Archive for category Build Automation

Deploying Spring Boot Apps to AWS with Netflix Nebula and Spinnaker: Part 2 of 2

Part One of this post examined enterprise deployment tools and introduced two of Netflix’s open-source deployment tools, the Nebula Gradle plugins, and Spinnaker. In Part Two, we will deploy a production-ready Spring Boot application, the Election microservice, to multiple Amazon EC2 instances, behind an Elastic Load Balancer (ELB). We will use a fully automated DevOps workflow. The build, test, package, bake, deploy process will be handled by the Netflix Nebula Gradle Linux Packaging Plugin, Jenkins, and Spinnaker. The high-level process will involve the following steps:

  • Configure Gradle to build a production-ready fully executable application for Unix systems (executable JAR)
  • Using deb-s3 and GPG Suite, create a secure, signed APT (Debian) repository on Amazon S3
  • Using Jenkins and the Netflix Nebula plugin, build a Debian package, containing the executable JAR and configuration files
  • Using Jenkins and deb-s3, publish the package to the S3-based APT repository
  • Using Spinnaker (HashiCorp Packer under the covers), bake an Ubuntu Amazon Machine Image (AMI), replete with the executable JAR installed from the Debian package
  • Deploy an auto-scaling set of Amazon EC2 instances from the baked AMI, behind an ELB, running the Spring Boot application using both the Red/Black and Highlander deployment strategies
  • Be able to repeat the entire automated build, test, package, bake, deploy process, triggered by a new code push to GitHub

The overall build, test, package, bake, deploy process will look as follows.

DebianPackageWorkflow12.png

DevOps Architecture

Spinnaker’s modern architecture is comprised of several independent microservices. The codebase is written in Java and Groovy, and leverages the Spring Boot framework¹. Spinnaker’s configuration, startup, updates, and rollbacks are centrally managed by Halyard. Halyard provides a single point of contact for command line interaction with Spinnaker’s microservices.

Spinnaker can be installed on most private or public infrastructure, either containerized or virtualized. Spinnaker has links to a number of Quickstart installations on their website. For this demonstration, I deployed and configured Spinnaker on Azure, starting with one of the Azure Spinnaker quick-start ARM templates. The template provisions all the necessary Azure resources. For better performance, I chose upgraded the default VM to a larger Standard D4 v3, which contains 4 vCPUs and 16 GB of memory. I would recommend at least 2 vCPUs and 8 GB of memory at a minimum for Spinnaker.

Another Azure VM, in the same virtual network as the Spinnaker VM, already hosts Jenkins, SonarQube, and Nexus Repository OSS.

From Spinnaker on Azure, Debian Packages are uploaded to the APT package repository on AWS S3. Spinnaker also bakes Amazon Machine Images (AMI) on AWS. Spinnaker provisions the AWS resources, including EC2 instances, Load Balancers, Auto Scaling Groups, Launch Configurations, and Security Groups. The only resources you need on AWS to get started with Spinnaker are a VPC and Subnets. There are some minor, yet critical prerequisites for naming your VPC and Subnets.

Other external tools include GitHub for source control and Slack for notifications. I have built and managed everything from a Mac, however, all tools are platform agnostic. The Spring Boot application was developed in JetBrains IntelliJ.

Spinnaker Architecture 2.png

Source Code

All source code for this post can be found on GitHub. The project’s README file contains a list of the Election service’s endpoints.

Code samples in this post are displayed as Gists, which may not display correctly on some mobile and social media browsers. Links to gists are also provided.

APT Repository

After setting up Spinnaker on Azure, I created an APT repository on Amazon S3, using the instructions provided by Netflix, in their Code Lab, An Introduction to Spinnaker: Hello Deployment. The setup involves creating an Amazon S3 bucket to serve as an APT (Debian) repository, creating a GPG key for signing, and using deb-s3 to manage the repository. The Code Lab also uses Aptly, a great tool, which I skipped for brevity.

spin19

GPG Key

On the Mac, I used GPG Suite to create a GPG (GNU Privacy Guard or GnuPG) automatic signing key for my APT repository. The key is required by Spinnaker to verify the Debian packages in the repository, before installation.

The Ruby Gem, deb-s3, makes management of the Debian packages easy and automatable with Jenkins. Jenkins uploads the Debian packages, using a deb-s3 command, such as the following (gist). In this post, Jenkins calls the command from the shell script, upload-deb-package.sh, which is included in the GitHub project.

The Jenkins user requires access to the signing key, to build and upload the Debian packages. I created my GPG key on my Mac, securely copied the key to my Ubuntu-based Jenkins VM, and then imported the key for the Jenkins user. You could also create your key on Ubuntu, directly. Make sure you backup your private key in a secure location!

Nebula Packaging Plugin

Next, I set up a Gradle task in my build.gradle file to build my Debian packages using the Netflix Nebula Gradle Linux Packaging Plugin. Although Debian packaging tasks could become complex for larger application installations, this task for this post is pretty simple. I used many of the best-practices suggested by Spring for Production-grade deployments. The best-practices guide recommends file location, file modes, and file user and group ownership. I create the JAR as a fully executable JAR, meaning it is started like any other executable and does not have to be started with the standard java -jar command.

In the task, shown below (gist), the JAR and the external configuration file (optional) are copied to specific locations during the deployment and symlinked, as required. I used the older SysVInit system (init.d) to enable the application to automatically starts on boot. You should probably use systemctl for your services with Ubuntu 16.04.

You can use the ar (archive) command (i.e., ar -x spring-postgresql-demo_4.5.0_all.deb), to extract and inspect the structure of a Debian package. The data.tar.gz file, displayed below in Atom, shows the final package structure.

spin47.png

Base AMI

Next, I baked a base AMI for Spinnaker to use. This base AMI is used by Spinnaker to bake (re-bake) the final AMI(s) used for provisioning the EC2 instances, containing the Spring Boot Application. The Spinnaker base AMI is built from another base AMI, the official Ubuntu 16.04 LTS image. I installed the OpenJDK 8 package on the AMI, which is required to run the Java-based Election service. Lastly and critically, I added information about the location of my S3-based APT Debian package repository to the list of configured APT data sources, and the GPG key required for package verification. This information and key will be used later by Spinnaker to bake AMIʼs, using this base AMI. The set-up script, base_ubuntu_ami_setup.sh, which is included in the GitHub project.

Jenkins

This post uses a single Jenkins CI/CD pipeline. Using a Webhook, the pipeline is automatically triggered by every git push to the GitHub project. The pipeline pulls the source code, builds the application, and performs unit-tests and static code analysis with SonarQube. If the build succeeds and the tests pass, the build artifact (JAR file) is bundled into a Debian package using the Nebula Packaging plugin, uploaded to the S3 APT repository using s3-deb, and archived locally for Spinnaker to reference. Once the pipeline is completed, on success or on failure, a Slack notification is sent. The Jenkinsfile, used for this post is available in the project on Github.

Below is a traditional Jenkins view of the CI/CD pipeline, with links to unit test reports, SonarQube results, build artifacts, and GitHub source code.

spin01

Below is the same pipeline viewed using the Jenkins Blue Ocean plugin.

spin02

It is important to perform sufficient testing before building the Debian package. You donʼt want to bake an AMI and deploy EC2 instances, at a cost, before finding out the application has bugs.

spin03

Spinnaker Setup

First, I set up a new Spinnaker Slack channel and a custom bot user. Spinnaker details the Slack set up in their Notifications and Events Guide. You can configure what type of Spinnaker events trigger Slack notifications.

spin46.png

AWS Spinnaker User

Next, I added the required Spinnaker User, Policy, and Roles to AWS. Spinnaker uses this access to query and provision infrastructure on your behalf. The Spinnaker User requires Power User level access to perform all their necessary tasks. AWS IAM set up is detailed by Spinnaker in their Cloud Providers Setup for AWS. They also describe the setup of other cloud providers. You need to be reasonably familiar with AWS IAM, including the PassRole permission to set up this part. As part of the setup, you enable AWS for Spinnaker and add your AWS account using the Halyard interface.

spin45

Spinnaker Security Groups

Next, I set up two Spinnaker Security Groups, corresponding to two AWS Security Groups, one for the load balancer and one for the Election service. The load balancer security group exposes port 80, and the Election service security group exposes port 8080.

spin36

Spinnaker Load Balancer

Next, I created a Spinnaker Load Balancer, corresponding to an Amazon Classic Load Balancer. The Load Balancer will load-balance the Election service EC2 instances. Below you see a Load Balancer, balancing a pair of active EC2 instances, the result of a Red/Black deployment.

spin37

Spinnaker can currently create both AWS Classic Load Balancers as well as Application Load Balancers (ALB).

spin25

Spinnaker Pipeline

This post uses a single, basic Spinnaker Pipeline. The pipeline bakes a new AMI from the Debian package generated by the Jenkins pipeline. After a manual approval stage, Spinnaker deploys a set of EC2 instances, behind the Load Balancer, which contains the latest version of the Election service. Spinnaker finishes the pipeline by sending a Slack notification.

spin26

Jenkins Integration

The pipeline is triggered by the successful completion of the Jenkins pipeline. This is set in the Configuration stage of the pipeline. The integration with Jenkins is managed through Spinnaker’s Igor service.

spin22.png

Bake Stage

Next, in the Bake stage, Spinnaker bakes a new AMI, containing the Debian package generated by the Jenkins pipeline. The stageʼs configuration contains the package name to reference.

spin29

The stageʼs configuration also includes a reference to which Base AMI to use, to bake the new AMIs. Here I have used the AMI ID of the base Spinnaker AMI, I created previously.

spin27

Deploy Stage

Next, the Deploy stage deploys the Election service, running on EC2 instances, provisioned from the new AMI, which was baked in the last stage. To configure the Deploy stage, you define a Spinnaker Server Group. According to Spinnaker, the Server Group identifies the deployable artifact, VM image type, the number of instances, autoscaling policies, metadata, Load Balancer, and a Security Group.

spin32

The Server Group also defines the Deployment Strategy. Below, I chose the Red/Black Deployment Strategy (also referred to as Blue/Green). This strategy will disable, not terminate the active Server Group. If the new deployment fails, we can manually or automatically perform a Rollback to the previous, currently disabled Server Group.

spin11

Letʼs Start Baking!

With set up complete, letʼs kick off a git push, trigger and complete the Jenkins pipeline, and finally trigger the Spinnaker pipeline. Below we see the pipelineʼs Bake stage has been started. Spinnakerʼs UI lets us view the Bakery Details. The Bakery, provided by Spinnakerʼs Rosco service, bakes the AMIs. Rosco uses HashiCorp Packer to bake the AMIs, using standard Packer templates.

spin04

Below we see Spinnaker (Rosco/Packer) locating the Base Spinnaker AMI we configured in the Pipelineʼs Bake stage. Next, we see Spinnaker sshʼing into a new EC2 instance with a temporary keypair and Security Group and starting the Election service Debian package installation.

spin23

Continuing, we see the latest Debian package, derived from the Jenkins pipelineʼs archive, being pulled from the S3-based APT repo. The package is verified using the GPG key and then installed. Lastly, we see a new AMI is created, containing the deployed Election service, which was initially built and packaged by Jenkins. Note the AWS Resource Tags created by Spinnaker, as shown in the Bakery output.

spin24

The base Spinnaker AMI and the AMIs baked by Spinnaker are visible in the AWS Console. Note the naming conventions used by Spinnaker for the AMIs, the Source AMI used to build the new APIs, and the addition of the Tags, which we saw being applied in the Bakery output above. The use of Tags indirectly allows full traceability from the deployed EC2 instance all the way back to the original code commit to git by the Developer.

spin48.png

Red/Black Deployments

With the new AMI baked successfully, and a required manual approval, using a Manual Judgement type pipeline stage, we can now begin a Red/Black deployment to AWS.

spin07

Using the Server Group configuration in the Deploy stage, Spinnaker deploys two EC2 instances, behind the ELB.

spin08

Below, we see the successful results of the Red/Black deployment. The single Spinnaker Cluster contains two deployed Server Groups. One group, the previously active Server Group (RED), comprised of two EC2 instances, is disabled. The ‘RED’ EC2 instances are unregistered with the load balancer but still running. The new Server Group (BLACK), also comprised of two EC2 instances, is now active and registered with the Load Balancer. Spinnaker will spread EC2 instances evenly across all Availability Zones in the US East (N. Virginia) Region.

spin38

From the AWS Console, we can observe four running instances, though only two are registered with the load-balancer.

spin34

Here we see each deployed Server Group has a different Auto Scaling Group and Launch Configuration. Note the continued use of naming conventions by Spinnaker.

spin33

 There can be only one, Highlander!

Now, in the Deploy stage of the pipeline, we will switch the Server Groupʼs Strategy to Highlander. The Highlander strategy will, as you probably guessed by the name, destroy all other Server Groups in the Cluster. This is more typically used for lower environments, like Development or Test, where you are only interested in the next version of the application for testing. The Red/Black strategy is more applicable to Production, where you want the opportunity to quickly rollback to the previous deployment, if necessary.

spin12

Following a successful deployment, below, we now see the first two Server Groups have been terminated, and a third Server Group in the Cluster is active.

spin40.png

In the AWS Console, we can confirm the four previous EC2 instances have been successfully terminated as a result of the Highlander deployment strategy, and two new instances are running.

spin39

As well, the previous Auto Scaling Groups and Launch Configurations have been deleted from AWS by Spinnaker.

spin44.png

As expected, the Classic Load Balancer only contains the two most recent EC2 instances from the last Server Group deployed.

spin41

Confirming the Deployment

Using the DNS address of the load balancer, we can hit the Election service endpoints, on either of the EC2 instances. All API endpoints are listed in the Projectʼs README file. Below, from a web browser, we see the candidates resource returning candidate information, retrieved from the Electionʼs PostgreSQL RDS database Test instance.

spin42

Similarly, from Postman, we can hit the load balancer and get back election information from the elections resource, using an HTTP GET.

spin43.png

I intentionally left out a discussion of the service’s RDS database and how configuration management was handled with Spring Profiles and Spring Cloud Config. Both topics were out of scope for this post.

Conclusion

Although this was a brief, whirlwind overview of deployment tools, it shows the power of delivery tools like Spinnaker, when seamlessly combined with other tools, like Jenkins and the Nebula plugins. Together, these tools are capable of efficiently, repeatably, and securely deploying large numbers of containerized and non-containerized applications to a variety of private, public, and hybrid cloud infrastructure.

All opinions expressed in this post are my own and not necessarily the views of my current or past employers or their clients.

¹ Running Spinnaker on Compute Engine

, , , , , , , , , , , ,

1 Comment

Deploying Spring Boot Apps to AWS with Netflix Nebula and Spinnaker: Part 1 of 2

Listening to DevOps industry pundits, you might be convinced everyone is running containers in Production (or by now, serverless). Although containerization is growing at a phenomenal rate, several recent surveys¹ indicate less than 50% of enterprises are deploying containers in Production. Filter those results further with the fact, of those enterprises, only a small percentage of their total application portfolios are containerized, let alone in Production.

As a DevOps Consultant, I regularly work with corporations whose global portfolios are in the thousands of applications. Indeed, some percentage of their applications are containerized, with less running in Production. However, a majority of those applications, even those built on modern, light-weight, distributed architectures, are still being deployed to bare-metal and virtualized public cloud and private data center infrastructure, for a variety of reasons.

Enterprise Deployment

Due to the scale and complexity of application portfolios, many organizations have invested in enterprise deployment tools, either commercially available or developed in-house. The enterprise deployment tool’s primary objective is to standardize the process of securely, reliably, and repeatably packaging, publishing, and deploying both containerized and non-containerized applications to large fleets of virtual machines and bare-metal servers, across multiple, geographically dispersed data centers and cloud providers. Enterprise deployment tools are particularly common in tightly regulated and compliance-driven organizations, as well as organizations that have undertaken large amounts of M&A, resulting in vastly different application technology stacks.

Enterprise CI/CD/Release Workflow

Better-known examples of commercially available enterprise deployment tools include IBM UrbanCode Deploy (aka uDeploy), XebiaLabs XL Deploy, CA Automic Release Automation, Octopus Deploy, and Electric Cloud ElectricFlow. While commercial tools continue to gain market share³, many organizations are tightly coupled to their in-house solutions through years of use and fear of widespread process disruption, given current economic, security, compliance, and skills-gap sensitivities.

Deployment Tool Anatomy

Most Enterprise deployment tools are compatible with standard binary package types, including Debian (.deb) and Red Hat  (RPM) Package Manager (.rpm) packages for Linux, NuGet (.nupkg) packages for Windows, and Node Package Manager (.npm) and Bower for JavaScript. There are equivalent package types for other popular languages and formats, such as Go, Python, Ruby, SQL, Android, Objective-C, Swift, and Docker. Packages usually contain application metadata, a signature to ensure the integrity and/or authenticity², and a compressed payload.

Enterprise deployment tools are normally integrated with open-source packaging and publishing tools, such as Apache Maven, Apache Ivy/Ant, Gradle, NPMNuGet, BundlerPIP, and Docker.

Binary packages (and images), built with enterprise deployment tools, are typically stored in private, open-source or commercial binary (artifact) repositories, such as SpacewalkJFrog Artifactory, and Sonatype Nexus Repository. The latter two, Artifactory and Nexus, support a multitude of modern package types and repository structures, including Maven, NuGet, PyPI, NPM, Bower, Ruby Gems, CocoaPods, Puppet, Chef, and Docker.

Mature binary repositories provide many features in addition to package management, including role-based access control, vulnerability scanning, rich APIs, DevOps integration, and fault-tolerant, high-availability architectures.

Lastly, enterprise deployment tools generally rely on standard package management systems to retrieve and install cryptographically verifiable packages and images. These include YUM (Yellowdog Updater, Modified), APT (aptitude), APK (Alpine Linux), NuGet, Chocolatey, NPM, PIP, Bundler, and Docker. Packages are deployed directly to running infrastructure, or indirectly to intermediate deployable components as Amazon Machine Images (AMI), Google Compute Engine machine images, VMware machines, Docker Images, or CoreOS rkt.

Open-Source Alternative

One such enterprise with an extensive portfolio of both containerized and non-containerized applications is Netflix. To standardize their deployments to multiple types of cloud infrastructure, Netflix has developed several well-known open-source software (OSS) tools, including the Nebula Gradle plugins and Spinnaker. I discussed Spinnaker in my previous post, Managing Applications Across Multiple Kubernetes Environments with Istio, as an alternative to Jenkins for deploying container workloads to Kubernetes on Google (GKE).

As a leader in OSS, Netflix has documented their deployment process in several articles and presentations, including a post from 2016, ‘How We Build Code at Netflix.’ According to the article, the high-level process for deployment to Amazon EC2 instances involves the following steps:

  • Code is built and tested locally using Nebula
  • Changes are committed to a central git repository
  • Jenkins job executes Nebula, which builds, tests, and packages the application for deployment
  • Builds are “baked” into Amazon Machine Images (using Spinnaker)
  • Spinnaker pipelines are used to deploy and promote the code change

The Nebula plugins and Spinnaker leverage many underlying, open-source technologies, including Pivotal Spring, Java, Groovy, Gradle, Maven, Apache Commons, Redline RPM, HashiCorp Packer, Redis, HashiCorp Consul, Cassandra, and Apache Thrift.

Both the Nebula plugins and Spinnaker have been battle tested in Production by Netflix, as well as by many other industry leaders after Netflix open-sourced the tools in 2014 (Nebula) and 2015 (Spinnaker). Currently, there are approximately 20 Nebula Gradle plugins available on GitHub. Notable core-contributors in the development of Spinnaker include Google, Microsoft, Pivotal, Target, Veritas, and Oracle, to name a few. A sign of its success, Spinnaker currently has over 4,600 Stars on GitHub!

Part Two: Demonstration

In Part Two, we will deploy a production-ready Spring Boot application, the Election microservice, to multiple Amazon EC2 instances, behind an Elastic Load Balancer (ELB). We will use a fully automated DevOps workflow. The build, test, package, bake, deploy process will be handled by the Netflix Nebula Gradle Linux Packaging Plugin, Jenkins, and Spinnaker. The high-level process will involve the following steps:

  • Configure Gradle to build a production-ready fully executable application for Unix systems (executable JAR)
  • Using deb-s3 and GPG Suite, create a secure, signed APT (Debian) repository on Amazon S3
  • Using Jenkins and the Netflix Nebula plugin, build a Debian package, containing the executable JAR and configuration files
  • Using Jenkins and deb-s3, publish the package to the S3-based APT repository
  • Using Spinnaker (HashiCorp Packer under the covers), bake an Ubuntu Amazon Machine Image (AMI), replete with the executable JAR installed from the Debian package
  • Deploy an auto-scaling set of Amazon EC2 instances from the baked AMI, behind an ELB, running the Spring Boot application using both the Red/Black and Highlander deployment strategies
  • Be able to repeat the entire automated build, test, package, bake, deploy process, triggered by a new code push to GitHub

The overall build, test, package, bake, deploy process will look as follows.

DebianPackageWorkflow12

References

 

All opinions expressed in this post are my own and not necessarily the views of my current or past employers or their clients.

¹ Recent Surveys: ForresterPortworx,  Cloud Foundry Survey
² Courtesy Wikipedia – rpm
³ XebiaLabs Kicks Off 2017 with Triple-Digit Growth in Enterprise DevOps

, , , , , , , , , , , ,

1 Comment

Updating and Maintaing Gradle Project Dependencies

As a DevOps Consultant, I often encounter codebases that have not been properly kept up-to-date. Likewise, I’ve authored many open-source projects on GitHub, which I use for training, presentations, and articles. Those projects often sit dormant for months at a time, #myabandonware.

Poorly maintained and dormant projects often become brittle or break, as their dependencies and indirect dependencies continue to be updated. However, blindly updating project dependencies is often the quickest way to break, or further break an application. Ask me, I’ve given in to temptation and broken my fair share of applications as a result. Nonetheless, it is helpful to be able to quickly analyze a project’s dependencies and discover available updates. Defects, performance issues, and most importantly, security vulnerabilities, are often fixed with dependency updates.

For Node.js projects, I prefer David to discover dependency updates. I have other favorites for Ruby, .NET, and Python, including OWASP Dependency-Check, great for vulnerabilities. In a similar vein, for Gradle-based Java Spring projects, I recently discovered Ben Manes’ Gradle Versions Plugin, gradle-versions-plugin. The plugin is described as a ‘Gradle plugin to discover dependency updates’. The plugin’s GitHub project has over 1,350 stars! According to the plugin project’s README file, this plugin is similar to the Versions Maven Plugin. The project further indicates there are similar Gradle plugins available, including gradle-use-latest-versionsgradle-libraries-plugin, and gradle-update-notifier.

To try the Gradle Versions Plugin, I chose a recent Gradle-based Java Spring Boot API project. I added the plugin to the gradle.build file with a single line of code.

plugins {
  id 'com.github.ben-manes.versions' version '0.17.0'
}

By executing the single Gradle task, dependencyUpdates, the plugin generates a report detailing the status of all project’s dependencies, including plugins. The plugin includes a revision task property, which controls the resolution strategy of determining what constitutes the latest version of a dependency. The property supports three strategies: release, milestone (default), and integration (i.e. SNAPSHOT), which are detailed in the plugin project’s README file.

As expected, the plugin will properly resolve any variables. Using a variable is an efficient practice for setting the Spring Boot versions for multiple dependencies (i.e. springBootVersion).

ext {
    springBootVersion = '2.0.1.RELEASE'
}

dependencies {
    compile('com.h2database:h2:1.4.197')
    compile("io.springfox:springfox-swagger-ui:2.8.0")
    compile("io.springfox:springfox-swagger2:2.8.0")
    compile("org.liquibase:liquibase-core:3.5.5")
    compile("org.sonarsource.scanner.gradle:sonarqube-gradle-plugin:2.6.2")
    compile("org.springframework.boot:spring-boot-starter-actuator:${springBootVersion}")
    compile("org.springframework.boot:spring-boot-starter-data-jpa:${springBootVersion}")
    compile("org.springframework.boot:spring-boot-starter-data-rest:${springBootVersion}")
    compile("org.springframework.boot:spring-boot-starter-hateoas:${springBootVersion}")
    compile("org.springframework.boot:spring-boot-starter-web:${springBootVersion}")
    compileOnly('org.projectlombok:lombok:1.16.20')
    runtime("org.postgresql:postgresql:42.2.2")
    testCompile("org.springframework.boot:spring-boot-starter-test:${springBootVersion}")
}

My first run, using the default revision level, resulted in the following output. The report indicated three of my project’s dependencies were slightly out of date:

> Configure project :
Inferred project: spring-postgresql-demo, version: 4.3.0-dev.2.uncommitted+929c56e

> Task :dependencyUpdates
Failed to resolve ::apiElements
Failed to resolve ::implementation
Failed to resolve ::runtimeElements
Failed to resolve ::runtimeOnly
Failed to resolve ::testImplementation
Failed to resolve ::testRuntimeOnly

------------------------------------------------------------
: Project Dependency Updates (report to plain text file)
------------------------------------------------------------

The following dependencies are using the latest milestone version:
- com.github.ben-manes.versions:com.github.ben-manes.versions.gradle.plugin:0.17.0
- com.netflix.nebula:gradle-ospackage-plugin:4.9.0-rc.1
- com.h2database:h2:1.4.197
- io.spring.dependency-management:io.spring.dependency-management.gradle.plugin:1.0.5.RELEASE
- org.projectlombok:lombok:1.16.20
- com.netflix.nebula:nebula-release-plugin:6.3.3
- org.sonarqube:org.sonarqube.gradle.plugin:2.6.2
- org.springframework.boot:org.springframework.boot.gradle.plugin:2.0.1.RELEASE
- org.postgresql:postgresql:42.2.2
- org.sonarsource.scanner.gradle:sonarqube-gradle-plugin:2.6.2
- org.springframework.boot:spring-boot-starter-actuator:2.0.1.RELEASE
- org.springframework.boot:spring-boot-starter-data-jpa:2.0.1.RELEASE
- org.springframework.boot:spring-boot-starter-data-rest:2.0.1.RELEASE
- org.springframework.boot:spring-boot-starter-hateoas:2.0.1.RELEASE
- org.springframework.boot:spring-boot-starter-test:2.0.1.RELEASE
- org.springframework.boot:spring-boot-starter-web:2.0.1.RELEASE

The following dependencies have later milestone versions:
- org.liquibase:liquibase-core [3.5.5 -> 3.6.1]
- io.springfox:springfox-swagger-ui [2.8.0 -> 2.9.0]
- io.springfox:springfox-swagger2 [2.8.0 -> 2.9.0]

Generated report file build/dependencyUpdates/report.txt

After reading the release notes for the three available updates, and confident I had sufficient unit, smoke, and integration tests to validate any project changes, I manually updated the dependencies. Re-running the Gradle task generated the following abridged output.

------------------------------------------------------------
: Project Dependency Updates (report to plain text file)
------------------------------------------------------------

The following dependencies are using the latest milestone version:
- com.github.ben-manes.versions:com.github.ben-manes.versions.gradle.plugin:0.17.0
- com.netflix.nebula:gradle-ospackage-plugin:4.9.0-rc.1
- com.h2database:h2:1.4.197
- io.spring.dependency-management:io.spring.dependency-management.gradle.plugin:1.0.5.RELEASE
- org.liquibase:liquibase-core:3.6.1
- org.projectlombok:lombok:1.16.20
- com.netflix.nebula:nebula-release-plugin:6.3.3
- org.sonarqube:org.sonarqube.gradle.plugin:2.6.2
- org.springframework.boot:org.springframework.boot.gradle.plugin:2.0.1.RELEASE
- org.postgresql:postgresql:42.2.2
- org.sonarsource.scanner.gradle:sonarqube-gradle-plugin:2.6.2
- org.springframework.boot:spring-boot-starter-actuator:2.0.1.RELEASE
- org.springframework.boot:spring-boot-starter-data-jpa:2.0.1.RELEASE
- org.springframework.boot:spring-boot-starter-data-rest:2.0.1.RELEASE
- org.springframework.boot:spring-boot-starter-hateoas:2.0.1.RELEASE
- org.springframework.boot:spring-boot-starter-test:2.0.1.RELEASE
- org.springframework.boot:spring-boot-starter-web:2.0.1.RELEASE
- io.springfox:springfox-swagger-ui:2.9.0
- io.springfox:springfox-swagger2:2.9.0

Generated report file build/dependencyUpdates/report.txt

BUILD SUCCESSFUL in 3s
1 actionable task: 1 executed

After running a series of automated unit, smoke, and integration tests, to confirm no conflicts with the updates, I committed my changes to GitHub. The Gradle Versions Plugin is a simple and effective solution to Gradle dependency management.

All opinions expressed in this post are my own, and not necessarily the views of my current or past employers, or their clients.

Gradle logo courtesy Gradle.org, © Gradle Inc. 

, , , , , , ,

Leave a comment

Managing Applications Across Multiple Kubernetes Environments with Istio: Part 2

In this two-part post, we are exploring the creation of a GKE cluster, replete with the latest version of Istio, often referred to as IoK (Istio on Kubernetes). We will then deploy, perform integration testing, and promote an application across multiple environments within the cluster.

Part Two

In Part One of this post, we created a Kubernetes cluster on the Google Cloud Platform, installed Istio, provisioned a PostgreSQL database, and configured DNS for routing. Under the assumption that v1 of the Election microservice had already been released to Production, we deployed v1 to each of the three namespaces.

In Part Two of this post, we will learn how to utilize the advanced API testing capabilities of Postman and Newman to ensure v2 is ready for UAT and release to Production. We will deploy and perform integration testing of a new v2 of the Election microservice, locally on Kubernetes Minikube. Once confident v2 is functioning as intended, we will promote and test v2 across the dev, test, and uat namespaces.

Source Code

As a reminder, all source code for this post can be found on GitHub. The project’s README file contains a list of the Election microservice’s endpoints. To get started quickly, use one of the two following options (gist).

Code samples in this post are displayed as Gists, which may not display correctly on some mobile and social media browsers. Links to gists are also provided.

This project includes a kubernetes sub-directory, containing all the Kubernetes resource files and scripts necessary to recreate the example shown in the post.

Testing Locally with Minikube

Deploying to GKE, no matter how automated, takes time and resources, whether those resources are team members or just compute and system resources. Before deploying v2 of the Election service to the non-prod GKE cluster, we should ensure that it has been thoroughly tested locally. Local testing should include the following test criteria:

  1. Source code builds successfully
  2. All unit-tests pass
  3. A new Docker Image can be created from the build artifact
  4. The Service can be deployed to Kubernetes (Minikube)
  5. The deployed instance can connect to the database and execute the Liquibase changesets
  6. The deployed instance passes a minimal set of integration tests

Minikube gives us the ability to quickly iterate and test an application, as well as the Kubernetes and Istio resources required for its operation, before promoting to GKE. These resources include Kubernetes Namespaces, Secrets, Deployments, Services, Route Rules, and Istio Ingresses. Since Minikube is just that, a miniature version of our GKE cluster, we should be able to have a nearly one-to-one parity between the Kubernetes resources we apply locally and those applied to GKE. This post assumes you have the latest version of Minikube installed, and are familiar with its operation.

This project includes a minikube sub-directory, containing all the Kubernetes resource files and scripts necessary to recreate the Minikube deployment example shown in this post. The three included scripts are designed to be easily adapted to a CI/CD DevOps workflow. You may need to modify the scripts to match your environment’s configuration. Note this Minikube-deployed version of the Election service relies on the external Amazon RDS database instance.

Local Database Version

To eliminate the AWS costs, I have included a second, alternate version of the Minikube Kubernetes resource files, minikube_db_local This version deploys a single containerized PostgreSQL database instance to Minikube, as opposed to relying on the external Amazon RDS instance. Be aware, the database does not have persistent storage or an Istio sidecar proxy.

istio_100.png

Minikube Cluster

If you do not have a running Minikube cluster, create one with the minikube start command.

istio_081

Minikube allows you to use normal kubectl CLI commands to interact with the Minikube cluster. Using the kubectl get nodes command, we should see a single Minikube node running the latest Kubernetes v1.10.0.

istio_082

Istio on Minikube

Next, install Istio following Istio’s online installation instructions. A basic Istio installation on Minikube, without the additional add-ons, should only require a single Istio install script.

istio_083

If successful, you should observe a new istio-system namespace, containing the four main Istio components: istio-ca, istio-ingress, istio-mixer, and istio-pilot.

istio_084

Deploy v2 to Minikube

Next, create a Minikube Development environment, consisting of a dev Namespace, Istio Ingress, and Secret, using the part1-create-environment.sh script. Next, deploy v2 of the Election service to thedev Namespace, along with an associated Route Rule, using the part2-deploy-v2.sh script. One v2 instance should be sufficient to satisfy the testing requirements.

istio_085

Access to v2 of the Election service on Minikube is a bit different than with GKE. When routing external HTTP requests, there is no load balancer, no external public IP address, and no public DNS or subdomains. To access the single instance of v2 running on Minikube, we use the local IP address of the Minikube cluster, obtained with the minikube ip command. The access port required is the Node Port (nodePort) of the istio-ingress Service. The command is shown below (gist) and included in the part3-smoke-test.sh script.

The second part of our HTTP request routing is the same as with GKE, relying on an Istio Route Rules. The /v2/ sub-collection resource in the HTTP request URL is rewritten and routed to the v2 election Pod by the Route Rule. To confirm v2 of the Election service is running and addressable, curl the /v2/actuator/health endpoint. Spring Actuator’s /health endpoint is frequently used at the end of a CI/CD server’s deployment pipeline to confirm success. The Spring Boot application can take a few minutes to fully start up and be responsive to requests, depending on the speed of your local machine.

istio_093.png

Using the Kubernetes Dashboard, we should see our deployment of the single Election service Pod is running successfully in Minikube’s dev namespace.

istio_087

Once deployed, we run a battery of integration tests to confirm that the new v2 functionality is working as intended before deploying to GKE. In the next section of this post, we will explore the process creating and managing Postman Collections and Postman Environments, and how to automate those Collections of tests with Newman and Jenkins.

istio_088

Integration Testing

The typical reason an application is deployed to lower environments, prior to Production, is to perform application testing. Although definitions vary across organizations, testing commonly includes some or all of the following types: Integration Testing, Functional Testing, System Testing, Stress or Load Testing, Performance Testing, Security Testing, Usability Testing, Acceptance Testing, Regression Testing, Alpha and Beta Testing, and End-to-End Testing. Test teams may also refer to other testing forms, such as Whitebox (Glassbox), Blackbox Testing, Smoke, Validation, or Sanity Testing, and Happy Path Testing.

The site, softwaretestinghelp.com, defines integration testing as, ‘testing of all integrated modules to verify the combined functionality after integration is termed so. Modules are typically code modules, individual applications, client and server applications on a network, etc. This type of testing is especially relevant to client/server and distributed systems.

In this post, we are concerned that our integrated modules are functioning cohesively, primarily the Election service, Amazon RDS database, DNS, Istio Ingress, Route Rules, and the Istio sidecar Proxy. Unlike Unit Testing and Static Code Analysis (SCA), which is done pre-deployment, integration testing requires an application to be deployed and running in an environment.

Postman

I have chosen Postman, along with Newman, to execute a Collection of integration tests before promoting to the next environment. The integration tests confirm the deployed application’s name and version. The integration tests then perform a series of HTTP GET, POST, PUT, PATCH, and DELETE actions against the service’s resources. The integration tests verify a successful HTTP response code is returned, based on the type of request made.

istio_055

Postman tests are written in JavaScript, similar to other popular, modern testing frameworks. Postman offers advanced features such as test-chaining. Tests can be chained together through the use of environment variables to store response values and pass them onto to other tests. Values shared between tests are also stored in the Postman Environments. Below, we store the ID of the new candidate, the result of an HTTP POST to the /candidates endpoint. We then use the stored candidate ID in proceeding HTTP GET, PUT, and PATCH test requests to the same /candidates endpoint.

istio_056

Environment-specific variables, such as the resource host, port, and environment sub-collection resource, are abstracted and stored as key/value pairs within Postman Environments, and called through variables in the request URL and within the tests. Thus, the same Postman Collection of tests may be run against multiple environments using different Postman Environments.

istio_057

Postman Runner allows us to run multiple iterations of our Collection. We also have the option to build in delays between tests. Lastly, Postman Runner can load external JSON and CSV formatted test data, which is beyond the scope of this post.

istio_058

Postman contains a simple Run Summary UI for viewing test results.

istio_060

Test Automation

To support running tests from the command line, Postman provides Newman. According to Postman, Newman is a command-line collection runner for Postman. Newman offers the same functionality as Postman’s Collection Runner, all part of the newman CLI. Newman is Node.js module, installed globally as an npm package, npm install newman --global.

Typically, Development and Testing teams compose Postman Collections and define Postman Environments, locally. Teams run their tests locally in Postman, during their development cycle. Then, those same Postman Collections are executed from the command line, or more commonly as part of a CI/CD pipeline, such as with Jenkins.

Below, the same Collection of integration tests ran in the Postman Runner UI, are run from the command line, using Newman.

istio_061

Jenkins

Without a doubt, Jenkins is the leading open-source CI/CD automation server. The building, testing, publishing, and deployment of microservices to Kubernetes is relatively easy with Jenkins. Generally, you would build, unit-test, push a new Docker image, and then deploy your application to Kubernetes using a series of CI/CD pipelines. Below, we see examples of these pipelines using Jenkins Blue Ocean, starting with a continuous integration pipeline, which includes unit-testing and Static Code Analysis (SCA) with SonarQube.

istio_108

Followed by a pipeline to build the Docker Image, using the build artifact from the above pipeline, and pushes the Image to Docker Hub.

istio_109

The third pipeline that demonstrates building the three Kubernetes environments and deploying v1 of the Election service to the dev namespace. This pipeline is just for demonstration purposes; typically, you would separate these functions.

istio_110

Spinnaker

An alternative to Jenkins for the deployment of microservices is Spinnaker, created by Netflix. According to Netflix, ‘Spinnaker is an open source, multi-cloud continuous delivery platform for releasing software changes with high velocity and confidence.’ Spinnaker is designed to integrate easily with Jenkins, dividing responsibilities for continuous integration and delivery, with deployment. Below, Spinnaker two sample deployment pipelines, similar to Jenkins, for deploying v1 and v2 of the Election service to the non-prod GKE cluster.

spin_07

Below, Spinnaker has deployed v2 of the Election service to dev using a Highlander deployment strategy. Subsequently, Spinnaker has deployed v2 to test using a Red/Black deployment strategy, leaving the previously released v1 Server Group in place, in case a rollback is required.

spin_08

Once Spinnaker is has completed the deployment tasks, the Postman Collections of smoke and integration tests are executed by Newman, as part of another Jenkins CI/CD pipeline.

istio_101B.png

In this pipeline, a set of basic smoke tests is run first to ensure the new deployment is running properly, and then the integration tests are executed.

istio_102

In this simple example, we have a three-stage pipeline created from a Jenkinsfile (gist).

Test Results

Newman offers several options for displaying test results. For easy integration with Jenkins, Newman results can be delivered in a format that can be displayed as JUnit test reports. The JUnit test report format, XML, is a popular method of standardizing test results from different testing tools. Below is a truncated example of a test report file (gist).

Translating Newman test results to JUnit reports allows the percentage of test cases successfully executed, to be tracked over multiple deployments, a universal testing metric. Below we see the JUnit Test Reports Test Result Trend graph for a series of test runs.

istio_103

Deploying to Development

Development environments typically have a rapid turnover of application versions. Many teams use their Development environment as a continuous integration environment, where every commit that successfully builds and passes all unit tests, is deployed. The purpose of the CI deployments is to ensure build artifacts will successfully deploy through the CI/CD pipeline, start properly, and pass a basic set of smoke tests.

Other teams use the Development environments as an extension of their local Minikube environment. The Development environment will possess some or all of the required external integration points, which the Developer’s local Minikube environment may not. The goal of the Development environment is to help Developers ensure their application is functioning correctly and is ready for the Test teams to evaluate, prior to promotion to the Test environment.

Some external integration points, such as external payment gateways, customer relationship management (CRM) systems, content management systems (CMS), or data analytics engines, are often stubbed-out in lower environments. Generally, third-party providers only offer a limited number of parallel non-Production integration environments. While an application may pass through several non-prod environments, testing against all external integration points will only occur in one or two of those environments.

With v2 of the Election service ready for testing on GKE, we deploy it to the GKE cluster’s dev namespace using the part4a-deploy-v2-dev.sh script. We will also delete the previous v1 version of the Election service. Similar to the v1 deployment script, the v2 scripts perform a kube-inject command, which manually injects the Istio sidecar proxy alongside the Election service, into each election v2 Pod. The deployment script also deploys an alternate Istio Route Rule, which routes requests to api.dev.voter-demo.com/v2/* resource of v2 of the Election service.

istio_054.png

Once deployed, we run our Postman Collection of integration tests with Newman or as part of a CI/CD pipeline. In the Development environment, we may choose to run a limited set of tests for the sake of expediency, or because not all external integration points are accessible.

Promotion to Test

With local Minikube and Development environment testing complete, we promote and deploy v2 of the Election service to the Test environment, using the part4b-deploy-v2-test.sh script. In Test, we will not delete v1 of the Election service.

istio_062

Often, an organization will maintain a running copy of all versions of an application currently deployed to Production, in a lower environment. Let’s look at two scenarios where this is common. First, v1 of the Election service has an issue in Production, which needs to be confirmed and may require a hot-fix by the Development team. Validation of the v1 Production bug is often done in a lower environment. The second scenario for having both versions running in an environment is when v1 and v2 both need to co-exist in Production. Organizations frequently support multiple API versions. Cutting over an entire API user-base to a new API version is often completed over a series of releases, and requires careful coordination with API consumers.

Testing All Versions

An essential role of integration testing should be to confirm that both versions of the Election service are functioning correctly, while simultaneously running in the same namespace. For example, we want to verify traffic is routed correctly, based on the HTTP request URL, to the correct version. Another common test scenario is database schema changes. Suppose we make what we believe are backward-compatible database changes to v2 of the Election service. We should be able to prove, through testing, that both the old and new versions function correctly against the latest version of the database schema.

There are different automation strategies that could be employed to test multiple versions of an application without creating separate Collections and Environments. A simple solution would be to templatize the Environments file, and then programmatically change the Postman Environment’s version variable injected from a pipeline parameter (abridged environment file shown below).

istio_095.png

Once initial automated integration testing is complete, Test teams will typically execute additional forms of application testing if necessary, before signing off for UAT and Performance Testing to begin.

User-Acceptance Testing

With testing in the Test environments completed, we continue onto UAT. The term UAT suggest that a set of actual end-users (API consumers) of the Election service will perform their own testing. Frequently, UAT is only done for a short, fixed period of time, often with a specialized team of Testers. Issues experienced during UAT can be expensive and impact the ability to release an application to Production on-time if sign-off is delayed.

After deploying v2 of the Election service to UAT, and before opening it up to the UAT team, we would naturally want to repeat the same integration testing process we conducted in the previous Test environment. We must ensure that v2 is functioning as expected before our end-users begin their testing. This is where leveraging a tool like Jenkins makes automated integration testing more manageable and repeatable. One strategy would be to duplicate our existing Development and Test pipelines, and re-target the new pipeline to call v2 of the Election service in UAT.

istio_104.png

Again, in a JUnit report format, we can examine individual results through the Jenkins Console.

istio_105.png

We can also examine individual results from each test run using a specific build’s Console Output.

istio_106.png

Testing and Instrumentation

To fully evaluate the integration test results, you must look beyond just the percentage of test cases executed successfully. It makes little sense to release a new version of an application if it passes all functional tests, but significantly increases client response times, unnecessarily increases memory consumption or wastes other compute resources, or is grossly inefficient in the number of calls it makes to the database or third-party dependencies. Often times, integration testing uncovers potential performance bottlenecks that are incorporated into performance test plans.

Critical intelligence about the performance of the application can only be obtained through the use of logging and metrics collection and instrumentation. Istio provides this telemetry out-of-the-box with Zipkin, Jaeger, Service Graph, Fluentd, Prometheus, and Grafana. In the included Grafana Istio Dashboard below, we see the performance of v1 of the Election service, under test, in the Test environment. We can compare request and response payload size and timing, as well as request and response times to external integration points, such as our Amazon RDS database. We are able to observe the impact of individual test requests on the application and all its integration points.

istio_067

As part of integration testing, we should monitor the Amazon RDS CloudWatch metrics. CloudWatch allows us to evaluate critical database performance metrics, such as the number of concurrent database connections, CPU utilization, read and write IOPS, Memory consumption, and disk storage requirements.

istio_043

A discussion of metrics starts moving us toward load and performance testing against Production service-level agreements (SLAs). Using a similar approach to integration testing, with load and performance testing, we should be able to accurately estimate the sizing requirements our new application for Production. Load and Performance Testing helps answer questions like the type and size of compute resources are required for our GKE Production cluster and for our Amazon RDS database, or how many compute nodes and number of instances (Pods) are necessary to support the expected user-load.

All opinions expressed in this post are my own, and not necessarily the views of my current or past employers, or their clients.

, , , , , , , , , , , , , ,

2 Comments

Managing Applications Across Multiple Kubernetes Environments with Istio: Part 1

In the following two-part post, we will explore the creation of a GKE cluster, replete with the latest version of Istio, often referred to as IoK (Istio on Kubernetes). We will then deploy, perform integration testing, and promote an application across multiple environments within the cluster.

Application Environment Management

Container orchestration engines, such as Kubernetes, have revolutionized the deployment and management of microservice-based architectures. Combined with a Service Mesh, such as Istio, Kubernetes provides a secure, instrumented, enterprise-grade platform for modern, distributed applications.

One of many challenges with any platform, even one built on Kubernetes, is managing multiple application environments. Whether applications run on bare-metal, virtual machines, or within containers, deploying to and managing multiple application environments increases operational complexity.

As Agile software development practices continue to increase within organizations, the need for multiple, ephemeral, on-demand environments also grows. Traditional environments that were once only composed of Development, Test, and Production, have expanded in enterprises to include a dozen or more environments, to support the many stages of the modern software development lifecycle. Current application environments often include Continous Integration and Delivery (CI), Sandbox, Development, Integration Testing (QA), User Acceptance Testing (UAT), Staging, Performance, Production, Disaster Recovery (DR), and Hotfix. Each environment requiring its own compute, security, networking, configuration, and corresponding dependencies, such as databases and message queues.

Environments and Kubernetes

There are various infrastructure architectural patterns employed by Operations and DevOps teams to provide Kubernetes-based application environments to Development teams. One pattern consists of separate physical Kubernetes clusters. Separate clusters provide a high level of isolation. Isolation offers many advantages, including increased performance and security, the ability to tune each cluster’s compute resources to meet differing SLAs, and ensuring a reduced blast radius when things go terribly wrong. Conversely, separate clusters often result in increased infrastructure costs and operational overhead, and complex deployment strategies. This pattern is often seen in heavily regulated, compliance-driven organizations, where security, auditability, and separation of duties are paramount.

Kube Clusters Diagram F15

Namespaces

An alternative to separate physical Kubernetes clusters is virtual clusters. Virtual clusters are created using Kubernetes Namespaces. According to Kubernetes documentation, ‘Kubernetes supports multiple virtual clusters backed by the same physical cluster. These virtual clusters are called namespaces’.

In most enterprises, Operations and DevOps teams deliver a combination of both virtual and physical Kubernetes clusters. For example, lower environments, such as those used for Development, Test, and UAT, often reside on the same physical cluster, each in a separate virtual cluster (namespace). At the same time, environments such as Performance, Staging, Production, and DR, often require the level of isolation only achievable with physical Kubernetes clusters.

In the Cloud, physical clusters may be further isolated and secured using separate cloud accounts. For example, with AWS you might have a Non-Production AWS account and a Production AWS account, both managed by an AWS Organization.

Kube Clusters Diagram v2 F3

In a multi-environment scenario, a single physical cluster would contain multiple namespaces, into which separate versions of an application or applications are independently deployed, accessed, and tested. Below we see a simple example of a single Kubernetes non-prod cluster on the left, containing multiple versions of different microservices, deployed across three namespaces. You would likely see this type of deployment pattern as applications are deployed, tested, and promoted across lower environments, before being released to Production.

Kube Clusters Diagram v2 F5.png

Example Application

To demonstrate the promotion and testing of an application across multiple environments, we will use a simple election-themed microservice, developed for a previous post, Developing Cloud-Native Data-Centric Spring Boot Applications for Pivotal Cloud Foundry. The Spring Boot-based application allows API consumers to create, read, update, and delete, candidates, elections, and votes, through an exposed set of resources, accessed via RESTful endpoints.

Source Code

All source code for this post can be found on GitHub. The project’s README file contains a list of the Election microservice’s endpoints. To get started quickly, use one of the two following options (gist).

Code samples in this post are displayed as Gists, which may not display correctly on some mobile and social media browsers. Links to gists are also provided.

This project includes a kubernetes sub-directory, containing all the Kubernetes resource files and scripts necessary to recreate the example shown in the post. The scripts are designed to be easily adapted to a CI/CD DevOps workflow. You will need to modify the script’s variables to match your own environment’s configuration.

istio_107small

Database

The post’s Spring Boot application relies on a PostgreSQL database. In the previous post, ElephantSQL was used to host the PostgreSQL instance. This time, I have used Amazon RDS for PostgreSQL. Amazon RDS for PostgreSQL and ElephantSQL are equivalent choices. For simplicity, you might also consider a containerized version of PostgreSQL, managed as part of your Kubernetes environment.

Ideally, each environment should have a separate database instance. Separate database instances provide better isolation, fine-grained RBAC, easier test data lifecycle management, and improved performance. Although, for this post, I suggest a single, shared, minimally-sized RDS instance.

The PostgreSQL database’s sensitive connection information, including database URL, username, and password, are stored as Kubernetes Secrets, one secret for each namespace, and accessed by the Kubernetes Deployment controllers.

istio_043.png

Istio

Although not required, Istio makes the task of managing multiple virtual and physical clusters significantly easier. Following Istio’s online installation instructions, download and install Istio 0.7.1.

To create a Google Kubernetes Engine (GKE) cluster with Istio, you could use gcloud CLI’s container clusters create command, followed by installing Istio manually using Istio’s supplied Kubernetes resource files. This was the method used in the previous post, Deploying and Configuring Istio on Google Kubernetes Engine (GKE).

Alternatively, you could use Istio’s Google Cloud Platform (GCP) Deployment Manager files, along with the gcloud CLI’s deployment-manager deployments create command to create a Kubernetes cluster, replete with Istio, in a single step. Although arguably simpler, the deployment-manager method does not provide the same level of fine-grain control over cluster configuration as the container clusters create method. For this post, the deployment-manager method will suffice.

istio_001

The latest version of the Google Kubernetes Engine, available at the time of this post, is 1.9.6-gke.0. However, to install this version of Kubernetes Engine using the Istio’s supplied deployment Manager Jinja template requires updating the hardcoded value in the istio-cluster.jinja file from 1.9.2-gke.1. This has been updated in the next release of Istio.

istio_002

Another change, the latest version of Istio offered as an option in the istio-cluster-jinja.schema file. Specifically, the installIstioRelease configuration variable is only 0.6.0. The template does not include 0.7.1 as an option. Modify the istio-cluster-jinja.schema file to include the choice of 0.7.1. Optionally, I also set 0.7.1 as the default. This change should also be included in the next version of Istio.

istio_075.png

There are a limited number of GKE and Istio configuration defaults defined in the istio-cluster.yaml file, all of which can be overridden from the command line.

istio_002B.png

To optimize the cluster, and keep compute costs to a minimum, I have overridden several of the default configuration values using the properties flag with the gcloud CLI’s deployment-manager deployments create command. The README file provided by Istio explains how to use this feature. Configuration changes include the name of the cluster, the version of Istio (0.7.1), the number of nodes (2), the GCP zone (us-east1-b), and the node instance type (n1-standard-1). I also disabled automatic sidecar injection and chose not to install the Istio sample book application onto the cluster (gist).

Cluster Provisioning

To provision the GKE cluster and deploy Istio, first modify the variables in the part1-create-gke-cluster.sh file (shown above), then execute the script. The script also retrieves your cluster’s credentials, to enable command line interaction with the cluster using the kubectl CLI.

istio_002C.png

Once complete, validate the version of Istio by examining Istio’s Docker image versions, using the following command (gist).

The result should be a list of Istio 0.7.1 Docker images.

istio_076.png

The new cluster should be running GKE version 1.9.6.gke.0. This can be confirmed using the following command (gist).

Or, from the GCP Cloud Console.

istio_037

The new GKE cluster should be composed of (2) n1-standard-1 nodes, running in the us-east-1b zone.

istio_038

As part of the deployment, all of the separate Istio components should be running within the istio-system namespace.

istio_040

As part of the deployment, an external IP address and a load balancer were provisioned by GCP and associated with the Istio Ingress. GCP’s Deployment Manager should have also created the necessary firewall rules for cluster ingress and egress.

istio_010.png

Building the Environments

Next, we will create three namespaces,dev, test, and uat, which represent three non-production environments. Each environment consists of a Kubernetes Namespace, Istio Ingress, and Secret. The three environments are deployed using the part2-create-environments.sh script.

istio_048.png

Deploying Election v1

For this demonstration, we will assume v1 of the Election service has been previously promoted, tested, and released to Production. Hence, we would expect v1 to be deployed to each of the lower environments. Additionally, a new v2 of the Election service has been developed and tested locally using Minikube. It is ready for deployment to the three environments and will undergo integration testing (detailed in Part Two of the post).

If you recall from our GKE/Istio configuration, we chose manual sidecar injection of the Istio proxy. Therefore, all election deployment scripts perform a kube-inject command. To connect to our external Amazon RDS database, this kube-inject command requires the includeIPRanges flag, which contains two cluster configuration values, the cluster’s IPv4 CIDR (clusterIpv4Cidr) and the service’s IPv4 CIDR (servicesIpv4Cidr).

Before deployment, we export the includeIPRanges value as an environment variable, which will be used by the deployment scripts, using the following command, export IP_RANGES=$(sh ./get-cluster-ip-ranges.sh). The get-cluster-ip-ranges.sh script is shown below (gist).

Using this method with manual sidecar injection is discussed in the previous post, Deploying and Configuring Istio on Google Kubernetes Engine (GKE).

To deploy v1 of the Election service to all three namespaces, execute the part3-deploy-v1-all-envs.sh script.

istio_051.png

We should now have two instances of v1 of the Election service, running in the dev, test, and uat namespaces, for a total of six election-v1 Kubernetes Pods.

istio_052

HTTP Request Routing

Before deploying additional versions of the Election service in Part Two of this post, we should understand how external HTTP requests will be routed to different versions of the Election service, in multiple namespaces. In the post’s simple example, we have a matrix of three namespaces and two versions of the Election service. That means we need a method to route external traffic to up to six different election versions. There multiple ways to solve this problem, each with their own pros and cons. For this post, I found a combination of DNS and HTTP request rewriting is most effective.

DNS

First, to route external HTTP requests to the correct namespace, we will use subdomains. Using my current DNS management solution, Azure DNS, I create three new A records for my registered domain, voter-demo.com. There is one A record for each namespace, including api.dev, api.test, and api.uat.

istio_077.png

All three subdomains should resolve to the single external IP address assigned to the cluster’s load balancer.

istio_010.png

As part of the environments creation, the script deployed an Istio Ingress, one to each environment. The ingress accepts traffic based on a match to the Request URL (gist).

The istio-ingress service load balancer, running in the istio-system namespace, routes inbound external traffic, based on the Request URL, to the Istio Ingress in the appropriate namespace.

istio_053.png

The Istio Ingress in the namespace then directs the traffic to one of the Kubernetes Pods, containing the Election service and the Istio sidecar proxy.

istio_068.png

HTTP Rewrite

To direct the HTTP request to v1 or v2 of the Election service, an Istio Route Rule is used. As part of the environment creation, along with a Namespace and Ingress resources, we also deployed an Istio Route Rule to each environment. This particular route rule examines the HTTP request URL for a /v1/ or /v2/ sub-collection resource. If it finds the sub-collection resource, it performs a HTTPRewrite, removing the sub-collection resource from the HTTP request. The Route Rule then directs the HTTP request to the appropriate version of the Election service, v1 or v2 (gist).

According to Istio, ‘if there are multiple registered instances with the specified tag(s), they will be routed to based on the load balancing policy (algorithm) configured for the service (round-robin by default).’ We are using the default load balancing algorithm to distribute requests across multiple copies of each Election service.

The final external HTTP request routing for the Election service in the Non-Production GKE cluster is shown on the left, in the diagram, below. Every Election service Pod also contains an Istio sidecar proxy instance.

Kube Clusters Diagram F14

Below are some examples of HTTP GET requests that would be successfully routed to our Election service, using the above-described routing strategy (gist).

Part Two

In Part One of this post, we created the Kubernetes cluster on the Google Cloud Platform, installed Istio, provisioned a PostgreSQL database, and configured DNS for routing. Under the assumption that v1 of the Election microservice had already been released to Production, we deployed v1 to each of the three namespaces.

In Part Two of this post, we will learn how to utilize the sophisticated API testing capabilities of Postman and Newman to ensure v2 is ready for UAT and release to Production. We will deploy and perform integration testing of a new, v2 of the Election microservice, locally, on Kubernetes Minikube. Once we are confident v2 is functioning as intended, we will promote and test v2, across the dev, test, and uat namespaces.

All opinions expressed in this post are my own, and not necessarily the views of my current or past employers, or their clients.

, , , , , , , , , , ,

1 Comment

Provision and Deploy a Consul Cluster on AWS, using Terraform, Docker, and Jenkins

Cover2

Introduction

Modern DevOps tools, such as HashiCorp’s Packer and Terraform, make it easier to provision and manage complex cloud architecture. Utilizing a CI/CD server, such as Jenkins, to securely automate the use of these DevOps tools, ensures quick and consistent results.

In a recent post, Distributed Service Configuration with Consul, Spring Cloud, and Docker, we built a Consul cluster using Docker swarm mode, to host distributed configurations for a Spring Boot application. The cluster was built locally with VirtualBox. This architecture is fine for development and testing, but not for use in Production.

In this post, we will deploy a highly available three-node Consul cluster to AWS. We will use Terraform to provision a set of EC2 instances and accompanying infrastructure. The instances will be built from a hybrid AMIs containing the new Docker Community Edition (CE). In a recent post, Baking AWS AMI with new Docker CE Using Packer, we provisioned an Ubuntu AMI with Docker CE, using Packer. We will deploy Docker containers to each EC2 host, containing an instance of Consul server.

All source code can be found on GitHub.

Jenkins

I have chosen Jenkins to automate all of the post’s build, provisioning, and deployment tasks. However, none of the code is written specific to Jenkins; you may run all of it from the command line.

For this post, I have built four projects in Jenkins, as follows:

  1. Provision Docker CE AMI: Builds Ubuntu AMI with Docker CE, using Packer
  2. Provision Consul Infra AWS: Provisions Consul infrastructure on AWS, using Terraform
  3. Deploy Consul Cluster AWS: Deploys Consul to AWS, using Docker
  4. Destroy Consul Infra AWS: Destroys Consul infrastructure on AWS, using Terraform

Jenkins UI

We will primarily be using the ‘Provision Consul Infra AWS’, ‘Deploy Consul Cluster AWS’, and ‘Destroy Consul Infra AWS’ Jenkins projects in this post. The fourth Jenkins project, ‘Provision Docker CE AMI’, automates the steps found in the recent post, Baking AWS AMI with new Docker CE Using Packer, to build the AMI used to provision the EC2 instances in this post.

Consul AWS Diagram 2

Terraform

Using Terraform, we will provision EC2 instances in three different Availability Zones within the US East 1 (N. Virginia) Region. Using Terraform’s Amazon Web Services (AWS) provider, we will create the following AWS resources:

  • (1) Virtual Private Cloud (VPC)
  • (1) Internet Gateway
  • (1) Key Pair
  • (3) Elastic Cloud Compute (EC2) Instances
  • (2) Security Groups
  • (3) Subnets
  • (1) Route
  • (3) Route Tables
  • (3) Route Table Associations

The final AWS architecture should resemble the following:

Consul AWS Diagram

Production Ready AWS

Although we have provisioned a fairly complete VPC for this post, it is far from being ready for Production. I have created two security groups, limiting the ingress and egress to the cluster. However, to further productionize the environment would require additional security hardening. At a minimum, you should consider adding public/private subnets, NAT gateways, network access control list rules (network ACLs), and the use of HTTPS for secure communications.

In production, applications would communicate with Consul through local Consul clients. Consul clients would take part in the LAN gossip pool from different subnets, Availability Zones, Regions, or VPCs using VPC peering. Communications would be tightly controlled by IAM, VPC, subnet, IP address, and port.

Also, you would not have direct access to the Consul UI through a publicly exposed IP or DNS address. Access to the UI would be removed altogether or locked down to specific IP addresses, and accessed restricted to secure communication channels.

Consul

We will achieve high availability (HA) by clustering three Consul server nodes across the three Elastic Cloud Compute (EC2) instances. In this minimally sized, three-node cluster of Consul servers, we are protected from the loss of one Consul server node, one EC2 instance, or one Availability Zone(AZ). The cluster will still maintain a quorum of two nodes. An additional level of HA that Consul supports, multiple datacenters (multiple AWS Regions), is not demonstrated in this post.

Docker

Having Docker CE already installed on each EC2 instance allows us to execute remote Docker commands over SSH from Jenkins. These commands will deploy and configure a Consul server node, within a Docker container, on each EC2 instance. The containers are built from HashiCorp’s latest Consul Docker image pulled from Docker Hub.

Getting Started

Preliminary Steps

If you have built infrastructure on AWS with Terraform, these steps should be familiar to you:

  1. First, you will need an AMI with Docker. I suggest reading Baking AWS AMI with new Docker CE Using Packer.
  2. You will need an AWS IAM User with the proper access to create the required infrastructure. For this post, I created a separate Jenkins IAM User with PowerUser level access.
  3. You will need to have an RSA public-private key pair, which can be used to SSH into the EC2 instances and install Consul.
  4. Ensure you have your AWS credentials set. I usually source mine from a .env file, as environment variables. Jenkins can securely manage credentials, using secret text or files.
  5. Fork and/or clone the Consul cluster project from  GitHub.
  6. Change the aws_key_name and public_key_path variable values to your own RSA key, in the variables.tf file
  7. Change the aws_amis_base variable values to your own AMI ID (see step 1)
  8. If you are do not want to use the US East 1 Region and its AZs, modify the variables.tf, network.tf, and instances.tf files.
  9. Disable Terraform’s remote state or modify the resource to match your remote state configuration, in the main.tf file. I am using an Amazon S3 bucket to store my Terraform remote state.

Building an AMI with Docker

If you have not built an Amazon Machine Image (AMI) for use in this post already, you can do so using the scripts provided in the previous post’s GitHub repository. To automate the AMI build task, I built the ‘Provision Docker CE AMI’ Jenkins project. Identical to the other three Jenkins projects in this post, this project has three main tasks, which include: 1) SCM: clone the Packer AMI GitHub project, 2) Bindings: set up the AWS credentials, and 3) Build: run Packer.

The SCM and Bindings tasks are identical to the other projects (see below for details), except for the use of a different GitHub repository. The project’s Build step, which runs the packer_build_ami.sh script looks as follows:

jenkins_13

The resulting AMI ID will need to be manually placed in Terraform’s variables.tf file, before provisioning the AWS infrastructure with Terraform. The new AMI ID will be displayed in Jenkin’s build output.

jenkins_14

Provisioning with Terraform

Based on the modifications you made in the Preliminary Steps, execute the terraform validate command to confirm your changes. Then, run the terraform plan command to review the plan. Assuming are were no errors, finally, run the terraform apply command to provision the AWS infrastructure components.

In Jenkins, I have created the ‘Provision Consul Infra AWS’ project. This project has three tasks, which include: 1) SCM: clone the GitHub project, 2) Bindings: set up the AWS credentials, and 3) Build: run Terraform. Those tasks look as follows:

Jenkins_08.png

You will obviously need to use your modified GitHub project, incorporating the configuration changes detailed above, as the SCM source for Jenkins.

Jenkins Credentials

You will also need to configure your AWS credentials.

Jenkins_03.png

The provision_infra.sh script provisions the AWS infrastructure using Terraform. The script also updates Terraform’s remote state. Remember to update the remote state configuration in the script to match your personal settings.

The Jenkins build output should look similar to the following:

jenkins_12.png

Although the build only takes about 90 seconds to complete, the EC2 instances could take a few extra minutes to complete their Status Checks and be completely ready. The final results in the AWS EC2 Management Console should look as follows:

EC2 Management Console

Note each EC2 instance is running in a different US East 1 Availability Zone.

Installing Consul

Once the AWS infrastructure is running and the EC2 instances have completed their Status Checks successfully, we are ready to deploy Consul. In Jenkins, I have created the ‘Deploy Consul Cluster AWS’ project. This project has three tasks, which include: 1) SCM: clone the GitHub project, 2) Bindings: set up the AWS credentials, and 3) Build: run an SSH remote Docker command on each EC2 instance to deploy Consul. The SCM and Bindings tasks are identical to the project above. The project’s Build step looks as follows:

Jenkins_04.png

First, the delete_containers.sh script deletes any previous instances of Consul containers. This is helpful if you need to re-deploy Consul. Next, the deploy_consul.sh script executes a series of SSH remote Docker commands to install and configure Consul on each EC2 instance.

The entire Jenkins build process only takes about 30 seconds. Afterward, the output from a successful Jenkins build should show that all three Consul server instances are running, have formed a quorum, and have elected a Leader.

Jenkins_05.png

Persisting State

The Consul Docker image exposes VOLUME /consul/data, which is a path were Consul will place its persisted state. Using Terraform’s remote-exec provisioner, we create a directory on each EC2 instance, at /home/ubuntu/consul/config. The docker run command bind-mounts the container’s /consul/data path to the EC2 host’s /home/ubuntu/consul/config directory.

According to Consul, the Consul server container instance will ‘store the client information plus snapshots and data related to the consensus algorithm and other state, like Consul’s key/value store and catalog’ in the /consul/data directory. That container directory is now bind-mounted to the EC2 host, as demonstrated below.

jenkins_15

Accessing Consul

Following a successful deployment, you should be able to use the public URL, displayed in the build output of the ‘Deploy Consul Cluster AWS’ project, to access the Consul UI. Clicking on the Nodes tab in the UI, you should see all three Consul server instances, one per EC2 instance, running and healthy.

Consul UI

Destroying Infrastructure

When you are finished with the post, you may want to remove the running infrastructure, so you don’t continue to get billed by Amazon. The ‘Destroy Consul Infra AWS’ project destroys all the AWS infrastructure, provisioned as part of this post, in about 60 seconds. The project’s SCM and Bindings tasks are identical to the both previous projects. The Build step calls the destroy_infra.sh script, which is included in the GitHub project. The script executes the terraform destroy -force command. It will delete all running infrastructure components associated with the post and update Terraform’s remote state.

Jenkins_09

Conclusion

This post has demonstrated how modern DevOps tooling, such as HashiCorp’s Packer and Terraform, make it easy to build, provision and manage complex cloud architecture. Using a CI/CD server, such as Jenkins, to securely automate the use of these tools, ensures quick and consistent results.

All opinions in this post are my own and not necessarily the views of my current employer or their clients.

, , , , , , , , , ,

3 Comments

Baking AWS AMI with new Docker CE Using Packer

AWS for Docker

Introduction

On March 2 (less than a week ago as of this post), Docker announced the release of Docker Enterprise Edition (EE), a new version of the Docker platform optimized for business-critical deployments. As part of the release, Docker also renamed the free Docker products to Docker Community Edition (CE). Both products are adopting a new time-based versioning scheme for both Docker EE and CE. The initial release of Docker CE and EE, the 17.03 release, is the first to use the new scheme.

Along with the release, Docker delivered excellent documentation on installing, configuring, and troubleshooting the new Docker EE and CE. In this post, I will demonstrate how to partially bake an existing Amazon Machine Image (Amazon AMI) with the new Docker CE, preparing it as a base for the creation of Amazon Elastic Compute Cloud (Amazon EC2) compute instances.

Adding Docker and similar tooling to an AMI is referred to as partially baking an AMI, often referred to as a hybrid AMI. According to AWS, ‘hybrid AMIs provide a subset of the software needed to produce a fully functional instance, falling in between the fully baked and JeOS (just enough operating system) options on the AMI design spectrum.

Installing Docker CE on an AWS AMI should not be confused with Docker’s also recently announced Docker Community Edition (CE) for AWS. Docker for AWS offers multiple CloudFormation templates for Docker EE and CE. According to Docker, Docker for AWS ‘provides a Docker-native solution that avoids operational complexity and adding unneeded additional APIs to the Docker stack.

Base AMI

Docker provides detailed directions for installing Docker CE and EE onto several major Linux distributions. For this post, we will choose a widely used Linux distro, Ubuntu. According to Docker, currently Docker CE and EE can be installed on three popular Ubuntu releases:

  • Yakkety 16.10
  • Xenial 16.04 (LTS)
  • Trusty 14.04 (LTS)

To provision a small EC2 instance in Amazon’s US East (N. Virginia) Region, I will choose Ubuntu 16.04.2 LTS Xenial Xerus . According to Canonical’s Amazon EC2 AMI Locator website, a Xenial 16.04 LTS AMI is available, ami-09b3691f, for US East 1, as a t2.micro EC2 instance type.

Packer

HashiCorp Packer will be used to partially bake the base Ubuntu Xenial 16.04 AMI with Docker CE 17.03. HashiCorp describes Packer as ‘a tool for creating machine and container images for multiple platforms from a single source configuration.’ The JSON-format Packer file is as follows:

{
  "variables": {
    "aws_access_key": "{{env `AWS_ACCESS_KEY_ID`}}",
    "aws_secret_key": "{{env `AWS_SECRET_ACCESS_KEY`}}",
    "us_east_1_ami": "ami-09b3691f",
    "name": "aws-docker-ce-base",
    "us_east_1_name": "ubuntu-xenial-docker-ce-base",
    "ssh_username": "ubuntu"
  },
  "builders": [
    {
      "name": "{{user `us_east_1_name`}}",
      "type": "amazon-ebs",
      "access_key": "{{user `aws_access_key`}}",
      "secret_key": "{{user `aws_secret_key`}}",
      "region": "us-east-1",
      "vpc_id": "",
      "subnet_id": "",
      "source_ami": "{{user `us_east_1_ami`}}",
      "instance_type": "t2.micro",
      "ssh_username": "{{user `ssh_username`}}",
      "ssh_timeout": "10m",
      "ami_name": "{{user `us_east_1_name`}} {{timestamp}}",
      "ami_description": "{{user `us_east_1_name`}} AMI",
      "run_tags": {
        "ami-create": "{{user `us_east_1_name`}}"
      },
      "tags": {
        "ami": "{{user `us_east_1_name`}}"
      },
      "ssh_private_ip": false,
      "associate_public_ip_address": true
    }
  ],
  "provisioners": [
    {
      "type": "file",
      "source": "bootstrap_docker_ce.sh",
      "destination": "/tmp/bootstrap_docker_ce.sh"
    },
    {
          "type": "file",
          "source": "cleanup.sh",
          "destination": "/tmp/cleanup.sh"
    },
    {
      "type": "shell",
      "execute_command": "echo 'packer' | sudo -S sh -c '{{ .Vars }} {{ .Path }}'",
      "inline": [
        "whoami",
        "cd /tmp",
        "chmod +x bootstrap_docker_ce.sh",
        "chmod +x cleanup.sh",
        "ls -alh /tmp",
        "./bootstrap_docker_ce.sh",
        "sleep 10",
        "./cleanup.sh"
      ]
    }
  ]
}

The Packer file uses Packer’s amazon-ebs builder type. This builder is used to create Amazon AMIs backed by Amazon Elastic Block Store (EBS) volumes, for use in EC2.

Bootstrap Script

To install Docker CE on the AMI, the Packer file executes a bootstrap shell script. The bootstrap script and subsequent cleanup script are executed using  Packer’s remote shell provisioner. The bootstrap is like the following:

#!/bin/sh

sudo apt-get remove docker docker-engine

sudo apt-get install \
    apt-transport-https \
    ca-certificates \
    curl \
    software-properties-common

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo apt-key fingerprint 0EBFCD88

sudo add-apt-repository \
   "deb [arch=amd64] https://download.docker.com/linux/ubuntu \
   $(lsb_release -cs) \
   stable"
sudo apt-get update
sudo apt-get -y upgrade
sudo apt-get install -y docker-ce

sudo groupadd docker
sudo usermod -aG docker ubuntu

sudo systemctl enable docker

This script closely follows directions provided by Docker, for installing Docker CE on Ubuntu. After removing any previous copies of Docker, the script installs Docker CE. To ensure sudo is not required to execute Docker commands on any EC2 instance provisioned from resulting AMI, the script adds the ubuntu user to the docker group.

The bootstrap script also uses systemd to start the Docker daemon. Starting with Ubuntu 15.04, Systemd System and Service Manager is used by default instead of the previous init system, Upstart. Systemd ensures Docker will start on boot.

Cleaning Up

It is best good practice to clean up your activities after baking an AMI. I have included a basic clean up script. The cleanup script is as follows:

#!/bin/sh

set -e

echo 'Cleaning up after bootstrapping...'
sudo apt-get -y autoremove
sudo apt-get -y clean
sudo rm -rf /tmp/*
cat /dev/null > ~/.bash_history
history -c
exit

Partially Baking

Before running Packer to build the Docker CE AMI, I set both my AWS access key and AWS secret access key. The Packer file expects the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables.

Running the packer build ubuntu_docker_ce_ami.json command builds the AMI. The abridged output should look similar to the following:

$ packer build docker_ami.json
ubuntu-xenial-docker-ce-base output will be in this color.

==> ubuntu-xenial-docker-ce-base: Prevalidating AMI Name...
    ubuntu-xenial-docker-ce-base: Found Image ID: ami-09b3691f
==> ubuntu-xenial-docker-ce-base: Creating temporary keypair: packer_58bc7a49-9e66-7f76-ce8e-391a67d94987
==> ubuntu-xenial-docker-ce-base: Creating temporary security group for this instance...
==> ubuntu-xenial-docker-ce-base: Authorizing access to port 22 the temporary security group...
==> ubuntu-xenial-docker-ce-base: Launching a source AWS instance...
    ubuntu-xenial-docker-ce-base: Instance ID: i-0ca883ecba0c28baf
==> ubuntu-xenial-docker-ce-base: Waiting for instance (i-0ca883ecba0c28baf) to become ready...
==> ubuntu-xenial-docker-ce-base: Adding tags to source instance
==> ubuntu-xenial-docker-ce-base: Waiting for SSH to become available...
==> ubuntu-xenial-docker-ce-base: Connected to SSH!
==> ubuntu-xenial-docker-ce-base: Uploading bootstrap_docker_ce.sh => /tmp/bootstrap_docker_ce.sh
==> ubuntu-xenial-docker-ce-base: Uploading cleanup.sh => /tmp/cleanup.sh
==> ubuntu-xenial-docker-ce-base: Provisioning with shell script: /var/folders/kf/637b0qns7xb0wh9p8c4q0r_40000gn/T/packer-shell189662158
    ...
    ubuntu-xenial-docker-ce-base: Reading package lists...
    ubuntu-xenial-docker-ce-base: Building dependency tree...
    ubuntu-xenial-docker-ce-base: Reading state information...
    ubuntu-xenial-docker-ce-base: E: Unable to locate package docker-engine
    ubuntu-xenial-docker-ce-base: Reading package lists...
    ubuntu-xenial-docker-ce-base: Building dependency tree...
    ubuntu-xenial-docker-ce-base: Reading state information...
    ubuntu-xenial-docker-ce-base: ca-certificates is already the newest version (20160104ubuntu1).
    ubuntu-xenial-docker-ce-base: apt-transport-https is already the newest version (1.2.19).
    ubuntu-xenial-docker-ce-base: curl is already the newest version (7.47.0-1ubuntu2.2).
    ubuntu-xenial-docker-ce-base: software-properties-common is already the newest version (0.96.20.5).
    ubuntu-xenial-docker-ce-base: 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
    ubuntu-xenial-docker-ce-base: OK
    ubuntu-xenial-docker-ce-base: pub   4096R/0EBFCD88 2017-02-22
    ubuntu-xenial-docker-ce-base: Key fingerprint = 9DC8 5822 9FC7 DD38 854A  E2D8 8D81 803C 0EBF CD88
    ubuntu-xenial-docker-ce-base: uid                  Docker Release (CE deb) <docker@docker.com>
    ubuntu-xenial-docker-ce-base: sub   4096R/F273FCD8 2017-02-22
    ubuntu-xenial-docker-ce-base:
    ubuntu-xenial-docker-ce-base: Hit:1 http://us-east-1.ec2.archive.ubuntu.com/ubuntu xenial InRelease
    ubuntu-xenial-docker-ce-base: Get:2 http://us-east-1.ec2.archive.ubuntu.com/ubuntu xenial-updates InRelease [102 kB]
    ...
    ubuntu-xenial-docker-ce-base: Get:27 http://security.ubuntu.com/ubuntu xenial-security/universe amd64 Packages [89.5 kB]
    ubuntu-xenial-docker-ce-base: Fetched 10.6 MB in 2s (4,065 kB/s)
    ubuntu-xenial-docker-ce-base: Reading package lists...
    ubuntu-xenial-docker-ce-base: Reading package lists...
    ubuntu-xenial-docker-ce-base: Building dependency tree...
    ubuntu-xenial-docker-ce-base: Reading state information...
    ubuntu-xenial-docker-ce-base: Calculating upgrade...
    ubuntu-xenial-docker-ce-base: 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
    ubuntu-xenial-docker-ce-base: Reading package lists...
    ubuntu-xenial-docker-ce-base: Building dependency tree...
    ubuntu-xenial-docker-ce-base: Reading state information...
    ubuntu-xenial-docker-ce-base: The following additional packages will be installed:
    ubuntu-xenial-docker-ce-base: aufs-tools cgroupfs-mount libltdl7
    ubuntu-xenial-docker-ce-base: Suggested packages:
    ubuntu-xenial-docker-ce-base: mountall
    ubuntu-xenial-docker-ce-base: The following NEW packages will be installed:
    ubuntu-xenial-docker-ce-base: aufs-tools cgroupfs-mount docker-ce libltdl7
    ubuntu-xenial-docker-ce-base: 0 upgraded, 4 newly installed, 0 to remove and 0 not upgraded.
    ubuntu-xenial-docker-ce-base: Need to get 19.4 MB of archives.
    ubuntu-xenial-docker-ce-base: After this operation, 89.4 MB of additional disk space will be used.
    ubuntu-xenial-docker-ce-base: Get:1 http://us-east-1.ec2.archive.ubuntu.com/ubuntu xenial/universe amd64 aufs-tools amd64 1:3.2+20130722-1.1ubuntu1 [92.9 kB]
    ...
    ubuntu-xenial-docker-ce-base: Get:4 https://download.docker.com/linux/ubuntu xenial/stable amd64 docker-ce amd64 17.03.0~ce-0~ubuntu-xenial [19.3 MB]
    ubuntu-xenial-docker-ce-base: debconf: unable to initialize frontend: Dialog
    ubuntu-xenial-docker-ce-base: debconf: (Dialog frontend will not work on a dumb terminal, an emacs shell buffer, or without a controlling terminal.)
    ubuntu-xenial-docker-ce-base: debconf: falling back to frontend: Readline
    ubuntu-xenial-docker-ce-base: debconf: unable to initialize frontend: Readline
    ubuntu-xenial-docker-ce-base: debconf: (This frontend requires a controlling tty.)
    ubuntu-xenial-docker-ce-base: debconf: falling back to frontend: Teletype
    ubuntu-xenial-docker-ce-base: dpkg-preconfigure: unable to re-open stdin:
    ubuntu-xenial-docker-ce-base: Fetched 19.4 MB in 1s (17.8 MB/s)
    ubuntu-xenial-docker-ce-base: Selecting previously unselected package aufs-tools.
    ubuntu-xenial-docker-ce-base: (Reading database ... 53844 files and directories currently installed.)
    ubuntu-xenial-docker-ce-base: Preparing to unpack .../aufs-tools_1%3a3.2+20130722-1.1ubuntu1_amd64.deb ...
    ubuntu-xenial-docker-ce-base: Unpacking aufs-tools (1:3.2+20130722-1.1ubuntu1) ...
    ...
    ubuntu-xenial-docker-ce-base: Setting up docker-ce (17.03.0~ce-0~ubuntu-xenial) ...
    ubuntu-xenial-docker-ce-base: Processing triggers for libc-bin (2.23-0ubuntu5) ...
    ubuntu-xenial-docker-ce-base: Processing triggers for systemd (229-4ubuntu16) ...
    ubuntu-xenial-docker-ce-base: Processing triggers for ureadahead (0.100.0-19) ...
    ubuntu-xenial-docker-ce-base: groupadd: group 'docker' already exists
    ubuntu-xenial-docker-ce-base: Synchronizing state of docker.service with SysV init with /lib/systemd/systemd-sysv-install...
    ubuntu-xenial-docker-ce-base: Executing /lib/systemd/systemd-sysv-install enable docker
    ubuntu-xenial-docker-ce-base: Cleanup...
    ubuntu-xenial-docker-ce-base: Reading package lists...
    ubuntu-xenial-docker-ce-base: Building dependency tree...
    ubuntu-xenial-docker-ce-base: Reading state information...
    ubuntu-xenial-docker-ce-base: 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
==> ubuntu-xenial-docker-ce-base: Stopping the source instance...
==> ubuntu-xenial-docker-ce-base: Waiting for the instance to stop...
==> ubuntu-xenial-docker-ce-base: Creating the AMI: ubuntu-xenial-docker-ce-base 1288227081
    ubuntu-xenial-docker-ce-base: AMI: ami-e9ca6eff
==> ubuntu-xenial-docker-ce-base: Waiting for AMI to become ready...
==> ubuntu-xenial-docker-ce-base: Modifying attributes on AMI (ami-e9ca6eff)...
    ubuntu-xenial-docker-ce-base: Modifying: description
==> ubuntu-xenial-docker-ce-base: Modifying attributes on snapshot (snap-058a26c0250ee3217)...
==> ubuntu-xenial-docker-ce-base: Adding tags to AMI (ami-e9ca6eff)...
==> ubuntu-xenial-docker-ce-base: Tagging snapshot: snap-043a16c0154ee3217
==> ubuntu-xenial-docker-ce-base: Creating AMI tags
==> ubuntu-xenial-docker-ce-base: Creating snapshot tags
==> ubuntu-xenial-docker-ce-base: Terminating the source AWS instance...
==> ubuntu-xenial-docker-ce-base: Cleaning up any extra volumes...
==> ubuntu-xenial-docker-ce-base: No volumes to clean up, skipping
==> ubuntu-xenial-docker-ce-base: Deleting temporary security group...
==> ubuntu-xenial-docker-ce-base: Deleting temporary keypair...
Build 'ubuntu-xenial-docker-ce-base' finished.

==> Builds finished. The artifacts of successful builds are:
--> ubuntu-xenial-docker-ce-base: AMIs were created:

us-east-1: ami-e9ca6eff

Results

The result is an Ubuntu 16.04 AMI in US East 1 with Docker CE 17.03 installed. To confirm the new AMI is now available, I will use the AWS CLI to examine the resulting AMI:

aws ec2 describe-images \
  --filters Name=tag-key,Values=ami Name=tag-value,Values=ubuntu-xenial-docker-ce-base \
  --query 'Images[*].{ID:ImageId}'

Resulting output:

{
    "Images": [
        {
            "VirtualizationType": "hvm",
            "Name": "ubuntu-xenial-docker-ce-base 1488747081",
            "Tags": [
                {
                    "Value": "ubuntu-xenial-docker-ce-base",
                    "Key": "ami"
                }
            ],
            "Hypervisor": "xen",
            "SriovNetSupport": "simple",
            "ImageId": "ami-e9ca6eff",
            "State": "available",
            "BlockDeviceMappings": [
                {
                    "DeviceName": "/dev/sda1",
                    "Ebs": {
                        "DeleteOnTermination": true,
                        "SnapshotId": "snap-048a16c0250ee3227",
                        "VolumeSize": 8,
                        "VolumeType": "gp2",
                        "Encrypted": false
                    }
                },
                {
                    "DeviceName": "/dev/sdb",
                    "VirtualName": "ephemeral0"
                },
                {
                    "DeviceName": "/dev/sdc",
                    "VirtualName": "ephemeral1"
                }
            ],
            "Architecture": "x86_64",
            "ImageLocation": "931066906971/ubuntu-xenial-docker-ce-base 1488747081",
            "RootDeviceType": "ebs",
            "OwnerId": "931066906971",
            "RootDeviceName": "/dev/sda1",
            "CreationDate": "2017-03-05T20:53:41.000Z",
            "Public": false,
            "ImageType": "machine",
            "Description": "ubuntu-xenial-docker-ce-base AMI"
        }
    ]
}

Finally, here is the new AMI as seen in the AWS EC2 Management Console:

EC2 Management Console - AMI

Terraform

To confirm Docker CE is installed and running, I can provision a new EC2 instance, using HashiCorp Terraform. This post is too short to detail all the Terraform code required to stand up a complete environment. I’ve included the complete code in the GitHub repo for this post. Not, the Terraform code is only used to testing. No security, including the use of a properly configured security groups, public/private subnets, and a NAT server, is configured.

Below is a greatly abridged version of the Terraform code I used to provision a new EC2 instance, using Terraform’s aws_instance resource. The resulting EC2 instance should have Docker CE available.

# test-docker-ce instance
resource "aws_instance" "test-docker-ce" {
  connection {
    user        = "ubuntu"
    private_key = "${file("~/.ssh/test-docker-ce")}"
    timeout     = "${connection_timeout}"
  }

  ami               = "ami-e9ca6eff"
  instance_type     = "t2.nano"
  availability_zone = "us-east-1a"
  count             = "1"

  key_name               = "${aws_key_pair.auth.id}"
  vpc_security_group_ids = ["${aws_security_group.test-docker-ce.id}"]
  subnet_id              = "${aws_subnet.test-docker-ce.id}"

  tags {
    Owner       = "Gary A. Stafford"
    Terraform   = true
    Environment = "test-docker-ce"
    Name        = "tf-instance-test-docker-ce"
  }
}

By using the AWS CLI, once again, we can confirm the new EC2 instance was built using the correct AMI:

aws ec2 describe-instances \
  --filters Name='tag:Name,Values=tf-instance-test-docker-ce' \
  --output text --query 'Reservations[*].Instances[*].ImageId'

Resulting output looks good:

ami-e9ca6eff

Finally, here is the new EC2 as seen in the AWS EC2 Management Console:

EC2 Management Console - EC2

SSHing into the new EC2 instance, I should observe that the operating system is Ubuntu 16.04.2 LTS and that Docker version 17.03.0-ce is installed and running:

Welcome to Ubuntu 16.04.2 LTS (GNU/Linux 4.4.0-64-generic x86_64)

 * Documentation:  https://help.ubuntu.com
 * Management:     https://landscape.canonical.com
 * Support:        https://ubuntu.com/advantage

  Get cloud support with Ubuntu Advantage Cloud Guest:
    http://www.ubuntu.com/business/services/cloud

0 packages can be updated.
0 updates are security updates.

Last login: Sun Mar  5 22:06:01 2017 from <my_ip_address>

ubuntu@ip-<ec2_local_ip>:~$ docker --version
Docker version 17.03.0-ce, build 3a232c8

Conclusion

Docker EE and CE represent a significant step forward in expanding Docker’s enterprise-grade toolkit. Replacing or installing Docker EE or CE on your AWS AMIs is easy, using Docker’s guide along with HashiCorp Packer.

All source code for this post can be found on GitHub.

All opinions in this post are my own and not necessarily the views of my current employer or their clients.

, , , , , , , , , , ,

2 Comments