UI is a visual representation of the components running in the Istio service mesh. Below, filtering on the cluster’s dev Namespace, we should observe that Kiali has mapped all components in the platform, along with rich metadata, such as their version and communication protocols.

screen_shot_2019-04-18_at_6_03_38_pm

Using Kiali, we can confirm our service-to-service IPC protocol is now gRPC instead of the previous HTTP.

screen_shot_2019-04-14_at_11_15_49_am

Conclusion

Although converting from JSON over HTTP to protocol buffers with gRPC required major code changes to the services, it did not impact the high-level observability we have of those services using the tools provided by Istio, including Prometheus, Grafana, Jaeger, and Kiali.

All opinions expressed in this post are my own and not necessarily the views of my current or past employers or their clients.

, , , , , , , , , , , , , , , , ,

2 Comments

Kubernetes-based Microservice Observability with Istio Service Mesh on Google Kubernetes Engine (GKE): Part 2

In this two-part post, we are exploring the set of observability tools that are part of the latest version of Istio Service Mesh. These tools include Prometheus and Grafana for metric collection, monitoring, and alerting, Jaeger for distributed tracing, and Kiali for Istio service-mesh-based microservice visualization. Combined with cloud platform-native monitoring and logging services, such as Stackdriver for Google Kubernetes Engine (GKE) on Google Cloud Platform (GCP), we have a complete observability solution for modern, distributed applications.

Reference Platform

To demonstrate Istio’s observability tools, in part one of the post, we deployed a reference microservices platform, written in Go, to GKE on GCP. The platform is comprised of (14) components, including (8) Go-based microservices, labeled generically as Service A through Service H, (1) Angular 7, TypeScript-based front-end, (4) MongoDB databases, and (1) RabbitMQ queue for event queue-based communications.

Golang Service Diagram with Proxy v2.png

The reference platform is designed to generate HTTP-based service-to-service, TCP-based service-to-database (MongoDB), and TCP-based service-to-queue-to-service (RabbitMQ) IPC (inter-process communication). Service A calls Service B and Service C, Service B calls Service D and Service E, Service D produces a message on a RabbitMQ queue that Service F consumes and writes to MongoDB, and so on. The goal is to observe these distributed communications using Istio’s observability tools when the system is deployed to Kubernetes.

Pillar 1: Logging

If you recall, logs, metrics, and traces are often known as the three pillars of observability. Since we are using GKE on GCP, we will look at Google’s Stackdriver Logging. According to Google, Stackdriver Logging allows you to store, search, analyze, monitor, and alert on log data and events from GCP and even AWS. Although Stackdriver logging is not an Istio observability feature, logging is an essential pillar of overall observability strategy.

Go-based Microservice Logging

An effective logging strategy starts with what you log, when you log, and how you log. As part of our logging strategy, the eight Go-based microservices are using Logrus, a popular structured logger for Go. The microservices also implement Banzai Cloud’s logrus-runtime-formatter. There is an excellent article on the formatter, Golang runtime Logrus Formatter. These two logging packages give us greater control over what we log, when we log, and how we log information about our microservices. The recommended configuration of the packages is minimal.

func init() {
   formatter := runtime.Formatter{ChildFormatter: &log.JSONFormatter{}}
   formatter.Line = true
   log.SetFormatter(&formatter)
   log.SetOutput(os.Stdout)
   level, err := log.ParseLevel(getEnv("LOG_LEVEL", "info"))
   if err != nil {
      log.Error(err)
   }
   log.SetLevel(level)
}

Logrus provides several advantages over Go’s simple logging package, log. Log entries are not only for Fatal errors, nor should all verbose log entries be output in a Production environment. The post’s microservices are taking advantage of Logrus’ ability to log at seven levels: Trace, Debug, Info, Warning, Error, Fatal, and Panic. We have also variabilized the log level, allowing it to be easily changed in the Kubernetes Deployment resource at deploy-time.

The microservices also take advantage of Banzai Cloud’s logrus-runtime-formatter. The Banzai formatter automatically tags log messages with runtime/stack information, including function name and line number; extremely helpful when troubleshooting. We are also using Logrus’ JSON formatter. Note how each log entry below has the JSON payload contained within the message.

screen_shot_2019-03-14_at_9_28_09_pm

Client-side Angular UI Logging

Likewise, we have enhanced the logging of the Angular UI using NGX Logger. NGX Logger is a popular, simple logging module, currently for Angular 6 and 7. It allows “pretty print” to the console, as well as allowing log messages to be POSTed to a URL for server-side logging. For this demo, we will only print to the console. Similar to Logrus, NGX Logger supports multiple log levels: Trace, Debug, Info, Warning, Error, Fatal, and Off. Instead of just outputting messages, NGX Logger allows us to output properly formatted log entries to the web browser’s console.

The level of logs output is dependent on the environment, Production or not Production. Below we see a combination of log entries in the local development environment, including Debug, Info, and Error.

screen_shot_2019-03-17_at_11_58_31_am

Again below, we see the same page in the GKE-based Production environment. Note the absence of Debug-level log entries output to the console, without changing the configuration. We would not want to expose potentially sensitive information in verbose log output to our end-users in Production.

screen_shot_2019-03-17_at_11_58_45_am

Controlling logging levels is accomplished by adding the following ternary operator to the app.module.ts file.

    LoggerModule.forRoot({
      level: !environment.production ? 
        NgxLoggerLevel.DEBUG : NgxLoggerLevel.INFO,
        serverLogLevel: NgxLoggerLevel.INFO
    })

Pillar 2: Metrics

For metrics, we will examine at Prometheus and Grafana. Both these leading tools were installed as part of the Istio deployment.

Prometheus

Prometheus is a completely open source and community-driven systems monitoring and alerting toolkit originally built at SoundCloud, circa 2012. Interestingly, Prometheus joined the Cloud Native Computing Foundation (CNCF) in 2016 as the second hosted-project, after Kubernetes.

According to Istio, Istio’s Mixer comes with a built-in Prometheus adapter that exposes an endpoint serving generated metric values. The Prometheus add-on is a Prometheus server that comes pre-configured to scrape Mixer endpoints to collect the exposed metrics. It provides a mechanism for persistent storage and querying of Istio metrics.

With the GKE cluster running, Istio installed, and the platform deployed, the easiest way to access Grafana, is using kubectl port-forward to connect to the Prometheus server. According to Google, Kubernetes port forwarding allows using a resource name, such as a service name, to select a matching pod to port forward to since Kubernetes v1.10. We forward a local port to a port on the Prometheus pod.

screen_shot_2019-03-15_at_7_32_23_pm.png

You may connect using Google Cloud Shell or copy and paste the command to your local shell to connect from a local port. Below are the port forwarding commands used in this post.

# Grafana
kubectl port-forward -n istio-system \
  $(kubectl get pod -n istio-system -l app=grafana \
  -o jsonpath='{.items[0].metadata.name}') 3000:3000 &
  
# Prometheus
kubectl -n istio-system port-forward \
  $(kubectl -n istio-system get pod -l app=prometheus \
  -o jsonpath='{.items[0].metadata.name}') 9090:9090 &
  
# Jaeger
kubectl port-forward -n istio-system \
$(kubectl get pod -n istio-system -l app=jaeger \
-o jsonpath='{.items[0].metadata.name}') 16686:16686 &
  
# Kiali
kubectl -n istio-system port-forward \
  $(kubectl -n istio-system get pod -l app=kiali \
  -o jsonpath='{.items[0].metadata.name}') 20001:20001 &

According to Prometheus, user select and aggregate time series data in real time using a functional query language called PromQL (Prometheus Query Language). The result of an expression can either be shown as a graph, viewed as tabular data in Prometheus’s expression browser, or consumed by external systems through Prometheus’ HTTP API. The expression browser includes a drop-down menu with all available metrics as a starting point for building queries. Shown below are a few PromQL examples used in this post.

up{namespace="dev",pod_name=~"service-.*"}

container_memory_max_usage_bytes{namespace="dev",container_name=~"service-.*"}
container_memory_max_usage_bytes{namespace="dev",container_name="service-f"}
container_network_transmit_packets_total{namespace="dev",pod_name=~"service-e-.*"}

istio_requests_total{destination_service_namespace="dev",connection_security_policy="mutual_tls",destination_app="service-a"}
istio_response_bytes_count{destination_service_namespace="dev",connection_security_policy="mutual_tls",source_app="service-a"}

Below, in the Prometheus console, we see an example graph of the eight Go-based microservices, deployed to GKE. The graph displays the container memory usage over a five minute period. For half the time period, the services were at rest. For the second half of the period, the services were under a simulated load, using hey. Viewing the memory profile of the services under load can help us determine the container memory minimums and limits, which impact Kubernetes’ scheduling of workloads on the GKE cluster. Metrics such as this might also uncover memory leaks or routing issues, such as the service below, which appears to be consuming 25-50% more memory than its peers.

screen_shot_2019-03-15_at_7_15_24_pm

Another example, below, we see a graph representing the total Istio requests to Service A in the dev Namespace, while the system was under load.

screen_shot_2019-03-15_at_5_23_26_pm

Compare the graph view above with the same metrics displayed the console view. The multiple entries reflect the multiple instances of Service A in the dev Namespace, over the five-minute period being examined. The values in the individual metric elements indicate the latest metric that was collected.

screen_shot_2019-03-15_at_5_24_12_pm

Prometheus also collects basic metrics about Istio components, Kubernetes components, and GKE cluster. Below we can view the total memory of each n1-standard-2 VM nodes in the GKE cluster.

screen_shot_2019-03-15_at_8_15_03_pm.png

Grafana

Grafana describes itself as the leading open source software for time series analytics. According to Grafana Labs, Grafana allows you to query, visualize, alert on, and understand your metrics no matter where they are stored. You can easily create, explore, and share visually-rich, data-driven dashboards. Grafana also users to visually define alert rules for your most important metrics. Grafana will continuously evaluate rules and can send notifications.

According to Istio, the Grafana add-on is a pre-configured instance of Grafana. The Grafana Docker base image has been modified to start with both a Prometheus data source and the Istio Dashboard installed. The base install files for Istio, and Mixer in particular, ship with a default configuration of global (used for every service) metrics. The pre-configured Istio Dashboards are built to be used in conjunction with the default Istio metrics configuration and a Prometheus back-end.

Below, we see the pre-configured Istio Workload Dashboard. This particular section of the larger dashboard has been filtered to show outbound service metrics in the dev Namespace of our GKE cluster.

screen_shot_2019-03-13_at_10_44_54_pm

Similarly, below, we see the pre-configured Istio Service Dashboard. This particular section of the larger dashboard is filtered to show client workloads metrics for the Istio Ingress Gateway in our GKE cluster.

screen_shot_2019-03-13_at_10_43_11_pm

Lastly, we see the pre-configured Istio Mesh Dashboard. This dashboard is filtered to show a table view of metrics for components deployed to our GKE cluster.

screen_shot_2019-03-13_at_10_34_16_pm

An effective observability strategy must include more than just the ability to visualize results. An effective strategy must also include the ability to detect anomalies and notify (alert) the appropriate resources or take action directly to resolve incidents. Grafana, like Prometheus, is capable of alerting and notification. You visually define alert rules for your critical metrics. Grafana will continuously evaluate metrics against the rules and send notifications when pre-defined thresholds are breached.

Prometheus supports multiple, popular notification channels, including PagerDuty, HipChat, Email, Kafka, and Slack. Below, we see a new Prometheus notification channel, which sends alert notifications to a Slack support channel.

screen_shot_2019-03-13_at_10_55_09_pm

Prometheus is able to send detailed text-based and visual notifications.

screen_shot_2019-03-14_at_6_06_22_pm

Pillar 3: Traces

According to the Open Tracing website, distributed tracing, also called distributed request tracing, is a method used to profile and monitor applications, especially those built using a microservices architecture. Distributed tracing helps pinpoint where failures occur and what causes poor performance.

According to Istio, although Istio proxies are able to automatically send spans, applications need to propagate the appropriate HTTP headers, so that when the proxies send span information, the spans can be correlated correctly into a single trace. To accomplish this, an application needs to collect and propagate the following headers from the incoming request to any outgoing requests.

  • x-request-id
  • x-b3-traceid
  • x-b3-spanid
  • x-b3-parentspanid
  • x-b3-sampled
  • x-b3-flags
  • x-ot-span-context

The x-b3 headers originated as part of the Zipkin project. The B3 portion of the header is named for the original name of Zipkin, BigBrotherBird. Passing these headers across service calls is known as B3 propagation. According to Zipkin, these attributes are propagated in-process, and eventually downstream (often via HTTP headers), to ensure all activity originating from the same root are collected together.

In order to demonstrate distributed tracing with Jaeger, I have modified Service A, Service B, and Service E. These are the three services that make HTTP requests to other upstream services. I have added the following code in order to propagate the headers from one service to the next. The Istio sidecar proxy (Envoy) generates the first headers. It is critical that you only propagate the headers that are present in the downstream request and have a value, as the code below does. Propagating an empty header will break the distributed tracing.

headers := []string{
  "x-request-id",
  "x-b3-traceid",
  "x-b3-spanid",
  "x-b3-parentspanid",
  "x-b3-sampled",
  "x-b3-flags",
  "x-ot-span-context",
}

for _, header := range headers {
  if r.Header.Get(header) != "" {
    req.Header.Add(header, r.Header.Get(header))
  }
}

Below, in the highlighted Stackdriver log entry’s JSON payload, we see the required headers, propagated from the root span, which contained a value, being passed from Service A to Service C in the upstream request.

screen_shot_2019-03-19_at_11_01_26_pm

Jaeger

According to their website, Jaeger, inspired by Dapper and OpenZipkin, is a distributed tracing system released as open source by Uber Technologies. It is used for monitoring and troubleshooting microservices-based distributed systems, including distributed context propagation, distributed transaction monitoring, root cause analysis, service dependency analysis, and performance and latency optimization. The Jaeger website contains a good overview of Jaeger’s architecture and general tracing-related terminology.

Below we see the Jaeger UI Traces View. The UI shows the results of a search for the Istio Ingress Gateway service over a period of about forty minutes. We see a timeline of traces across the top with a list of trace results below. As discussed on the Jaeger website, a trace is composed of spans. A span represents a logical unit of work in Jaeger that has an operation name. A trace is an execution path through the system and can be thought of as a directed acyclic graph (DAG) of spans. If you have worked with systems like Apache Spark, you are probably already familiar with DAGs.

screen_shot_2019-03-19_at_8_21_14_pm

Below we see the Jaeger UI Trace Detail View. The example trace contains 16 spans, which encompasses eight services – seven of the eight Go-based services and the Istio Ingress Gateway. The trace and the spans each have timings. The root span in the trace is the Istio Ingress Gateway. The Angular UI, loaded in the end user’s web browser, calls the mesh’s edge service, Service A, through the Istio Ingress Gateway.  From there, we see the expected flow of our service-to-service IPC. Service A calls Services B and C. Service B calls Service E, which calls Service G and Service H. In this demo, traces do not span the RabbitMQ message queues. This means you would not see a trace which includes a call from Service D to Service F, via the RabbitMQ.

screen_shot_2019-03-19_at_8_21_31_pm

Within the Jaeger UI Trace Detail View, you also have the ability to drill into a single span, which contains additional metadata. Metadata includes the URL being called, HTTP method, response status, and several other headers.

screen_shot_2019-03-19_at_8_22_16_pm

The latest version of Jaeger also includes a Compare feature and two Dependencies views, Force-Directed Graph, and DAG. I find both views rather primitive compared to Kiali, and more similar to Service Graph. Lacking access to Kiali, the views are marginally useful as a dependency graph.

screen_shot_2019-03-19_at_8_23_03_pm

Kiali: Microservice Observability

According to their website, Kiali provides answers to the questions: What are the microservices in my Istio service mesh, and how are they connected? There is a common Kubernetes Secret that controls access to the Kiali API and UI. The default login is admin, the password is 1f2d1e2e67df.
screen_shot_2019-03-13_at_8_33_35_pm

Logging into Kiali, we see the Overview menu entry, which provides a global view of all namespaces within the Istio service mesh and the number of applications within each namespace.

screen_shot_2019-03-18_at_11_38_36_pm

The Graph View in the Kiali UI is a visual representation of the components running in the Istio service mesh. Below, filtering on the cluster’s dev Namespace, we can observe that Kiali has mapped 8 applications (workloads), 10 services, and 24 edges (a graph term). Specifically, we see the Istio Ingres Proxy at the edge of the service mesh, the Angular UI, the eight Go-based microservices and their Envoy proxy sidecars that are taking traffic (Service F did not take any direct traffic from another service in this example), the external MongoDB Atlas cluster, and the external CloudAMQP cluster. Note how service-to-service traffic flows, with Istio, from the service to its sidecar proxy, to the other service’s sidecar proxy, and finally to the service.

screen_shot_2019-03-18_at_11_40_16_pm

Below, we see a similar view of the service mesh, but this time, there are failures between the Istio Ingress Gateway and the Service A, shown in red. We can also observe overall metrics for the HTTP traffic, such as total requests/minute, errors, and status codes.

screen_shot_2019-03-13_at_8_45_36_pm

Kiali can also display average requests times and other metrics for each edge in the graph (the communication between two components).

screen_shot_2019-03-13_at_8_51_18_pm

Kiali can also show application versions deployed, as shown below, the microservices are a combination of versions 1.3 and 1.4.

screen_shot_2019-03-18_at_11_43_41_pm

Focusing on the external MongoDB Atlas cluster, Kiali also allows us to view TCP traffic between the four services within the service mesh and the external cluster.

screen_shot_2019-03-13_at_8_46_46_pm

The Applications menu entry lists all the applications and their error rates, which can be filtered by Namespace and time interval. Here we see that the Angular UI was producing errors at the rate of 16.67%.

screen_shot_2019-03-18_at_11_43_48_pm

On both the Applications and Workloads menu entry, we can drill into a component to view additional details, including the overall health, number of Pods, Services, and Destination Services. Below, we see details for Service B in the dev Namespace.

screen_shot_2019-03-18_at_11_44_37_pm

The Workloads detailed view also includes inbound and outbound metrics. Below, the outbound volume, duration, and size metrics, for Service A in the dev Namespace.

screen_shot_2019-03-19_at_8_06_50_pm

Finally, Kiali presents an Istio Config menu entry. The Istio Config menu entry displays a list of all of the available Istio configuration objects that exist in the user’s environment.

screen_shot_2019-03-19_at_8_38_08_pm

Oftentimes, I find Kiali to be my first stop when troubleshooting platform issues. Once I identify the specific components or communication paths having issues, I can search the Stackdriver logs and the Prometheus metrics, through the Grafana dashboard.

Conclusion

In this two-part post, we have explored the current set of observability tools, which are part of the latest version of Istio Service Mesh. These tools included Prometheus and Grafana for metric collection, monitoring, and alerting, Jaeger for distributed tracing, and Kiali for Istio service-mesh-based microservice visualization. Combined with cloud platform-native monitoring and logging services, such as Stackdriver for Google Kubernetes Engine (GKE) on Google Cloud Platform (GCP), we have a complete observability solution for modern, distributed applications.

All opinions expressed in this post are my own and not necessarily the views of my current or past employers or their clients.

, , , , , , , , , , , , , ,

4 Comments

Managing Applications Across Multiple Kubernetes Environments with Istio: Part 2

In this two-part post, we are exploring the creation of a GKE cluster, replete with the latest version of Istio, often referred to as IoK (Istio on Kubernetes). We will then deploy, perform integration testing, and promote an application across multiple environments within the cluster.

Part Two

In Part One of this post, we created a Kubernetes cluster on the Google Cloud Platform, installed Istio, provisioned a PostgreSQL database, and configured DNS for routing. Under the assumption that v1 of the Election microservice had already been released to Production, we deployed v1 to each of the three namespaces.

In Part Two of this post, we will learn how to utilize the advanced API testing capabilities of Postman and Newman to ensure v2 is ready for UAT and release to Production. We will deploy and perform integration testing of a new v2 of the Election microservice, locally on Kubernetes Minikube. Once confident v2 is functioning as intended, we will promote and test v2 across the dev, test, and uat namespaces.

Source Code

As a reminder, all source code for this post can be found on GitHub. The project’s README file contains a list of the Election microservice’s endpoints. To get started quickly, use one of the two following options (gist).

# clone the official v3.0.0 release for this post
git clone --depth 1 --branch v3.0.0 \
https://github.com/garystafford/spring-postgresql-demo.git \
&& cd spring-postgresql-demo \
&& git checkout -b v3.0.0
# clone the latest version of code (newer than article)
git clone --depth 1 --branch master \
https://github.com/garystafford/spring-postgresql-demo.git \
&& cd spring-postgresql-demo

Code samples in this post are displayed as Gists, which may not display correctly on some mobile and social media browsers. Links to gists are also provided.

This project includes a kubernetes sub-directory, containing all the Kubernetes resource files and scripts necessary to recreate the example shown in the post.

Testing Locally with Minikube

Deploying to GKE, no matter how automated, takes time and resources, whether those resources are team members or just compute and system resources. Before deploying v2 of the Election service to the non-prod GKE cluster, we should ensure that it has been thoroughly tested locally. Local testing should include the following test criteria:

  1. Source code builds successfully
  2. All unit-tests pass
  3. A new Docker Image can be created from the build artifact
  4. The Service can be deployed to Kubernetes (Minikube)
  5. The deployed instance can connect to the database and execute the Liquibase changesets
  6. The deployed instance passes a minimal set of integration tests

Minikube gives us the ability to quickly iterate and test an application, as well as the Kubernetes and Istio resources required for its operation, before promoting to GKE. These resources include Kubernetes Namespaces, Secrets, Deployments, Services, Route Rules, and Istio Ingresses. Since Minikube is just that, a miniature version of our GKE cluster, we should be able to have a nearly one-to-one parity between the Kubernetes resources we apply locally and those applied to GKE. This post assumes you have the latest version of Minikube installed, and are familiar with its operation.

This project includes a minikube sub-directory, containing all the Kubernetes resource files and scripts necessary to recreate the Minikube deployment example shown in this post. The three included scripts are designed to be easily adapted to a CI/CD DevOps workflow. You may need to modify the scripts to match your environment’s configuration. Note this Minikube-deployed version of the Election service relies on the external Amazon RDS database instance.

Local Database Version

To eliminate the AWS costs, I have included a second, alternate version of the Minikube Kubernetes resource files, minikube_db_local This version deploys a single containerized PostgreSQL database instance to Minikube, as opposed to relying on the external Amazon RDS instance. Be aware, the database does not have persistent storage or an Istio sidecar proxy.

istio_100.png

Minikube Cluster

If you do not have a running Minikube cluster, create one with the minikube start command.

istio_081

Minikube allows you to use normal kubectl CLI commands to interact with the Minikube cluster. Using the kubectl get nodes command, we should see a single Minikube node running the latest Kubernetes v1.10.0.

istio_082

Istio on Minikube

Next, install Istio following Istio’s online installation instructions. A basic Istio installation on Minikube, without the additional add-ons, should only require a single Istio install script.

istio_083

If successful, you should observe a new istio-system namespace, containing the four main Istio components: istio-ca, istio-ingress, istio-mixer, and istio-pilot.

istio_084

Deploy v2 to Minikube

Next, create a Minikube Development environment, consisting of a dev Namespace, Istio Ingress, and Secret, using the part1-create-environment.sh script. Next, deploy v2 of the Election service to thedev Namespace, along with an associated Route Rule, using the part2-deploy-v2.sh script. One v2 instance should be sufficient to satisfy the testing requirements.

istio_085

Access to v2 of the Election service on Minikube is a bit different than with GKE. When routing external HTTP requests, there is no load balancer, no external public IP address, and no public DNS or subdomains. To access the single instance of v2 running on Minikube, we use the local IP address of the Minikube cluster, obtained with the minikube ip command. The access port required is the Node Port (nodePort) of the istio-ingress Service. The command is shown below (gist) and included in the part3-smoke-test.sh script.

export GATEWAY_URL="$(minikube ip):"\
"$(kubectl get svc istio-ingress -n istio-system -o 'jsonpath={.spec.ports[0].nodePort}')"
echo $GATEWAY_URL
curl $GATEWAY_URL/v2/actuator/health && echo

The second part of our HTTP request routing is the same as with GKE, relying on an Istio Route Rules. The /v2/ sub-collection resource in the HTTP request URL is rewritten and routed to the v2 election Pod by the Route Rule. To confirm v2 of the Election service is running and addressable, curl the /v2/actuator/health endpoint. Spring Actuator’s /health endpoint is frequently used at the end of a CI/CD server’s deployment pipeline to confirm success. The Spring Boot application can take a few minutes to fully start up and be responsive to requests, depending on the speed of your local machine.

istio_093.png

Using the Kubernetes Dashboard, we should see our deployment of the single Election service Pod is running successfully in Minikube’s dev namespace.

istio_087

Once deployed, we run a battery of integration tests to confirm that the new v2 functionality is working as intended before deploying to GKE. In the next section of this post, we will explore the process creating and managing Postman Collections and Postman Environments, and how to automate those Collections of tests with Newman and Jenkins.

istio_088

Integration Testing

The typical reason an application is deployed to lower environments, prior to Production, is to perform application testing. Although definitions vary across organizations, testing commonly includes some or all of the following types: Integration Testing, Functional Testing, System Testing, Stress or Load Testing, Performance Testing, Security Testing, Usability Testing, Acceptance Testing, Regression Testing, Alpha and Beta Testing, and End-to-End Testing. Test teams may also refer to other testing forms, such as Whitebox (Glassbox), Blackbox Testing, Smoke, Validation, or Sanity Testing, and Happy Path Testing.

The site, softwaretestinghelp.com, defines integration testing as, ‘testing of all integrated modules to verify the combined functionality after integration is termed so. Modules are typically code modules, individual applications, client and server applications on a network, etc. This type of testing is especially relevant to client/server and distributed systems.

In this post, we are concerned that our integrated modules are functioning cohesively, primarily the Election service, Amazon RDS database, DNS, Istio Ingress, Route Rules, and the Istio sidecar Proxy. Unlike Unit Testing and Static Code Analysis (SCA), which is done pre-deployment, integration testing requires an application to be deployed and running in an environment.

Postman

I have chosen Postman, along with Newman, to execute a Collection of integration tests before promoting to the next environment. The integration tests confirm the deployed application’s name and version. The integration tests then perform a series of HTTP GET, POST, PUT, PATCH, and DELETE actions against the service’s resources. The integration tests verify a successful HTTP response code is returned, based on the type of request made.

istio_055

Postman tests are written in JavaScript, similar to other popular, modern testing frameworks. Postman offers advanced features such as test-chaining. Tests can be chained together through the use of environment variables to store response values and pass them onto to other tests. Values shared between tests are also stored in the Postman Environments. Below, we store the ID of the new candidate, the result of an HTTP POST to the /candidates endpoint. We then use the stored candidate ID in proceeding HTTP GET, PUT, and PATCH test requests to the same /candidates endpoint.

istio_056

Environment-specific variables, such as the resource host, port, and environment sub-collection resource, are abstracted and stored as key/value pairs within Postman Environments, and called through variables in the request URL and within the tests. Thus, the same Postman Collection of tests may be run against multiple environments using different Postman Environments.

istio_057

Postman Runner allows us to run multiple iterations of our Collection. We also have the option to build in delays between tests. Lastly, Postman Runner can load external JSON and CSV formatted test data, which is beyond the scope of this post.

istio_058

Postman contains a simple Run Summary UI for viewing test results.

istio_060

Test Automation

To support running tests from the command line, Postman provides Newman. According to Postman, Newman is a command-line collection runner for Postman. Newman offers the same functionality as Postman’s Collection Runner, all part of the newman CLI. Newman is Node.js module, installed globally as an npm package, npm install newman --global.

Typically, Development and Testing teams compose Postman Collections and define Postman Environments, locally. Teams run their tests locally in Postman, during their development cycle. Then, those same Postman Collections are executed from the command line, or more commonly as part of a CI/CD pipeline, such as with Jenkins.

Below, the same Collection of integration tests ran in the Postman Runner UI, are run from the command line, using Newman.

istio_061

Jenkins

Without a doubt, Jenkins is the leading open-source CI/CD automation server. The building, testing, publishing, and deployment of microservices to Kubernetes is relatively easy with Jenkins. Generally, you would build, unit-test, push a new Docker image, and then deploy your application to Kubernetes using a series of CI/CD pipelines. Below, we see examples of these pipelines using Jenkins Blue Ocean, starting with a continuous integration pipeline, which includes unit-testing and Static Code Analysis (SCA) with SonarQube.

istio_108

Followed by a pipeline to build the Docker Image, using the build artifact from the above pipeline, and pushes the Image to Docker Hub.

istio_109

The third pipeline that demonstrates building the three Kubernetes environments and deploying v1 of the Election service to the dev namespace. This pipeline is just for demonstration purposes; typically, you would separate these functions.

istio_110

Spinnaker

An alternative to Jenkins for the deployment of microservices is Spinnaker, created by Netflix. According to Netflix, ‘Spinnaker is an open source, multi-cloud continuous delivery platform for releasing software changes with high velocity and confidence.’ Spinnaker is designed to integrate easily with Jenkins, dividing responsibilities for continuous integration and delivery, with deployment. Below, Spinnaker two sample deployment pipelines, similar to Jenkins, for deploying v1 and v2 of the Election service to the non-prod GKE cluster.

spin_07

Below, Spinnaker has deployed v2 of the Election service to dev using a Highlander deployment strategy. Subsequently, Spinnaker has deployed v2 to test using a Red/Black deployment strategy, leaving the previously released v1 Server Group in place, in case a rollback is required.

spin_08

Once Spinnaker is has completed the deployment tasks, the Postman Collections of smoke and integration tests are executed by Newman, as part of another Jenkins CI/CD pipeline.

istio_101B.png

In this pipeline, a set of basic smoke tests is run first to ensure the new deployment is running properly, and then the integration tests are executed.

istio_102

In this simple example, we have a three-stage pipeline created from a Jenkinsfile (gist).

#!groovy
def ACCOUNT = "garystafford"
def PROJECT_NAME = "spring-postgresql-demo"
def ENVIRONMENT = "dev" // assumes 'api.dev.voter-demo.com' reachable
pipeline {
agent any
stages {
stage('Checkout SCM') {
steps {
git changelog: true, poll: false,
branch: 'master',
url: "https://github.com/${ACCOUNT}/${PROJECT_NAME}"
}
}
stage('Smoke Test') {
steps {
dir('postman') {
nodejs('nodejs') {
sh "sh ./newman-smoke-tests-${ENVIRONMENT}.sh"
}
junit '**/newman/*.xml'
}
}
}
stage('Integration Tests') {
steps {
dir('postman') {
nodejs('nodejs') {
sh "sh ./newman-integration-tests-${ENVIRONMENT}.sh"
}
junit '**/newman/*.xml'
}
}
}
}
}

Test Results

Newman offers several options for displaying test results. For easy integration with Jenkins, Newman results can be delivered in a format that can be displayed as JUnit test reports. The JUnit test report format, XML, is a popular method of standardizing test results from different testing tools. Below is a truncated example of a test report file (gist).

<?xml version="1.0" encoding="UTF-8"?>
<testsuites name="spring-postgresql-demo-v2" time="13.339000000000002">
<testsuite name="/candidates/{{candidateId}}" id="31cee570-95a1-4768-9ac3-3d714fc7e139" tests="1" time="0.669">
<testcase name="Status code is 200" time="0.669"/>
</testsuite>
<testsuite name="/candidates/{{candidateId}}" id="a5a62fe9-6271-4c89-a076-c95bba458ef8" tests="1" time="0.575">
<testcase name="Status code is 200" time="0.575"/>
</testsuite>
<testsuite name="/candidates/{{candidateId}}" id="2fc4c902-b931-4b35-b28a-7e264f40ee9c" tests="1" time="0.568">
<testcase name="Status code is 204" time="0.568"/>
</testsuite>
<testsuite name="/candidates/summary" id="94fe972e-32f4-4f58-a5d5-999cacdf7460" tests="1" time="0.337">
<testcase name="Status code is 200" time="0.337"/>
</testsuite>
<testsuite name="/candidates/summary/{election}" id="f8f817c8-4785-49f1-8d09-8055b84c4fc0" tests="1" time="0.351">
<testcase name="Status code is 200" time="0.351"/>
</testsuite>
<testsuite name="/candidates/search/findByLastName?lastName=Paul" id="504f8741-e9d2-4f05-b1ad-c14136030f34" tests="1" time="0.256">
<testcase name="Status code is 200" time="0.256"/>
</testsuite>
</testsuites>

Translating Newman test results to JUnit reports allows the percentage of test cases successfully executed, to be tracked over multiple deployments, a universal testing metric. Below we see the JUnit Test Reports Test Result Trend graph for a series of test runs.

istio_103

Deploying to Development

Development environments typically have a rapid turnover of application versions. Many teams use their Development environment as a continuous integration environment, where every commit that successfully builds and passes all unit tests, is deployed. The purpose of the CI deployments is to ensure build artifacts will successfully deploy through the CI/CD pipeline, start properly, and pass a basic set of smoke tests.

Other teams use the Development environments as an extension of their local Minikube environment. The Development environment will possess some or all of the required external integration points, which the Developer’s local Minikube environment may not. The goal of the Development environment is to help Developers ensure their application is functioning correctly and is ready for the Test teams to evaluate, prior to promotion to the Test environment.

Some external integration points, such as external payment gateways, customer relationship management (CRM) systems, content management systems (CMS), or data analytics engines, are often stubbed-out in lower environments. Generally, third-party providers only offer a limited number of parallel non-Production integration environments. While an application may pass through several non-prod environments, testing against all external integration points will only occur in one or two of those environments.

With v2 of the Election service ready for testing on GKE, we deploy it to the GKE cluster’s dev namespace using the part4a-deploy-v2-dev.sh script. We will also delete the previous v1 version of the Election service. Similar to the v1 deployment script, the v2 scripts perform a kube-inject command, which manually injects the Istio sidecar proxy alongside the Election service, into each election v2 Pod. The deployment script also deploys an alternate Istio Route Rule, which routes requests to api.dev.voter-demo.com/v2/* resource of v2 of the Election service.

istio_054.png

Once deployed, we run our Postman Collection of integration tests with Newman or as part of a CI/CD pipeline. In the Development environment, we may choose to run a limited set of tests for the sake of expediency, or because not all external integration points are accessible.

Promotion to Test

With local Minikube and Development environment testing complete, we promote and deploy v2 of the Election service to the Test environment, using the part4b-deploy-v2-test.sh script. In Test, we will not delete v1 of the Election service.

istio_062

Often, an organization will maintain a running copy of all versions of an application currently deployed to Production, in a lower environment. Let’s look at two scenarios where this is common. First, v1 of the Election service has an issue in Production, which needs to be confirmed and may require a hot-fix by the Development team. Validation of the v1 Production bug is often done in a lower environment. The second scenario for having both versions running in an environment is when v1 and v2 both need to co-exist in Production. Organizations frequently support multiple API versions. Cutting over an entire API user-base to a new API version is often completed over a series of releases, and requires careful coordination with API consumers.

Testing All Versions

An essential role of integration testing should be to confirm that both versions of the Election service are functioning correctly, while simultaneously running in the same namespace. For example, we want to verify traffic is routed correctly, based on the HTTP request URL, to the correct version. Another common test scenario is database schema changes. Suppose we make what we believe are backward-compatible database changes to v2 of the Election service. We should be able to prove, through testing, that both the old and new versions function correctly against the latest version of the database schema.

There are different automation strategies that could be employed to test multiple versions of an application without creating separate Collections and Environments. A simple solution would be to templatize the Environments file, and then programmatically change the Postman Environment’s version variable injected from a pipeline parameter (abridged environment file shown below).

istio_095.png

Once initial automated integration testing is complete, Test teams will typically execute additional forms of application testing if necessary, before signing off for UAT and Performance Testing to begin.

User-Acceptance Testing

With testing in the Test environments completed, we continue onto UAT. The term UAT suggest that a set of actual end-users (API consumers) of the Election service will perform their own testing. Frequently, UAT is only done for a short, fixed period of time, often with a specialized team of Testers. Issues experienced during UAT can be expensive and impact the ability to release an application to Production on-time if sign-off is delayed.

After deploying v2 of the Election service to UAT, and before opening it up to the UAT team, we would naturally want to repeat the same integration testing process we conducted in the previous Test environment. We must ensure that v2 is functioning as expected before our end-users begin their testing. This is where leveraging a tool like Jenkins makes automated integration testing more manageable and repeatable. One strategy would be to duplicate our existing Development and Test pipelines, and re-target the new pipeline to call v2 of the Election service in UAT.

istio_104.png

Again, in a JUnit report format, we can examine individual results through the Jenkins Console.

istio_105.png

We can also examine individual results from each test run using a specific build’s Console Output.

istio_106.png

Testing and Instrumentation

To fully evaluate the integration test results, you must look beyond just the percentage of test cases executed successfully. It makes little sense to release a new version of an application if it passes all functional tests, but significantly increases client response times, unnecessarily increases memory consumption or wastes other compute resources, or is grossly inefficient in the number of calls it makes to the database or third-party dependencies. Often times, integration testing uncovers potential performance bottlenecks that are incorporated into performance test plans.

Critical intelligence about the performance of the application can only be obtained through the use of logging and metrics collection and instrumentation. Istio provides this telemetry out-of-the-box with Zipkin, Jaeger, Service Graph, Fluentd, Prometheus, and Grafana. In the included Grafana Istio Dashboard below, we see the performance of v1 of the Election service, under test, in the Test environment. We can compare request and response payload size and timing, as well as request and response times to external integration points, such as our Amazon RDS database. We are able to observe the impact of individual test requests on the application and all its integration points.

istio_067

As part of integration testing, we should monitor the Amazon RDS CloudWatch metrics. CloudWatch allows us to evaluate critical database performance metrics, such as the number of concurrent database connections, CPU utilization, read and write IOPS, Memory consumption, and disk storage requirements.

istio_043

A discussion of metrics starts moving us toward load and performance testing against Production service-level agreements (SLAs). Using a similar approach to integration testing, with load and performance testing, we should be able to accurately estimate the sizing requirements our new application for Production. Load and Performance Testing helps answer questions like the type and size of compute resources are required for our GKE Production cluster and for our Amazon RDS database, or how many compute nodes and number of instances (Pods) are necessary to support the expected user-load.

All opinions expressed in this post are my own, and not necessarily the views of my current or past employers, or their clients.

, , , , , , , , , , , , , ,

4 Comments

Managing Applications Across Multiple Kubernetes Environments with Istio: Part 1

In the following two-part post, we will explore the creation of a GKE cluster, replete with the latest version of Istio, often referred to as IoK (Istio on Kubernetes). We will then deploy, perform integration testing, and promote an application across multiple environments within the cluster.

Application Environment Management

Container orchestration engines, such as Kubernetes, have revolutionized the deployment and management of microservice-based architectures. Combined with a Service Mesh, such as Istio, Kubernetes provides a secure, instrumented, enterprise-grade platform for modern, distributed applications.

One of many challenges with any platform, even one built on Kubernetes, is managing multiple application environments. Whether applications run on bare-metal, virtual machines, or within containers, deploying to and managing multiple application environments increases operational complexity.

As Agile software development practices continue to increase within organizations, the need for multiple, ephemeral, on-demand environments also grows. Traditional environments that were once only composed of Development, Test, and Production, have expanded in enterprises to include a dozen or more environments, to support the many stages of the modern software development lifecycle. Current application environments often include Continous Integration and Delivery (CI), Sandbox, Development, Integration Testing (QA), User Acceptance Testing (UAT), Staging, Performance, Production, Disaster Recovery (DR), and Hotfix. Each environment requiring its own compute, security, networking, configuration, and corresponding dependencies, such as databases and message queues.

Environments and Kubernetes

There are various infrastructure architectural patterns employed by Operations and DevOps teams to provide Kubernetes-based application environments to Development teams. One pattern consists of separate physical Kubernetes clusters. Separate clusters provide a high level of isolation. Isolation offers many advantages, including increased performance and security, the ability to tune each cluster’s compute resources to meet differing SLAs, and ensuring a reduced blast radius when things go terribly wrong. Conversely, separate clusters often result in increased infrastructure costs and operational overhead, and complex deployment strategies. This pattern is often seen in heavily regulated, compliance-driven organizations, where security, auditability, and separation of duties are paramount.

Kube Clusters Diagram F15

Namespaces

An alternative to separate physical Kubernetes clusters is virtual clusters. Virtual clusters are created using Kubernetes Namespaces. According to Kubernetes documentation, ‘Kubernetes supports multiple virtual clusters backed by the same physical cluster. These virtual clusters are called namespaces’.

In most enterprises, Operations and DevOps teams deliver a combination of both virtual and physical Kubernetes clusters. For example, lower environments, such as those used for Development, Test, and UAT, often reside on the same physical cluster, each in a separate virtual cluster (namespace). At the same time, environments such as Performance, Staging, Production, and DR, often require the level of isolation only achievable with physical Kubernetes clusters.

In the Cloud, physical clusters may be further isolated and secured using separate cloud accounts. For example, with AWS you might have a Non-Production AWS account and a Production AWS account, both managed by an AWS Organization.

Kube Clusters Diagram v2 F3

In a multi-environment scenario, a single physical cluster would contain multiple namespaces, into which separate versions of an application or applications are independently deployed, accessed, and tested. Below we see a simple example of a single Kubernetes non-prod cluster on the left, containing multiple versions of different microservices, deployed across three namespaces. You would likely see this type of deployment pattern as applications are deployed, tested, and promoted across lower environments, before being released to Production.

Kube Clusters Diagram v2 F5.png

Example Application

To demonstrate the promotion and testing of an application across multiple environments, we will use a simple election-themed microservice, developed for a previous post, Developing Cloud-Native Data-Centric Spring Boot Applications for Pivotal Cloud Foundry. The Spring Boot-based application allows API consumers to create, read, update, and delete, candidates, elections, and votes, through an exposed set of resources, accessed via RESTful endpoints.

Source Code

All source code for this post can be found on GitHub. The project’s README file contains a list of the Election microservice’s endpoints. To get started quickly, use one of the two following options (gist).

# clone the official v3.0.0 release for this post
git clone --depth 1 --branch v3.0.0 \
https://github.com/garystafford/spring-postgresql-demo.git \
&& cd spring-postgresql-demo \
&& git checkout -b v3.0.0
# clone the latest version of code (newer than article)
git clone --depth 1 --branch master \
https://github.com/garystafford/spring-postgresql-demo.git \
&& cd spring-postgresql-demo

Code samples in this post are displayed as Gists, which may not display correctly on some mobile and social media browsers. Links to gists are also provided.

This project includes a kubernetes sub-directory, containing all the Kubernetes resource files and scripts necessary to recreate the example shown in the post. The scripts are designed to be easily adapted to a CI/CD DevOps workflow. You will need to modify the script’s variables to match your own environment’s configuration.

istio_107small

Database

The post’s Spring Boot application relies on a PostgreSQL database. In the previous post, ElephantSQL was used to host the PostgreSQL instance. This time, I have used Amazon RDS for PostgreSQL. Amazon RDS for PostgreSQL and ElephantSQL are equivalent choices. For simplicity, you might also consider a containerized version of PostgreSQL, managed as part of your Kubernetes environment.

Ideally, each environment should have a separate database instance. Separate database instances provide better isolation, fine-grained RBAC, easier test data lifecycle management, and improved performance. Although, for this post, I suggest a single, shared, minimally-sized RDS instance.

The PostgreSQL database’s sensitive connection information, including database URL, username, and password, are stored as Kubernetes Secrets, one secret for each namespace, and accessed by the Kubernetes Deployment controllers.

istio_043.png

Istio

Although not required, Istio makes the task of managing multiple virtual and physical clusters significantly easier. Following Istio’s online installation instructions, download and install Istio 0.7.1.

To create a Google Kubernetes Engine (GKE) cluster with Istio, you could use gcloud CLI’s container clusters create command, followed by installing Istio manually using Istio’s supplied Kubernetes resource files. This was the method used in the previous post, Deploying and Configuring Istio on Google Kubernetes Engine (GKE).

Alternatively, you could use Istio’s Google Cloud Platform (GCP) Deployment Manager files, along with the gcloud CLI’s deployment-manager deployments create command to create a Kubernetes cluster, replete with Istio, in a single step. Although arguably simpler, the deployment-manager method does not provide the same level of fine-grain control over cluster configuration as the container clusters create method. For this post, the deployment-manager method will suffice.

istio_001

The latest version of the Google Kubernetes Engine, available at the time of this post, is 1.9.6-gke.0. However, to install this version of Kubernetes Engine using the Istio’s supplied deployment Manager Jinja template requires updating the hardcoded value in the istio-cluster.jinja file from 1.9.2-gke.1. This has been updated in the next release of Istio.

istio_002

Another change, the latest version of Istio offered as an option in the istio-cluster-jinja.schema file. Specifically, the installIstioRelease configuration variable is only 0.6.0. The template does not include 0.7.1 as an option. Modify the istio-cluster-jinja.schema file to include the choice of 0.7.1. Optionally, I also set 0.7.1 as the default. This change should also be included in the next version of Istio.

istio_075.png

There are a limited number of GKE and Istio configuration defaults defined in the istio-cluster.yaml file, all of which can be overridden from the command line.

istio_002B.png

To optimize the cluster, and keep compute costs to a minimum, I have overridden several of the default configuration values using the properties flag with the gcloud CLI’s deployment-manager deployments create command. The README file provided by Istio explains how to use this feature. Configuration changes include the name of the cluster, the version of Istio (0.7.1), the number of nodes (2), the GCP zone (us-east1-b), and the node instance type (n1-standard-1). I also disabled automatic sidecar injection and chose not to install the Istio sample book application onto the cluster (gist).

# change to match your environment
ISTIO_HOME="/Applications/istio-0.7.1"
GCP_DEPLOYMENT_MANAGER="$ISTIO_HOME/install/gcp/deployment_manager"
GCP_PROJECT="springdemo-199819"
GKE_CLUSTER="election-nonprod-cluster"
GCP_ZONE="us-east1-b"
ISTIO_VER="0.7.1"
NODE_COUNT="1"
INSTANCE_TYPE="n1-standard-1"
# deploy gke istio cluster
gcloud deployment-manager deployments create springdemo-istio-demo-deployment \
--template=$GCP_DEPLOYMENT_MANAGER/istio-cluster.jinja \
--properties "gkeClusterName:$GKE_CLUSTER,installIstioRelease:$ISTIO_VER,"\
"zone:$GCP_ZONE,initialNodeCount:$NODE_COUNT,instanceType:$INSTANCE_TYPE,"\
"enableAutomaticSidecarInjection:false,enableMutualTLS:true,enableBookInfoSample:false"
# get creds for cluster
gcloud container clusters get-credentials $GKE_CLUSTER \
--zone $GCP_ZONE --project $GCP_PROJECT
# required dashboard access
kubectl apply -f ./roles/clusterrolebinding-dashboard.yaml
# use dashboard token to sign into dashboard:
kubectl -n kube-system describe secret kubernetes-dashboard-token

Cluster Provisioning

To provision the GKE cluster and deploy Istio, first modify the variables in the part1-create-gke-cluster.sh file (shown above), then execute the script. The script also retrieves your cluster’s credentials, to enable command line interaction with the cluster using the kubectl CLI.

istio_002C.png

Once complete, validate the version of Istio by examining Istio’s Docker image versions, using the following command (gist).

kubectl get pods --all-namespaces -o jsonpath="{..image}" | \
tr -s '[[:space:]]' '\n' | sort | uniq -c | \
egrep -oE "\b(docker.io/istio).*\b"

The result should be a list of Istio 0.7.1 Docker images.

istio_076.png

The new cluster should be running GKE version 1.9.6.gke.0. This can be confirmed using the following command (gist).

gcloud container clusters describe election-nonprod-cluster | \
egrep currentMasterVersion

Or, from the GCP Cloud Console.

istio_037

The new GKE cluster should be composed of (2) n1-standard-1 nodes, running in the us-east-1b zone.

istio_038

As part of the deployment, all of the separate Istio components should be running within the istio-system namespace.

istio_040

As part of the deployment, an external IP address and a load balancer were provisioned by GCP and associated with the Istio Ingress. GCP’s Deployment Manager should have also created the necessary firewall rules for cluster ingress and egress.

istio_010.png

Building the Environments

Next, we will create three namespaces,dev, test, and uat, which represent three non-production environments. Each environment consists of a Kubernetes Namespace, Istio Ingress, and Secret. The three environments are deployed using the part2-create-environments.sh script.

istio_048.png

Deploying Election v1

For this demonstration, we will assume v1 of the Election service has been previously promoted, tested, and released to Production. Hence, we would expect v1 to be deployed to each of the lower environments. Additionally, a new v2 of the Election service has been developed and tested locally using Minikube. It is ready for deployment to the three environments and will undergo integration testing (detailed in Part Two of the post).

If you recall from our GKE/Istio configuration, we chose manual sidecar injection of the Istio proxy. Therefore, all election deployment scripts perform a kube-inject command. To connect to our external Amazon RDS database, this kube-inject command requires the includeIPRanges flag, which contains two cluster configuration values, the cluster’s IPv4 CIDR (clusterIpv4Cidr) and the service’s IPv4 CIDR (servicesIpv4Cidr).

Before deployment, we export the includeIPRanges value as an environment variable, which will be used by the deployment scripts, using the following command, export IP_RANGES=$(sh ./get-cluster-ip-ranges.sh). The get-cluster-ip-ranges.sh script is shown below (gist).

# run this command line:
# export IP_RANGES=$(sh ./get-cluster-ip-ranges.sh)
# capture the clusterIpv4Cidr and servicesIpv4Cidr values
# required for manual sidecar injection with kube-inject
# change to match your environment
GCP_PROJECT="springdemo-199819"
GKE_CLUSTER="election-nonprod-cluster"
GCP_ZONE="us-east1-b"
CLUSTER_IPV4_CIDR=$(gcloud container clusters describe ${GKE_CLUSTER} \
--zone ${GCP_ZONE} --project ${GCP_PROJECT} \
| egrep clusterIpv4Cidr | grep -oE "\b([0-9]{1,3}\.){3}[0-9]{1,3}\/[0-9]{2}\b")
SERVICES_IPV4_CIDR=$(gcloud container clusters describe ${GKE_CLUSTER} \
--zone ${GCP_ZONE} --project ${GCP_PROJECT} \
| egrep servicesIpv4Cidr | grep -oE "\b([0-9]{1,3}\.){3}[0-9]{1,3}\/[0-9]{2}\b")
export IP_RANGES="$CLUSTER_IPV4_CIDR,$SERVICES_IPV4_CIDR"
echo $IP_RANGES

Using this method with manual sidecar injection is discussed in the previous post, Deploying and Configuring Istio on Google Kubernetes Engine (GKE).

To deploy v1 of the Election service to all three namespaces, execute the part3-deploy-v1-all-envs.sh script.

istio_051.png

We should now have two instances of v1 of the Election service, running in the dev, test, and uat namespaces, for a total of six election-v1 Kubernetes Pods.

istio_052

HTTP Request Routing

Before deploying additional versions of the Election service in Part Two of this post, we should understand how external HTTP requests will be routed to different versions of the Election service, in multiple namespaces. In the post’s simple example, we have a matrix of three namespaces and two versions of the Election service. That means we need a method to route external traffic to up to six different election versions. There multiple ways to solve this problem, each with their own pros and cons. For this post, I found a combination of DNS and HTTP request rewriting is most effective.

DNS

First, to route external HTTP requests to the correct namespace, we will use subdomains. Using my current DNS management solution, Azure DNS, I create three new A records for my registered domain, voter-demo.com. There is one A record for each namespace, including api.dev, api.test, and api.uat.

istio_077.png

All three subdomains should resolve to the single external IP address assigned to the cluster’s load balancer.

istio_010.png

As part of the environments creation, the script deployed an Istio Ingress, one to each environment. The ingress accepts traffic based on a match to the Request URL (gist).

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: dev-ingress
labels:
name: dev-ingress
namespace: dev
annotations:
kubernetes.io/ingress.class: istio
spec:
rules:
- host: api.dev.voter-demo.com
http:
paths:
- path: /.*
backend:
serviceName: election
servicePort: 8080

The istio-ingress service load balancer, running in the istio-system namespace, routes inbound external traffic, based on the Request URL, to the Istio Ingress in the appropriate namespace.

istio_053.png

The Istio Ingress in the namespace then directs the traffic to one of the Kubernetes Pods, containing the Election service and the Istio sidecar proxy.

istio_068.png

HTTP Rewrite

To direct the HTTP request to v1 or v2 of the Election service, an Istio Route Rule is used. As part of the environment creation, along with a Namespace and Ingress resources, we also deployed an Istio Route Rule to each environment. This particular route rule examines the HTTP request URL for a /v1/ or /v2/ sub-collection resource. If it finds the sub-collection resource, it performs a HTTPRewrite, removing the sub-collection resource from the HTTP request. The Route Rule then directs the HTTP request to the appropriate version of the Election service, v1 or v2 (gist).

According to Istio, ‘if there are multiple registered instances with the specified tag(s), they will be routed to based on the load balancing policy (algorithm) configured for the service (round-robin by default).’ We are using the default load balancing algorithm to distribute requests across multiple copies of each Election service.

# kubectl apply -f ./routerules/routerule-election-v1.yaml -n dev
apiVersion: config.istio.io/v1alpha2
kind: RouteRule
metadata:
name: election-v1
spec:
destination:
name: election
match:
request:
headers:
uri:
prefix: /v1/
rewrite:
uri: /
route:
- labels:
app: election
version: v1

The final external HTTP request routing for the Election service in the Non-Production GKE cluster is shown on the left, in the diagram, below. Every Election service Pod also contains an Istio sidecar proxy instance.

Kube Clusters Diagram F14

Below are some examples of HTTP GET requests that would be successfully routed to our Election service, using the above-described routing strategy (gist).

# details of an election, id 5, requested from v1 elections in dev
curl http://api.dev.voter-demo.com/v1/elections/5
# list of candidates, last name Obama, requested from v2 of elections in test
curl http://api.test.voter-demo.com/v2/candidates/search/findByLastName?lastName=Obama
# process start time metric, requested from v2 of elections in uat
curl http://api.test.voter-demo.com/v2/actuator/metrics/process.start.time
# vote summary, requested from v1 of elections in production
curl http://api.voter-demo.com/v1/vote-totals/summary/2012%20Presidential%20Election

Part Two

In Part One of this post, we created the Kubernetes cluster on the Google Cloud Platform, installed Istio, provisioned a PostgreSQL database, and configured DNS for routing. Under the assumption that v1 of the Election microservice had already been released to Production, we deployed v1 to each of the three namespaces.

In Part Two of this post, we will learn how to utilize the sophisticated API testing capabilities of Postman and Newman to ensure v2 is ready for UAT and release to Production. We will deploy and perform integration testing of a new, v2 of the Election microservice, locally, on Kubernetes Minikube. Once we are confident v2 is functioning as intended, we will promote and test v2, across the dev, test, and uat namespaces.

All opinions expressed in this post are my own, and not necessarily the views of my current or past employers, or their clients.

, , , , , , , , , , ,

3 Comments

Deploying and Configuring Istio on Google Kubernetes Engine (GKE)

GKE_021B

Introduction

Unquestionably, Kubernetes has quickly become the leading Container-as-a-Service (CaaS) platform. In late September 2017, Rancher Labs announced the release of Rancher 2.0, based on Kubernetes. In mid-October, at DockerCon Europe 2017, Docker announced they were integrating Kubernetes into the Docker platform. In late October, Microsoft released the public preview of Managed Kubernetes for Azure Container Service (AKS). In November, Google officially renamed its Google Container Engine to Google Kubernetes Engine. Most recently, at AWS re:Invent 2017, Amazon announced its own manged version of Kubernetes, Amazon Elastic Container Service for Kubernetes (Amazon EKS).

The recent abundance of Kuberentes-based CaaS offerings makes deploying, scaling, and managing modern distributed applications increasingly easier. However, as Craig McLuckie, CEO of Heptio, recently stated, “…it doesn’t matter who is delivering Kubernetes, what matters is how it runs.” Making Kubernetes run better is the goal of a new generation of tools, such as Istio, EnvoyProject Calico, Helm, and Ambassador.

What is Istio?

One of those new tools and the subject of this post is Istio. Released in Alpha by Google, IBM and Lyft, in May 2017, Istio is an open platform to connect, manage, and secure microservices. Istio describes itself as, “…an easy way to create a network of deployed services with load balancing, service-to-service authentication, monitoring, and more, without requiring any changes in service code. You add Istio support to services by deploying a special sidecar proxy throughout your environment that intercepts all network communication between microservices, configured and managed using Istio’s control plane functionality.

Istio contains several components, split between the data plane and a control plane. The data plane includes the Istio Proxy (an extended version of Envoy proxy). The control plane includes the Istio Mixer, Istio Pilot, and Istio-Auth. The Istio components work together to provide behavioral insights and operational control over a microservice-based service mesh. Istio describes a service mesh as a “transparently injected layer of infrastructure between a service and the network that gives operators the controls they need while freeing developers from having to bake solutions to distributed system problems into their code.

In this post, we will deploy the latest version of Istio, v0.4.0, on Google Cloud Platform, using the latest version of Google Kubernetes Engine (GKE), 1.8.4-gke.1. Both versions were just released in mid-December, as this post is being written. Google, as you probably know, was the creator of Kubernetes, now an open-source CNCF project. Google was the first Cloud Service Provider (CSP) to offer managed Kubernetes in the Cloud, starting in 2014, with Google Container Engine (GKE), which used Kubernetes. This post will outline the installation of Istio on GKE, as well as the deployment of a sample application, integrated with Istio, to demonstrate Istio’s observability features.

Getting Started

All code from this post is available on GitHub. You will need to change some variables within the code, to meet your own project’s needs (gist).

git clone \
--branch master --single-branch --depth 1 --no-tags \
https://github.com/garystafford/gke-istio-atlas-rabbit-demo.git

The scripts used in this post are as follows, in order of execution (gist).

# gke
sh ./kubernetes/voter-api-atlas/create-gke-cluster.sh
# istio
sh ./kubernetes/voter-api-atlas/install-istio.sh
# voter api
sh ./kubernetes/voter-api-atlas/create-voter-api_part1.sh
sh ./kubernetes/voter-api-atlas/create-voter-api_part2.sh
sh ./kubernetes/voter-api-atlas/create-voter-api_part3.sh
# sample document and message generation
sh ./sample_docs_scripts/sample_data_run_all.sh

Code samples in this post are displayed as Gists, which may not display correctly on some mobile and social media browsers. Links to gists are also provided.

Creating GKE Cluster

First, we create the Google Kubernetes Engine (GKE) cluster. The GKE cluster creation is highly-configurable from either the GCP Cloud Console or from the command line, using the Google Cloud Platform gcloud CLI. The CLI will be used throughout the post. I have chosen to create a highly-available, 3-node cluster (1 node/zone) in GCP’s South Carolina us-east1 region (gist).

#!/bin/bash
# create gke cluster
gcloud beta container \
clusters create "voter-api-istio-demo" \
--project "voter-api-kub-demo" \
--enable-kubernetes-alpha \
--cluster-version "1.8.4-gke.1" \
--username="admin" \
--zone "us-east1-b" \
--node-locations "us-east1-b","us-east1-c","us-east1-d" \
--machine-type "n1-standard-1" \
--num-nodes "1" \
--labels environment=development \
--enable-cloud-logging \
--enable-cloud-monitoring
# retrieve cluster credentials
gcloud container clusters get-credentials voter-api-istio-demo \
--zone us-east1-b --project voter-api-kub-demo

Once built, we need to retrieve the cluster’s credentials.

Having chosen to use Kubernetes’ Alpha Clusters feature, the following warning is displayed, warning the Alpha cluster will be deleted in 30 days (gist).

This will create a cluster with all Kubernetes Alpha features enabled.
- This cluster will not be covered by the Kubernetes Engine SLA and should not be used for production workloads.
- You will not be able to upgrade the master or nodes.
- The cluster will be deleted after 30 days.

The resulting GKE cluster will have the following characteristics (gist).

NAME LOCATION MASTER_VERSION MASTER_IP MACHINE_TYPE NODE_VERSION NUM_NODE S STATUS
voter-api-istio-demo us-east1-b 1.8.4-gke.1 ALPHA (29 days left) 35.227.38.218 n1-standard-1 1.8.4-gke.1 3 RUNNING

Installing Istio

With the GKE cluster created, we can now deploy Istio. There are at least two options for deploying Istio on GCP. You may choose to manually install and configure Istio in a GKE cluster, as I will do in this post, following these instructions. Alternatively, you may choose to use the Istio GKE Deployment Manager. This all-in-one GCP service will create your GKE cluster, and install and configure Istio and the Istio add-ons, including their Book Info sample application.

G002_DeployCluster

There were a few reasons I chose not to use the Istio GKE Deployment Manager option. First, until very recently, you could not install the latest versions of Istio with this option (as of 12/21 you can now deploy v0.3.0 and v0.4.0). Secondly, currently, you only have the choice of GKE version 1.7.8-gke.0. I wanted to test the latest v1.8.4 release with a stable GA version of RBAC. Thirdly, at least three out of four of my initial attempts to use the Istio GKE Deployment Manager failed during provisioning for unknown reasons. Lastly, you will learn more about GKE, Kubernetes, and Istio by doing it yourself, at least the first time.

Istio Code Changes

Before installing Istio, I had to make several minor code changes to my existing Kubernetes resource files. The requirements are detailed in Istio’s Pod Spec Requirements. These changes are minor, but if missed, cause errors during deployment, which can be hard to identify and resolve.

First, you need to name your Service ports in your Service resource files. More specifically, you need to name your service ports, http, as shown in the Candidate microservice’s Service resource file, below (note line 10) (gist).

apiVersion: v1
kind: Service
metadata:
namespace: voter-api
labels:
app: candidate
name: candidate
spec:
ports:
- name: http
port: 8080
selector:
app: candidate

Second, an app label is required for Istio. I added an app label to each Deployment and Service resource file, as shown below in the Candidate microservice’s Deployment resource files (note lines 5 and 6) (gist).

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
namespace: voter-api
labels:
app: candidate
name: candidate
spec:
replicas: 3
strategy: {}
template:
metadata:
labels:
app: candidate
version: v1
spec:
containers:
- image: garystafford/candidate-service:gke-0.6.139
name: candidate
ports:
- containerPort: 8080
env:
- name: SPRING_RABBITMQ_HOST
valueFrom:
secretKeyRef:
name: rabbitmq-connection-string
key: host
- name: SPRING_RABBITMQ_VIRTUAL_HOST
valueFrom:
secretKeyRef:
name: rabbitmq-connection-string
key: virtualHost
- name: SPRING_RABBITMQ_USERNAME
valueFrom:
secretKeyRef:
name: rabbitmq-connection-string
key: username
- name: SPRING_RABBITMQ_PASSWORD
valueFrom:
secretKeyRef:
name: rabbitmq-connection-string
key: password
- name: SPRING_DATA_MONGODB_URI
valueFrom:
secretKeyRef:
name: mongodb-atlas-candidate
key: connection-string
command: ["/bin/sh"]
args: ["-c", "java -Dspring.profiles.active=kub-aks -Djava.security.egd=file:/dev/./urandom -jar /candidate/candidate-service.jar"]
imagePullPolicy: Always
restartPolicy: Always
status: {}

The next set of code changes were to my existing Ingress resource file. The requirements for an Ingress resource using Istio are explained here. The first change, Istio ignores all annotations other than kubernetes.io/ingress.class: istio (note line 7, below). The next change, if using HTTPS, the secret containing your TLS/SSL certificate and private key must be called istio-ingress-certs; all other names will be ignored (note line 10, below). Related and critically important, that secret must be deployed to the istio-system namespace, not the application’s namespace. The last change, for my particular my prefix match routing rules, I needed to change the rules from /{service_name} to /{service_name}/.*. The /.* is a special Istio notation that is used to indicate a prefix match (note lines 14, 18, and 22, below) (gist).

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: voter-ingress
namespace: voter-api
annotations:
kubernetes.io/ingress.class: istio
spec:
tls:
- secretName: istio-ingress-certs
rules:
- http:
paths:
- path: /candidate/.*
backend:
serviceName: candidate
servicePort: 8080
- path: /election/.*
backend:
serviceName: election
servicePort: 8080
- path: /voter/.*
backend:
serviceName: voter
servicePort: 8080

Installing Istio

To install Istio, you first will need to download and uncompress the correct distribution of Istio for your OS. Istio provides instructions for installation on various platforms.

My install-istio.sh script contains a variable, ISTIO_HOME, which should point to the root of your local Istio directory. We will also deploy all the current Istio add-ons, including Prometheus, Grafana, ZipkinService Graph, and Zipkin-to-Stackdriver (gist).

#!/bin/bash
# install istio, add-ons, and roles
# https://cloud.google.com/kubernetes-engine/docs/tutorials/istio-on-gke
ISTIO_HOME="/Applications/istio-0.4.0"
# required dashboard access and istio roles
kubectl apply \
-f ./other/kube-system-cluster-admin.yaml \
-f ./other/cluster-admin-binding.yaml
# istio
kubectl apply \
-f $ISTIO_HOME/install/kubernetes/istio-auth.yaml \
-f $ISTIO_HOME/install/kubernetes/istio-initializer.yaml
# add-ons
kubectl apply \
-f $ISTIO_HOME/install/kubernetes/addons/prometheus.yaml \
-f $ISTIO_HOME/install/kubernetes/addons/grafana.yaml \
-f $ISTIO_HOME/install/kubernetes/addons/servicegraph.yaml \
-f $ISTIO_HOME/install/kubernetes/addons/zipkin.yaml \
-f $ISTIO_HOME/install/kubernetes/addons/zipkin-to-stackdriver.yaml

Once installed, from the GCP Cloud Console, an alternative to the native Kubernetes Dashboard, we should see the following Istio resources deployed and running. Below, note the three nodes are distributed across three zones within the GCP us-east-1 region, the correct version of GKE is employed, Stackdriver logging and monitoring are enabled, and the Alpha Clusters features are also enabled.

GKE_001

And here, we see the nodes that comprise the GKE cluster.

GKE_001_1

GKE_001_2.PNG

Below, note the four components that comprise Istio: istio-ca, istio-ingress, istio-mixer, and istio-pilot. Additionally, note the five components that comprise the Istio add-ons.

GKE_002

Below, observe the Istio Ingress has automatically been assigned a public IP address by GCP, accessible on ports 80 and 443. This IP address is how we will communicate with applications running on our GKE cluster, behind the Istio Ingress Load Balancer. Later, we will see how the Istio Ingress Load Balancer knows how to route incoming traffic to those application endpoints, using the Voter API’s Ingress configuration.

GKE_003.PNG

Istio makes ample use of Kubernetes Config Maps and Secrets, to store configuration, and to store certificates for mutual TLS.

GKE_004

Creation of the GKE cluster and deployed Istio to the cluster is complete. Following, I will demonstrate the deployment of the Voter API to the cluster. This will be used to demonstrate the capabilities of Istio on GKE.

Kubernetes Dashboard

In addition to the GCP Cloud Console, the native Kubernetes Dashboard is also available. To open, use the kubectl proxy command and connect to the Kubernetes Dashboard at https://127.0.0.1:8001/ui. You should now be able to view and edit all resources, from within the Kubernetes Dashboard.

GKE_005_5

Sample Application

To demonstrate the functionality of Istio and GKE, I will deploy the Voter API. I have used variations of the sample Voter API application in several previous posts, including Architecting Cloud-Optimized Apps with AKS (Azure’s Managed Kubernetes), Azure Service Bus, and Cosmos DB and Eventual Consistency: Decoupling Microservices with Spring AMQP and RabbitMQ. I suggest reading these two post to better understand the Voter API’s design.

AKS

For this post, I have reconfigured the Voter API to use MongoDB’s Atlas Database-as-a-Service (DBaaS) as the NoSQL data-source for each microservice. The Voter API is connected to a MongoDB Atlas 3-node M10 instance cluster in GCP’s us-east1 (South Carolina) region. With Atlas, you have the choice of deploying clusters to GCP or AWS.

GKE_014

The Voter API will use CloudAMQP’s RabbitMQ-as-a-Service for its decoupled, eventually consistent, message-based architecture. For this post, the Voter API is configured to use a RabbitMQ cluster in GCP’s us-east1 (South Carolina) region; I chose a minimally-configured free version of RabbitMQ. CloudAMQP allows you to provide a much more robust multi-node clusters for Production, on GCP or AWS.

GKE_015_1.PNG

CloudAMQP provides access to their own Management UI, in addition to access to RabbitMQ’s Management UI.

GKE_015B

With the Voter API running and taking traffic, we can see each Voter API microservice instance, nine replicas in total, connected to RabbitMQ. They are each publishing and consuming messages off the two queues.

GKE_016

The GKE, MongoDB Atlas, and RabbitMQ clusters are all running in the same GCP Region. Optimizing the Voter API cloud architecture on GCP, within a single Region, greatly reduces network latency, increases API performance, and improves end-to-end application and infrastructure observability and traceability.

Installing the Voter API

For simplicity, I have divided the Voter API deployment into three parts. First, we create the new voter-api Kubernetes Namespace, followed by creating a series of Voter API Kuberentes Secrets (gist).

#!/bin/bash
# apply voter api resources part 1
# namespace
kubectl apply -f ./other/namespace.yaml
# secrets
kubectl apply \
-f ./secrets/mongodb-atlas-election-secret.yaml \
-f ./secrets/mongodb-atlas-candidate-secret.yaml \
-f ./secrets/mongodb-atlas-voter-secret.yaml \
-f ./secrets/rabbitmq-connection-string-secret.yaml \
-f ./secrets/istio-ingress-certs-secret.yaml

There are a total of five secrets, one secret for each of the three microservice’s MongoDB databases, one secret for the RabbitMQ connection string (shown below), and one secret containing a Let’s Encrypt SSL/TLS certificate chain and private key for the Voter API’s domain, api.voter-demo.com (shown below).

GKE_011

GKE_006.PNG

GKE_007.PNG

Next, we create the microservice pods, using the Kubernetes Deployment files, create three ClusterIP-type Kubernetes Services, and a Kubernetes Ingress. The Ingress contains the service endpoint configuration, which Istio Ingress will use to correctly route incoming external API traffic (gist).

#!/bin/bash
# apply voter api resources part 2
# pods
kubectl apply \
-f ./services/election-deployment.yaml \
-f ./services/candidate-deployment.yaml \
-f ./services/voter-deployment.yaml
# services
kubectl apply \
-f ./services/election-service.yaml \
-f ./services/candidate-service.yaml \
-f ./services/voter-service.yaml
# ingress